請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64496完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭彥彬(Yen-Ping Kuo) | |
| dc.contributor.author | Ting-yi Wang | en |
| dc.contributor.author | 王婷儀 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:50:40Z | - |
| dc.date.available | 2013-09-19 | |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-13 | |
| dc.identifier.citation | 1. Scully, C., et al., Oral squamous cell carcinoma overview. Oral oncology, 2009. 45(4/5): p. 301-308.
2. Chen, S.C., Life experiences of Taiwanese oral cancer patients during the postoperative period. Scandinavian Journal of Caring Sciences, 2012. 1(26): p. 98-103. 3. Marocchio, L.S., et al., Oral squamous cell carcinoma: an analysis of 1,564 cases showing advances in early detection. Journal of Oral Science, 2010. 52(2): p. 267-273. 4. Chen, Y.W., et al., Analysis of p16INK4A expression of oral squamous cell carcinomas in Taiwan: Prognostic correlation without relevance to betel quid consumption. Journal of Surgical Oncology, 2012. 2(106): p. 149-154. 5. Wang, Y.H., et al., Effects of multidisciplinary care on the survival of patients with oral cavity cancer in Taiwan. Oral oncology, 2012. 6. Mehrotra, R., et al., Oral squamous cell carcinoma: etiology, pathogenesis and prognostic value of genomic alterations. Indian journal of cancer, 2006. 43(2): p. 60-66. 7. Ko, Y.C., et al., Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. Journal of oral pathology & medicine, 1995. 24(10): p. 450-453. 8. Gillison ML, K.W., et al., Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst, 2000. 9(92): p. 709-20. 9. Lippman, S.M., et al., Oral cancer prevention and the evolution of molecular-targeted drug development. Journal of clinical oncology, 2005. 23(2): p. 346-356. 10. Patel, V., et al., Flavopiridol, a novel cyclin-dependent kinase inhibitor, suppresses the growth of head and neck squamous cell carcinomas by inducing apoptosis. Journal of Clinical Investigation, 1998. 102(9): p. 1674-1681. 11. Hashemolhosseini, S., et al., Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. Journal of Biological Chemistry, 1998. 273(23): p. 14424-14429. 12. Preiss, S., et al., Compound effects of point mutations causing campomelic dysplasia/autosomal sex reversal upon SOX9 structure, nuclear transport, DNA binding, and transcriptional activation. Journal of Biological Chemistry, 2001. 276(30): p. 27864-27872. 13. Koopman, P., et al., Sry and Sox9: mammalian testis-determining genes. Cellular and molecular life sciences, 1999. 55(6): p. 839-856. 14. Harley, V.R., et al., The molecular action and regulation of the testis-determining factors, SRY (sex-determining region on the Y chromosome) and SOX9 [SRY-related high-mobility group (HMG) box 9]. Endocrine reviews, 2003. 24(4): p. 466-487. 15. McDowall, S., et al., Functional and structural studies of wild type SOX9 and mutations causing campomelic dysplasia. Journal of Biological Chemistry, 1999. 274(34): p. 24023-24030. 16. Mertin, S., et al., The DNA-binding specificity of SOX9 and other SOX proteins. Nucleic acids research, 1999. 27(5): p. 1359-1364. 17. Sudbeck, P., et al., Two independent nuclear localization signals are present in the DNA-binding high-mobility group domains of SRY and SOX9. Journal of Biological Chemistry, 1997. 272(44): p. 27848-27852. 18. Vidal, V.P.I., et al., Sox9 induces testis development in XX transgenic mice. Nature genetics, 2001. 28(3): p. 216-217. 19. Oreal, E., et al., Early expression of AMH in chicken embryonic gonads precedes testicular SOX9 expression. Developmental dynamics, 1998. 212(4): p. 522-532. 20. Knower, K., et al., Turning on the male–SRY, SOX9 and sex determination in mammals. Cytogenetic and genome research, 2003. 101(3-4): p. 185-198. 21. Perl, A.K.T., et al., Normal lung development and function after Sox9 inactivation in the respiratory epithelium. Genesis, 2005. 41(1): p. 23-32. 22. Bi, W., et al., Sox9 is required for cartilage formation. Nature genetics, 1999. 22(1): p. 85-89. 23. Kulyk, W.M., et al., Sox9 Expression during Chondrogenesis in Micromass Cultures of Embryonic Limb Mesenchyme. Experimental cell research, 2000. 255(2): p. 327-332. 24. Lu, B., et al., Analysis of SOX9 expression in colorectal cancer. American journal of clinical pathology, 2008. 130(6): p. 897-904. 25. Wang, H., et al., SOX9 is expressed in human fetal prostate epithelium and enhances prostate cancer invasion. Cancer research, 2008. 68(6): p. 1625-1630. 26. Afonja, O., et al., RAR agonists stimulate SOX9 gene expression in breast cancer cell lines: evidence for a role in retinoid-mediated growth inhibition. Oncogene, 2002. 21(51): p. 7850-7860. 27. Malki, S., et al., Expression and biological role of the prostaglandin D synthase/SOX9 pathway in human ovarian cancer cells. Cancer letters, 2007. 255(2): p. 182-193. 28. Passeron, T., et al., Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid. The Journal of clinical investigation, 2009. 119(4): p. 954-963. 29. Qin, G., et al., SOXs in human prostate cancer: implication as progression and prognosis factors. BMC cancer, 2012. 12(1): p. 248. 30. Piper, K., et al., Novel SOX9 expression during human pancreas development correlates to abnormalities in Campomelic dysplasia. Mechanisms of development, 2002. 116(1): p. 223-226. 31. Lynn, F., et al., Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proceedings of the National Academy of Sciences, 2007. 104(25): p. 10500-10505. 32. Wang, H., et al., SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells. Cancer research, 2007. 67(2): p. 528-536. 33. Thomsen, M.K., et al., Sox9 is required for prostate development. Developmental biology, 2008. 316(2): p. 302-311. 34. Blache, P., et al., SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. The Journal of cell biology, 2004. 166(1): p. 37-47. 35. Passeron, T., et al., SOX9 is a key player in ultraviolet B-induced melanocyte differentiation and pigmentation. Proceedings of the National Academy of Sciences, 2007. 104(35): p. 13984-13989. 36. Jiang, S.S., et al., Upregulation of SOX9 in lung adenocarcinoma and its involvement in the regulation of cell growth and tumorigenicity. Clinical Cancer Research, 2010. 16(17): p. 4363-4373. 37. Galmiche, L., et al., Transcription factors involved in pancreas development are expressed in paediatric solid pseudopapillary tumours. Histopathology, 2008. 53(3): p. 318-324. 38. Darido, C., et al., Defective claudin-7 regulation by Tcf-4 and Sox-9 disrupts the polarity and increases the tumorigenicity of colorectal cancer cells. Cancer research, 2008. 68(11): p. 4258-4268. 39. Vidal, V.P.I., et al., SOX9 expression is a general marker of basal cell carcinoma and adnexal‐related neoplasms. Journal of cutaneous pathology, 2008. 35(4): p. 373-379. 40. Flammiger, A., et al., SOX9 and SOX10 but not BRN2 are required for nestin expression in human melanoma cells. Journal of Investigative Dermatology, 2008. 129(4): p. 945-953. 41. Whiteman, H.J., et al., The role of S100P in the invasion of pancreatic cancer cells is mediated through cytoskeletal changes and regulation of cathepsin D. Cancer research, 2007. 67(18): p. 8633-8642. 42. Hendrix, M.J.C., et al., Role of intermediate filaments in migration, invasion and metastasis. Cancer and Metastasis Reviews, 1996. 15(4): p. 507-525. 43. Choi, I., et al., Regulation of keratin 19 gene expression by estrogen in human breast cancer cells and identification of the estrogen responsive gene region. Molecular and Cellular Endocrinology, 2000. 164(1-2): p. 225-237. 44. Noguchi, S., et al., Detection of breast cancer micrometastases in axillary lymph nodes by means of reverse transcriptase-polymerase chain reaction. Comparison between MUC1 mRNA and keratin 19 mRNA amplification. The American journal of pathology, 1996. 148(2): p. 649-656. 45. Noguchi, S., et al., Detection of Gastric Cancer Micrometastases in Lymph Nodes by Amplification of Keratin 19 mRNA with Reverse Transcriptase‐Polymerase Chain Reaction. Cancer Science, 1996. 87(6): p. 650-654. 46. Kamiya, M., et al., Detection of nonmelanoma skin cancer micrometastases in lymph nodes by using reverse transcriptase–polymerase chain reaction for keratin 19 mRNA. British Journal of Dermatology, 2003. 149(5): p. 998-1005. 47. Khanom, R., et al., Expression of basal cell keratin 15 and keratin 19 in oral squamous neoplasms represents diverse pathophysiologies. Histology and histopathology, 2012. 27(7): p. 949-959. 48. Coltrera, M., et al., Markers for dysplasia of the upper aerodigestive tract. Suprabasal expression of PCNA, p53, and CK19 in alcohol-fixed, embedded tissue. The American journal of pathology, 1992. 141(4): p. 817-825. 49. Crowe, D., et al., Keratin 19 downregulation by oral squamous cell carcinoma lines increases invasive potential. Journal of dental research, 1999. 78(6): p. 1256-1263. 50. Hu, L., et al., Abnormal expression of retinoic acid receptors and keratin 19 by human oral and epidermal squamous cell carcinoma cell lines. Cancer research, 1991. 51(15): p. 3972-3981. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64496 | - |
| dc.description.abstract | 流行病學研究指出,臺灣地區口腔癌發生與嚼檳榔有密切關係。目前,臺灣地區嚼檳榔人口已高達兩百多萬。根據衛生署癌症登記報告指出,口腔癌在臺灣男性十大癌症中死亡率與發生率皆位居第五位,口腔癌年增率也是臺灣地區年增率最高之癌症。SOX9 (Sry-related HMG box 9)一個參與在胚胎發育過程中很重要的轉錄因子,在許多組織分化中都需要受到SOX9的調控,SOX9在癌症中扮演的角色也逐漸受到重視,例如:肺癌、大腸癌、前列腺癌跟子宮頸癌。先前實驗室研究結果顯示,在口腔癌病患的組織切片中,SOX9的表現量隨著癌化的過程中有上升的趨勢,和患者的腫瘤大小、淋巴結轉移與否、癌症臨床分期有統計上相關。且為影響存活時間的獨立因子。但是其致病機轉到目前仍不明瞭。 本研究首先利用SOX9表現量較少的SAS細胞株送入帶有SOX9序列的質體,使其蛋白大量表現;另外,選擇SOX9表現量較多的Tw2.6細胞株利用shRNA干擾技術專一性抑制SOX9的表現。 結果發現隨著SOX9表現的增加,細胞移行的能力及侵犯的能力都會隨之提高,在專一性抑制Tw2.6細胞株SOX9的表現,則有相反的結果,並且都具有統計意義( p < 0.05 ),但細胞生長的能力卻不會受到影響。在原位接種SAS/SOX9腫瘤細胞的動物模式中,也可以發現SOX9的大量表現可以促使淋巴轉移的現象產生。從微陣列分析的數據中,本實驗挑選了一個被指出在癌細胞中與細胞移動及侵犯能力相關的蛋白Keratin19 (KRT19),在Tw2.6專一性抑制SOX9的細胞株中,KRT19的表現量有增加的趨勢,我們另外送入專一性抑制KRT19的shRNA,發現當在Tw2.6/shSOX9細胞株中抑制KRT19的表現量,可以回復SOX9抑制後的細胞移行能力及侵犯能力。另外,我們也利用病人的組織切片去做了免疫組織染色,發現在臨床分期較低的病人,KRT19的表現量較多,而臨床分期較高的病人,KRT19的表現量較少,所以我們認為SOX9可能是透過KRT19來調控細胞移行與侵犯的能力。 | zh_TW |
| dc.description.abstract | Epidemiological studies have indicated that the oral cancer incidence in Taiwan is closely related to the habit of betel nut chewing. At present, the population of betel nut chewing has reach over two million in Taiwan. The mortality and incidence of oral cancer are ranked the fifth leading cancer in male, and the annual growth rate of oral cancer is also the highest in Taiwan. SOX9 (Sry-related HMG box 9) is an important transcription factor that plays important roles in embryogenesis and tissue differentiation. Previous studies showed that SOX-9 was significantly higher in oral cancer than that in normal oral mucosa. The expression of SOX-9 was correlated with advanced tumor stage, lymph node metastasis and short survival time. However, the role of SOX9 in oral cancer tumor progression is still unclear. In this study, SOX-9 over-expressed and shRNA stably-transfected cells were established to investigate migration/invasion ability in vitro and tumorigenesis and progression in vivo. We found that alterations in the SOX-9 level in OSCC cell lines positively modulated their invasive ability but not growth. Animal model also showed that SOX-9 overexpression had higher distant lymph node metastasis rate. Microarray analysis of gene expression in SOX-9 knockout TW2.6 cells identified dysregulation of many genes involved in metastasis. In particular, we knock-down KRT19 by shRNA and restored migration and invasion abilities in Tw2.6/shSOX9 cells. The KRT19 expression in OSCC specimens were examined by immunohistochemistry. KRT19 expression is higher in the patients with early stage, and lower in the patients with late stage. These results indicated that SOX9 influences cancer cell migration and invasion capacities through regulating KRT19. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:50:40Z (GMT). No. of bitstreams: 1 ntu-101-R99450003-1.pdf: 1506480 bytes, checksum: 3646e546a806e01da7e617d92dffa72f (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Introductions………………………………..……………..1
Chapter 1:Oral Cancer………………………………………………………1 1.1 Epidemiology and Etiology of Oral Cancer…………………………….1 1.2 Risk Factors of Oral Cancer……………………………………………..2 1.3 Therapy of Oral Cancer…………………………………………………..3 Chapter 2:SOX9……………………………………………………………....6 2.1 The Discovery of SOX9…………………………………………………..6 2.2 SOX9 Gene and Protein Structure……………………………………...6 2.3 Function of SOX9………………………………………………………...8 2.4 SOX9 and Cancer………………………………………………………...9 2.5 SOX9 and Oral Cancer………………………………………………….11 Aim…………………………………………………………..12 Matrials and Methods…………………………………....13 Results……………………………………………………...19 Discussion………………………………………………....26 Figures……………………………………………………...29 Table..………………………………………………………..41 References…………………………………………………42 | |
| dc.language.iso | en | |
| dc.subject | 細胞移行 | zh_TW |
| dc.subject | KRT19 | zh_TW |
| dc.subject | SOX9 | zh_TW |
| dc.subject | 口腔癌 | zh_TW |
| dc.subject | SOX9 | en |
| dc.subject | Invasion | en |
| dc.subject | KRT19 | en |
| dc.subject | Oral cancer | en |
| dc.subject | Migration | en |
| dc.title | SOX9在口腔致癌機轉中扮演的角色 | zh_TW |
| dc.title | The Roles of SOX9 in Oral Cancer Progression | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張正琪(Cheng-Chi Chang) | |
| dc.contributor.oralexamcommittee | 張國威(Kuo-Wei Chang) | |
| dc.subject.keyword | 口腔癌,SOX9,KRT19,細胞移行, | zh_TW |
| dc.subject.keyword | Oral cancer,SOX9,Migration,Invasion,KRT19, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-14 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
