請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64427
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳丕燊(Pisin Chen) | |
dc.contributor.author | Hsiao-Heng Yeh | en |
dc.contributor.author | 葉曉恆 | zh_TW |
dc.date.accessioned | 2021-06-16T17:46:33Z | - |
dc.date.available | 2021-03-03 | |
dc.date.copyright | 2020-03-03 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-02-27 | |
dc.identifier.citation | [1] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[2] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 594, A20 (2016) [arXiv:1502.02114 [astro-ph.CO]]. [3] Y. Akrami et al. [Planck Collaboration], arXiv:1807.06211 [astro-ph.CO]. [4] T. S. Bunch and P. C. W. Davies, Proc. Roy. Soc. Lond. A 360, 117 (1978). [5] P. Chen, Y. H. Lin and D. Yeom, arXiv:1707.01471 [gr-qc]. [6] J. White, Y. L. Zhang and M. Sasaki, Phys. Rev. D 90, no. 8, 083517 (2014) [arXiv:1407.5816 [astro-ph.CO]]. [7] P. Chen and Y. H. Lin, Phys. Rev. D 93, no. 2, 023503 (2016) [arXiv:1505.05980 [gr-qc]]. [8] A. D. Linde, Phys. Lett. 129B, 177 (1983). [9] J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983). [10] B. S. DeWitt, Phys. Rev. 160, 1113 (1967). [11] A. A. Starobinsky, Phys. Lett. B 91, 99 (1980) [Phys. Lett. 91B, 99 (1980)]. [12] M. Artymowski, Z. Lalak and M. Lewicki, Phys. Rev. D 93, no. 4, 043514 (2016)[arXiv:1509.00031 [hep-th]]. [13] F. Feleppa, I. Licata and C. Corda, Phys. Dark Univ. 26, 100381 (2019)[arXiv:1909.07824 [gr-qc]]. [14] J. J. Halliwell and S. W. Hawking, Phys. Rev. D 31, 1777 (1985). [15] J. J. Halliwell, in Proceedings: Quantum cosmology and baby universes (1990)[arXiv:0909.2566 [gr-qc]]. [16] R. Laflamme, Phys. Lett. B 198, 156 (1987). [17] D. Hwang, H. Sahlmann and D. Yeom, Class. Quant. Grav. 29, 095005 (2012)[arXiv:1107.4653 [gr-qc]];D. Hwang, B. H. Lee, H. Sahlmann and D. Yeom, Class. Quant. Grav. 29, 175001 (2012) [arXiv:1203.0112 [gr-qc]]. [18] A. A. Starobinsky, astro-ph/9603075. [19] D. i. Hwang, B. H. Lee, E. D. Stewart, D. Yeom and H. Zoe, Phys. Rev. D 87, no.6, 063502 (2013) [arXiv:1208.6563 [gr-qc]]. [20] C. R. Contaldi, M. Peloso, L. Kofman and A. D. Linde, JCAP 0307, 002 (2003)[astro-ph/0303636]. [21] D. Yamauchi, A. Linde, A. Naruko, M. Sasaki and T. Tanaka, Phys. Rev. D 84,043513 (2011) [arXiv:1105.2674 [hep-th]]. [22] S. Gratton, A. Lewis and N. Turok, Phys. Rev. D 65, 043513 (2002) [astro-ph/0111012]. [23] B. Bonga, B. Gupt and N. Yokomizo, JCAP 1610, no. 10, 031 (2016)[arXiv:1605.07556 [astro-ph.CO]]. [24] S. Brahma and D. Yeom, arXiv:1808.01744 [gr-qc]; S. Brahma and D. Yeom,arXiv:1810.10211 [hep-th]. [25] P.Chen,Y.C.HuandD.Yeom,JCAP1707,no.07,001(2017)[arXiv:1611.08468 [gr-qc]];S. Kang and D. h. Yeom, Phys. Rev. D 97, no. 12, 124031 (2018)[arXiv:1703.07746 [gr-qc]];P. Chen and D. Yeom, arXiv:1706.07784 [gr-qc];G.Tumurtushaa and D. Yeom, arXiv:1808.01103 [hep-th]. [26] J. B. Hartle, S. W. Hawking and T. Hertog, Phys. Rev. Lett. 100, 201301 (2008)[arXiv:0711.4630 [hep-th]];J. B. Hartle, S. W. Hawking and T. Hertog, Phys. Rev. D 77, 123537 (2008) [arXiv:0803.1663 [hep-th]]. [27] D. Hwang, S. A. Kim, B. H. Lee, H. Sahlmann and D. Yeom, Class. Quant. Grav. 30, 165016 (2013) [arXiv:1207.0359 [gr-qc]]. [28] D. Hwang and D. Yeom, JCAP 1406, 007 (2014) [arXiv:1311.6872 [gr-qc]]. [29] M. Sasaki, D. Yeom and Y. l. Zhang, Class. Quant. Grav. 30, 232001 (2013)[arXiv:1307.5948 [gr-qc]];Y. l. Zhang, R. Saito, D. Yeom and M. Sasaki, JCAP 1402,022 (2014) [arXiv:1312.0709 [hep-th]]. [30] Y. l. Zhang, M. Sasaki and D. Yeom, JHEP 1504, 016 (2015) [arXiv:1411.6769[hep-th]]. [31] D. Hwang, S. A. Kim and D. Yeom, Class. Quant. Grav. 32, no. 11, 115006(2015) [arXiv:1404.2800 [gr-qc]]. [32] P.NiazyandA.H.Abbassi,Astropart.Phys.94,44(2017)[arXiv:1709.06549[gr-qc]]. [33] L. F. Abbott, and R. K. Schaefer, Astrophys. J. 308, 546 (1986). [34] A. M. Lewis, ”Geometric algebra and covariant methods in physics and cosmology.” Diss. University of Cambridge, (2001). [35] M.Zaldarriaga,U.SeljakandE.Bertschinger,Astrophys.J.494,491(1998)[astro-ph/9704265]. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64427 | - |
dc.description.abstract | 宇宙微波背景在大尺度下的缺乏相關性可以幫助為探測宇宙暴漲 前的狀態。在本文中,我們研究基於哈妥-霍金無邊界條件的原始功率譜,該提案針對均質,各向同性和空間封閉的宇宙,該宇宙導致經典 化之後的斯塔羅賓斯基型宇宙暴漲。雖然我們發現在標準的理論中沒有大規模抑制,但我們也發現,如果將宇宙暴漲階段引入斯塔羅賓斯基型模型,則有可能充分抑制大尺度功率譜。此外,這種宇宙暴漲前的階段將有助於解釋哈妥-霍金無邊界提案中較大的 e 倍數的偏好。我們計算了宇宙微波背景輻射相關函數,並發現其結果更符合普朗克觀測實驗。這表明我們的宇宙可能是從具有小的正曲率的緊湊哈妥-霍金無邊界狀態開始的。 | zh_TW |
dc.description.abstract | The lack of correlations on the large scale cosmic microwave background (CMB) anisotropy provides a potential window to probe beyond the standard inflationary scenario. In the thesis, we investigate the primordial power spectrum based on the Hartle-Hawking (HH) no-boundary proposal for a homogeneous, isotropic, and spatially-closed universe that leads to Starobinsky-type inflation after the classicalization. While we found that there is no suppression at large scales in the standard R + R2 theory, it is possible to suppress the large-scale power spectrum if a pre-inflationary stage is introduced to the Starobinsky-type model. In addition, such a pre-inflationary stage will be helpful to explain the preference of large e-foldings of the HH proposal. We calculate the C_TT correlation function and show that our proposal gives a better fit to the Planck CMB data. This suggests that our universe might have begun with a compact HH state with a small positive curvature. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:46:33Z (GMT). No. of bitstreams: 1 ntu-109-R06222077-1.pdf: 2678029 bytes, checksum: 3dfe0ee1ea3b9be6582a77df20e708a0 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 iii
Acknowledgements v vii Abstract ix 1 Introduction 1 2 Power spectrum from the no-boundary wave function 5 2.1 TheHartle-Hawkingno-boundaryproposal . . . . . . . . . . . . . . . . 5 2.2 Harmonicexpansioninacloseduniverse ................. 7 2.3 Calculatingcosmologicalobservables ................... 9 3 Numerical solution and connection with CMB observations 11 3.1 Solvingequations.............................. 11 3.2 Starobinskymodel ............................. 13 3.3 ModifiedStarobinskymodel ........................ 14 3.4 ConnectionwiththeCMBspectrum .................... 18 4 Conclusion 23 5 Appendix 25 Bibliography 31 | |
dc.language.iso | en | |
dc.title | 以複數化瞬子當作宇宙形成之初始條件 | zh_TW |
dc.title | Complex Instanton as the Initial Condition of the Universe | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳俊瑋(Jiunn-Wei Chen),賀培銘(Pei-Ming Ho),陳哲佑(Che-Yu Chen) | |
dc.subject.keyword | Hartle-Hawking波函數,Starobinsky模型,原始功率譜,封閉宇宙,宇宙微波背景輻射大尺度抑制, | zh_TW |
dc.subject.keyword | Hartle-Hawking wave function,Starobinsky model,primordial power spectrum,closed universe,CMB large scale suppression, | en |
dc.relation.page | 33 | |
dc.identifier.doi | 10.6342/NTU202000557 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-02-27 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 2.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。