請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64420完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林怡成 | |
| dc.contributor.author | Shih-Kai Lin | en |
| dc.contributor.author | 林士凱 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:46:08Z | - |
| dc.date.available | 2017-08-28 | |
| dc.date.copyright | 2012-08-28 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-13 | |
| dc.identifier.citation | [1] H. Iwasaki, “A circularly polarized small-size microstrip antenna with a cross slot,” IEEE Trans. Antennas Propag., vol.44, no.10, pp.1399-1401, Oct. 1996.
[2] J. H. Lu, C. L. Tang, and K. L. Wong, “Single-feed slotted equilateral-triangular microstrip antenna for circular polarization,” IEEE Trans. Antenna Propag., Vol.47, no.7, pp.1174-1178, July 1999. [3] J. M. Lee, N. S. Kim, and C. S. Pyo, “A circular polarized metallic patch antenna for RFID reader,” in Proc. 2005 Asia-Pacific conf., pp.116-118. Oct. 3-5, 2005, [4] L. Bian, Y. X. Guo, L. C. Ong, and X. Q. Shi, “Wideband circularly-polarized patch antenna,” IEEE Trans. Antenna Propag., Vol.54, no.9, pp.2682-2686, Sep. 2006. [5] K. L. Wong and T. W. Chiou, “Broad-band single-patch circularly polarized microstrip antenna with dual capacitively coupled feeds,” IEEE Trans. Antenna Propag., vol.49, no.1, pp.41-44, Jan. 2001. [6] T. Teshirogi, M. Tanaka, and W. Chujo, “Wideband circularly polarized array antenna with sequential rotations and phase shifts of elements,” Int. Symp. Antennas Propagat. ISAP, Tokyo, Japan, pp.117-120, Aug. 1985. [7] J. Huang, “A technique for an array to generate circular polarization using linearly polarized elements,” IEEE Trans. Antennas Propagat., vol.34, no.9, pp.1113-1124, Sep. 1986. [8] P. S. Hall, “Application of sequential feeding to wide bandwidth, circularly polarized microstrip patch arrays,” Proc. Inst. Elect. Eng., vol.136, pt. H, pp.390-398, May 1989. [9] Nasimuddin, Z. N. Chen, and X. Qing, “Asymmetric-circular shaped slotted microstrip antennas for circular polarization and RFID applications,” IEEE Trans. Antennas and Propag., vol.58, no.12, pp.3821-3828, Dec. 2010. [10] W. I. Son, W. G. Lim, M. Q. Lee, S. B. Min and J. W. Yu, “Design of compact quadruple inverted-F antenna with circular polarization for GPS receiver,” IEEE Trans. Antennas and Propag., vol.58, no.5, pp.1503-1510, May 2010. [11] J. D. Dyson, “The equiangular spiral antenna,” IRE Trans. Antenna Propag., vol.7, pp.181-187, Apr. 1959. [12] R. S. Elliott, Antenna Theory and Design, Revised Edition. Wiley Interscience, 2003, ch. 3. [13] D. M. Pozar, “Microstrip antennas,” Proc. IEEE, vol.80, no.1, pp.79-91, Jan. 1992. [14] J. Q. Howell, “Microstrip antennas,” IEEE Trans. Antennas and Propag., vol.23, no.1, pp.90-93, Jun. 1975. [15] A. G. Derneryd, “Linearly polarized microstrip antennas,” IEEE Trans. Antennas and Propag., vol.24, no.6, pp.846-851 Nov. 1976. [16] W. S. Chen, C. K. Wu, and K. L. Wong, “Novel compact circularly polarized square microstrip antenna,” IEEE Trans. Antennas and Propag., vol.49, no.3, pp.340-342 Mar., 2001. [17] A. A. Abdelaziz and D. M. Nashaat, “Compact GPS microstrip patch antenna,” Military Communications Conference, Oct. 2007. [18] S. L. S. Yang, R. Chair, A. A. Kishk, K. F. Lee, and K. M. Luk, “Study on sequential feeding networks for subarrays of circularly polarized elliptical dielectric resonator antenna,” IEEE Trans. Antennas Propag., vol.55, no.2, pp.321-333, Feb. 2007. [19] Y. F. Lin, H. M. Chen, and S. C. Lin, “A new coupling mechanism for circularly polarized annular-ring patch antenna,” IEEE Trans. Antennas Propag., vol.56, no.1, pp.11-16, Jan. 2008. [20] R. L. Li, V. F. Fusco and H. Nakano, “Circularly polarized open-loop antenna, ” IEEE Trans. Antennas Propag., vol.51, no.9, pp.2475-2477, Sep. 2003. [21] Y. Li, Q. Xue, E. K. N. Yung and Y. Long, 'Circularly-polarised microstrip leaky-wave antenna,' Electronics Letters , vol.43, no.14, Jul. 2007. [22] J. Y. Sze and C. C. Chang, “Circularly polarized square slot antenna with a pair of inverted-L grounded strips,” IEEE Antennas and Wireless Propagagion Letter., vol.7, pp.149-151, 2008. [23] J. Y. Sze, K. L. Wong and C. C. Huang, “Coplanar waveguide-fed square slot antenna for broadband circularly polarized radiation,” IEEE Trans. Antennas Propag., vol.51, no.8, pp.2141-2144, Aug. 2003. [24] J. S. Row, “The design of a squarer-ring slot antenna for circular polarization,” IEEE Trans. Antennas Propag., vol.53, no.6, pp.1967-1972, Jun. 2005. [25] J. S. Row and S. W. Wu, “Circularly-polarized wide slot antenna loaded with a parasitic patch,” IEEE Trans. Antennas Propag., vol.56, no.9, pp.2826-2832, Sep. 2008. [26] K. Hirose and H. Nakano, “Dual-spiral slot antennas,” Inst. Elect. Eng.Proceedings-H , vol.138, no.1, pp.32-36, Feb. 1991. [27] R. L. Li, B. Pan, A. N. Traille, J. Papapolymerou, J. Laskar and M. M. Tentzeris, “Development of a cavity-backed broadband circularly polarized slot/strip loop antenna with a simple feeding structure,” IEEE Trans. Antennas and Propag., vol.56, no.2, pp.312-318, Feb. 2008. [28] T. Y. Han, Y. Y. Chu, L. Y. Tseng and J. S Row, “Unidirectional circularly-polarized slot antennas with broadband operation,” IEEE Trans. Antennas and Propag., vol.56, no.6, pp.1777-1780, Jun. 2008. [29] K. F. Hung and Y. C. Lin, “Simulation of single-arm fractional spiral antennas for millimeter wave applications,” IEEE Antennas and Propagation Society International Symposium, pp.3697-3700, Jul. 2006. [30] K. F. Hung and Y. C. Lin, “Novel broadband circularly polarized cavity-backed aperture antenna with traveling wave excitation,” IEEE Trans. Antennas and Propag., vol.58, no.1, pp.35-42, Jun. 2010. [31] K. D. Palmer, J. H. Cloete, and J. J van Tonder, “Bandwidth improvement of circularly polarised arrays using sequential rotation,” IEEE Antennas and Propagation Symp., vol.1, pp.135-138, Jul. 1992. [32] U. R. Kraft, “An experimental study on 2×2 sequential rotation arrays with circularly polarized microstrip radiators,” IEEE Trans. Antennas Propag., vol.45, no.10, pp.1459-1466, Oct. 1997. [33] A. R. Weily and Y. J. Guo, “Circularly polarized ellipse-loaded circular slot array for millimeter-wave WPAN applications,” IEEE Trans. Antennas Propag., vol.57, no.10, pp.2862-2870, Oct. 2009. [34] R. Caso, A. Buffi, M. R. Pino, P. Nepa, and G. Manara, “A novel dual-feed slot-coupling feeding technique for circularly polarized patch arrays,” IEEE Antennas Wireless Propag. Lett., vol.9, pp.183-186, 2010. [35] H. Evans, P. Gale, B. Aljibouri, E. G. Lim, E. Korolkeiwicz, and A. Sambell, “Application of simulated annealing to design of serial feed sequentially rotated 2×2 antenna array,” Electron. Lett., vol.36, no.24, pp.1987-1988, Nov. 2000. [36] K. H. Lu and T. N. Chang, “Circularly polarized array antenna with corporate-feed network and series-feed elements,” IEEE Trans. Antennas Propag., vol.53, no.10, pp.3288-3292, Oct. 2005. [37] J. D. Kraus and R. J. Marhefka, Antennas:For all applications, New York: McGraw-Hill, 2003. [38] R. S. Elliott, Antenna Theory and Design, Revised Edition. Wiley Interscience, 2003, ch. 1. [39] V. H. Rumsey, “Frequency independent antennas,” IRE National Convention Record, pt. I, pp.114-118, Mar. 1957. [40] J. A. Kaiser, “The Archimedean two-wire spiral antenna,” IRE Trans. Antenna Propag., vol.8, pp.312-323, May 1960. [41] S. K. Lin and Y. C. Lin, “A printed leaky-wave circularly polarized antenna using exponentially curved slots for broadside radiation,” Asia Pacific Microwave Conference, 2010. APMC 2010., Dec. 2010. [42] S. K. Lin and Y. C. Lin, “A broadband leaky-wave aperture antenna of circular polarization, ” Antennas and Propagation (APSURSI), 2011 IEEE International Symposium on, pp.789-792, 3-8 July 2011. [43] J. L. Gomez Tornero, “Analysis and Design of Conformal Tapered Leaky Wave Antennas,” IEEE Antennas and Wireless Propag. Lett., vol.10, pp.1068-1071, 2011. [44] H. Nakano, S. Okuzawa, K. Ohishi, H. Mimaki, and J. Yamauchi, “A curl antenna,” IEEE Trans. Antennas and Propag., vol.41, no.11, pp.1570-1575, Nov. 1993. [45] U. R. Kraft, “Main-beam polarization properties of four-element sequential rotation arrays with arbitrary radiators,” IEEE Trans. Antennas and Propag., vol.44, no.4, pp.515-522, Apr. 1996. [46] Ahmed A. Kishk, “Performance of planar four-elements array of single-fed circularly polarized dielectric resonator antenna,” Microwave and Optical Technology Letters, vol.38, no.5, pp.381-384, 2003. [47] K K. Pang, H. Y. Lo, K. W. Leung, K. M. Luk, and E. K. N. Yung, “Circularly polarized dielectric resonator antenna subarrays,” Microwave and Optical Technology Letters, vol.27, no.6, pp.377-379, Dec. 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64420 | - |
| dc.description.abstract | 本論文提出並實證了一系列的平面式寬頻圓極化漏波天線、序列式饋入電路以及數個序列式旋轉天線陣列。
最起始之天線形狀為一個圓形的槽孔,其中以一個扇形的金屬片做為干擾,使能量在耦合至槽孔上時,得以在兩側得到不同的邊界條件,其中一邊產生共振現象,用以匹配輸入阻抗,而另一側產生行進的漏波並且在正上方得到寬頻圓極化的輻射能量;接著結合指數曲線天線的概念,使得原先天線中沿著圓弧行進的漏波改為沿著一指數曲線行進,成功的改善了寬頻圓極化的特性;最後則提出了一個小型的指數型曲線槽孔天線,藉由不同特性的指數曲線,使得原先需要數個電氣波長長度的指數型曲線天線得以在小面積中實現,同時仍保持著良好的寬頻圓極化特性,而為了改善場型偏斜的問題以及單向輻射場型的實現,亦以此為基礎,提出了雙槽孔(dual-slot)以及添加平面反射板的設計。由實驗結果得知,這些天線都有著寬頻圓極化的表現,包含有10-dB返回損失、3-dB或6-dB的軸長比以及天線增益。 本論文中的序列式饋入電路整合四分之一波長的阻抗轉換器在序列式饋入電路必要的信號延遲線內,因此可以轉換任意天線阻抗至饋入電路的輸入端。也因此,本論文所提出之序列式饋入電路所佔面積小,可以容納天線陣列中天線元件間距調整的彈性。另由於幾何對稱的特性,此饋入電路也易於擴展至任意2N×2N的天線陣列。 在論文最後,結合前面章節所提出的寬頻圓極化漏波天線與序列式饋入電路,整合成序列式旋轉天線陣列並達到寬頻、高增益的圓極化特性。從實驗結果得知,2×2的序列式旋轉天線陣列的頻寬可達45%,其頻寬定義為同時滿足返回損失10-dB、軸長比3-dB以及半功率頻寬,天線增益最大值約為8.5 dBic。為了更高天線增益與更高的槽孔效率,我們另外設計了一個4×4的序列式旋轉天線陣列。此天線陣列的天線增益可達20.4 dBic,有效的槽孔效率為77.2%。 | zh_TW |
| dc.description.abstract | This dissertation presents a series of broadband leaky wave circularly polarized (CP) aperture antennas, the specific topology of sequential phase (SP) feeding network and the sequential rotation (SR) antenna arrays.
The original design is composed of a circular aperture with a fan-shaped perturbation. The perturbation constructs the boundary conditions, thus the energy coupled to the aperture will split into two ways. The traveling wave propagating along the arc radiates in CP at broadside with broadband characteristic. By importing the concept of the exponential curve antenna, the traveling wave in the following antenna propagates along an exponential curve which enhances the performance of the CP features of the antenna. Finally, a compact antenna of exponentially curved slot as a radiator is realized. By the usage of different parameters of the exponential curves, the size is reduced from the traditional exponential antennas. Moreover, to overcome the beam tilt problem and to use the antenna in practical case, a dual-slot design with reflector is also proposed and realized. Verified by the experimental results, the presented antennas all perform broadband characteristics, including the 10-dB return loss, the 3-dB or the 6-dB axial ratio (AR), and the CP gain. The SP feed presented in this dissertation may transform the antenna impedance to the feed port impedance for arbitrary values due to the quarter wavelength transformers embedded in the designed delay line. Moreover, the SP feed only occupies a small area as to be accommodated in the array layouts with flexibility to adjust the antenna element spacing. Lastly, several SR antenna array designs which integrate the SP feed and the antennas presented in this dissertation are presented to achieve broadband and high gain CP performances. For 2x2 SR antenna array, the overlapped bandwidth of the achieves about 45%, under the criteria of 10-dB return loss, 3-dB AR, and 3-dB CP gain flatness, where the maximum gain is about 8.5 dBic. Another SR antenna array is composed of 4x4 antenna elements for high gain and high aperture efficiency, where a CP gain of 20.4 dBic and an aperture efficiency of 77.2% are achieved. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:46:08Z (GMT). No. of bitstreams: 1 ntu-101-D97942001-1.pdf: 12023406 bytes, checksum: 9a45444cedb58118bd2339155dce8efc (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要………………………………………………………………………i
Abstract…………………………………………………………………ii CHAPTER 1 Introduction 1-1 Introduction and Motivation…………………………………………………………………1 1-2 Literature Review…………………………………………………………………4 1-3 Dissertation Organization…………………………………………………………………7 CHAPTER 2 Antenna Fundamentals and Definitions 2-1 The Potential Functions and the Far-Field Approximation…………………………………………………………………12 2-2 Directivity and Gain…………………………………………………………………15 2-3 Friis Transmission Formula…………………………………………………………………16 2-4 Antenna Polarization…………………………………………………………………18 CHAPTER 3 A Leaky-wave Circular Aperture Antenna with a Fan-Shaped Perturbation for Circularly Polarized Radiation 3-1 Antenna Element Design…………………………………………………………………23 3-2 Simulation and Experimental Verification…………………………………………………………………27 3-3 Parametric Study…………………………………………………………………34 3-4 Summary…………………………………………………………………36 CHAPTER 4 An Aperture Antenna with Exponentially Curved Contour for Broadband Circular Polarization Operation 4-1 Antenna Element Design…………………………………………………………………42 4-2 Simulation and Experimental Verification…………………………………………………………………45 4-3 Parametric Study…………………………………………………………………45 4-4 Summary…………………………………………………………………59 CHAPTER 5 A Compact Outer-fed Leaky-wave Antenna Using Exponentially Tapered Slots for Broadside Circularly Polarized Radiation 5-1 Antenna Structure and Operating Mechanism…………………………………………………………………61 5-2 Design Guidelines and Parametric Study…………………………………………………………………65 5-3 Simulation and Experimental Verification…………………………………………………………………70 5-4 Achieving Pattern Stability and Unidirectional Beam…………………………………………………………………76 5-5 Discussions…………………………………………………………………88 5-6 Summary…………………………………………………………………92 CHAPTER 6 A Compact Sequential Phase Feed Using Uniform Transmission Lines for Circularly Polarized Sequential Rotation Arrays 6-1 Introduction of Sequential Rotation…………………………………………………………………95 6-2 Configuration and Design Scheme…………………………………………………………………100 6-3 Experimental Results and Discussion…………………………………………………………………105 6-4 Applications of SP Feed in Antenna Arrays…………………………………………………………………111 6-5 Summary…………………………………………………………………114 CHAPTER 7 Sequential Rotation Antenna Arrays 7-1 Formulas of Sequential Rotation Arrays…………………………………………………………………116 7-2 Experimental Verification of 1×2 Sequential Rotation Antenna Array for the Validity of the Formulas…………………………………………………………………123 7-3 Experimental Verification of 2×2 Sequential Rotation Antenna Arrays…………………………………………………………………131 7-4 4×4 Sequential Rotation Antenna Array…………………………………………………………………144 7-5 Summary…………………………………………………………………150 CHAPTER 8 Conclusions 8-1 Summary…………………………………………………………………153 8-2 Contributions…………………………………………………………………155 References ……………………………………………………………162 Publication List ………………………………………………………165 List of Figures Fig. 2-1 Notation for far-field analysis…………………………………………………………………13 Fig. 2 2 Transceiver diagram with a transmitter and a receiver with load impedance ZL.…………………………………………………………………17 Fig. 2 3 Wave polarization diagram.…………………………………………………………………18 Fig. 2 4 Wave polarization state lay the phase front.…………………………………………………………………19 Fig. 2 5 The general polarization ellipse. The wave direction is out of the page in the + z-direction.…………………………………………………………………20 Fig. 3-1 The geometry of the proposed antenna: (a) the key parameters of the antenna; (b) the relative position of the antenna.…………………………………………………………………24 Fig. 3-2 The simulated surface current distribution of the prototype antenna in time domain at 5 GHz.…………………………………………………………………26 Fig. 3-3 The (a)layout and (b) the photograph of the prototype antenna..…………………………………………………………………28 Fig. 3-4 Measured and simulated reflection coefficient of the proposed antenna.…………………………………………………………………29 Fig. 3-5 The gain pattern of the prototype antenna in to elevation cuts (the YZ plane and the XY plane) at three different frequencies.…………………………………………………………………32 Fig. 3-6 Measured and simulated RHCP gain at zenith of the antenna (+Y-axis).…………………………………………………………………32 Fig. 3-7 Measured and simulated axial ratio at zenith of the antenna (+Y-axis).…………………………………………………………………33 Fig. 3-8 Parameter study of θup.…………………………………………………………………35 Fig. 3-9 Parameter study of θdown.…………………………………………………………………37 Fig. 3-10 Parameter study of θdown.…………………………………………………………………38 Fig. 4-1 Geometry of the presented antenna…………………………………………………………………43 Fig. 4-2 Simulated current distribution on the ground plane in different time steps.…………………………………………………………………44 Fig. 4-3 Measured and simulated reflection coefficient of the proposed antenna…………………………………………………………………46 Fig. 4-4 Measured and simulated AR of the proposed antenna at zenith.…………………………………………………………………47 Fig. 4-5 Measured and simulated gain at zenith.…………………………………………………………………47 Fig. 4-6 Gain pattern at 4 GHz. (a)xz-plane; (b)yz-plane. …………………………………………………………………48 Fig. 4- 7 Gain pattern at 5 GHz. (a)xz-plane; (b)yz-plane. …………………………………………………………………49 Fig. 4-8 The reflection coefficient of the proposed antenna versus frequency with different A1s.…………………………………………………………………51 Fig. 4-9 The axial ratio at the zenith versus frequency with different A1s.…………………………………………………………………51 Fig. 4-10 The reflection coefficient of the proposed antenna versus frequency with different ψ1s.…………………………………………………………………52 Fig. 4-11 The axial ratio at the zenith versus frequency with different ψ1s.…………………………………………………………………52 Fig. 4- 12 The reflection coefficient of the proposed antenna versus frequency with different A2s.…………………………………………………………………53 Fig. 4-13 The axial ratio at the zenith versus frequency with different A2s.…………………………………………………………………53 Fig.4-14 The reflection coefficient of the proposed antenna versus frequency with different ψ2s.…………………………………………………………………55 Fig. 4-15 The axial ratio at the zenith versus frequency with different ψ2s.…………………………………………………………………55 Fig. 4-16 The reflection coefficient of the proposed antenna versus frequency with different Rs.…………………………………………………………………56 Fig. 4-17 The axial ratio at the zenith versus frequency with different Rs.…………………………………………………………………56 Fig. 4-18 The study of the capacity load in reflection coefficient.…………………………………………………………………57 Fig. 4-19 The study of the capacity load in AR.…………………………………………………………………58 Fig. 5-1 (a) Geometry of the presented antenna, where the exponentially curved slot is composed of three curves: S1, S2, and S3. (b) The detailed geometry of the microstrip-to-slotline transition section.…………………………………………………………………62 Fig. 5-2 The simulated surface current distribution on the ground plane in four different time steps. (T = 1/f, f = 5.5 GHz). (Parameters: A1=16 mm, R1=0.01, =270。, A2=15 mm, R2= −0.25, =400。)…………………………………………………………………65 Fig. 5-3 The axial ratio at the zenith versus frequency with different R1s.…………………………………………………………………67 Fig. 5-4 The RHCP gain at the zenith versus frequency with different R2s.…………………………………………………………………67 Fig. 5-5 The axial ratio at the zenith versus frequency with different R2s…………………………………………………………………71 Fig. 5-6 Measured and simulated reflection coefficients of the prototype antenna, where L = 60 mm, d = 1 mm, W1 = 0.5 mm, W2 = 1 mm, Ws = 1 mm, L2 = 5 mm, C1 = 6.7 mm, A1 = 16 mm, R1 = 0.01, =270。, A2 = 15 mm, R2 = −0.25, and =400。. …………………………………………………………………71 Fig. 5-7 Measured and simulated radiation patterns of the proposed antenna at different frequencies.…………………………………………………………………74 Fig. 5-8 Measured and simulated gain and AR at the zenith of the presented antenna.…………………………………………………………………75 Fig. 5-9 The geometry and dimensions of the dual-slot design of the presented antenna.…………………………………………………………………77 Fig. 5-10 Measured and simulated gain and AR at the zenith of the dual-slot design of the presented antenna.…………………………………………………………………78 Fig. 5-11 Measured and simulated radiation patterns of the proposed antenna at different frequencies.…………………………………………………………………81 Fig. 5-12 The polar plot of the peak gain direction angle (θ, )as a function of frequency varying from 3.0 GHz to 6.5 GHz with a comparison of the single slot and the dual-slot design of the presented antenna.…………………………………………………………………82 Fig. 5-13 Measured and simulated reflection coefficients of the dual-slot design of the presented antenna with a reflector.…………………………………………………………………84 Fig. 5-14 Measured and simulated gain and AR at the zenith of the dual-slot design of the presented antenna.…………………………………………………………………84 Fig. 5-15 Measured and simulated radiation patterns of the dual-slot design of the presented antenna with a reflector at different frequencies: (a) 4.4 GHz, (b) 5.5 GHz, and (c) 6.6 GHz.…………………………………………………………………87 Fig. 5-16 Traditional spiral slot antenna in with a small size. (Parameters: A1=16 mm, R1=R2=0.02, A2=15 mm, =400o) …………………………………………………………………90 Fig. 5-17 Reflection coefficient of the traditional small slot spiral antenna as shown in Fig. 5-16.…………………………………………………………………91 Fig. 5-18 RHCP gain and AR of the traditional small slot spiral antenna at zenith.…………………………………………………………………91 Fig. 6-1 2×2 sequential rotation antenna array diagrams. (a) 0。, 90。, 0。, 90。 , (b) 0。, 90。, 180。, 270。…………………………………………………………………96 Fig. 6-2 Cross polarization discrimination against the error of feeding.…………………………………………………………………98 Fig. 6-3 Different types of sequential rotation feeds. (a) parallel type, (b) series type, and (c) hybrid ring with parallel type. [18]…………………………………………………………………99 Fig. 6-4 (a) Conceptual configuration of the sequential phase (SP) feed and 2 2 sequential rotation CP arrays (RHCP example); (b) Topology and nominal dimensions of the proposed SP feed using uniform transmission lines.…………………………………………………………………101 Fig. 6-5 Schematic diagram of the proposed SP feed…………………………………………………………………104 Fig. 6-6 Implementation and prototype of the presented SP feed of λg/4 λg/4 case: (a) optimal dimensions; (b) photo. …………………………………………………………………106 Fig. 6-7 Measured and simulated S-parameter in magnitude of the presented SP feed of λg/4 λg/4 case. (The points represent the measured data and the lines represent the simulated data.)…………………………………………………………………107 Fig. 6-8 Measured phase difference between the adjacent ports of the presented SP feed of λg/4 λg/4 case. (The points represent the measured data and the lines represent the simulated data.)…………………………………………………………………107 Fig. 6-9 Layout and prototype of the presented SP feed of 3λg/8 3λg/8 case: (a) layout dimensions; (b) photo of the prototype.…………………………………………………………………109 Fig. 6-10 Measured and simulated S-parameter in magnitude of the presented SP feed of 3λg/8 3λg/8 case. (The points represent the measured data and the lines represent the simulated data.)…………………………………………………………………110 Fig. 6-11 Measured phase difference between the adjacent ports of the presented SP feed of λg/4 λg/4 case. (The points represent the measured data and the lines represent the simulated data.)…………………………………………………………………110 Fig. 6-12 Configuration of the 2×2 SR arrays using the presented SP feeds.…………………………………………………………………112 Fig. 6-13 Simulated return loss of the antenna element and array shown in Fig.6-12.…………………………………………………………………112 Fig. 6-14 Simulated AR and CP gain at zenith (+z-axis) of the antenna element and array shown in Fig. 6-12.…………………………………………………………………113 Fig. 6-15 Configuration of the 4×4 SR arrays using the presented SP feeds.…………………………………………………………………113 Fig. 7-1 The diagram of the 1×2 sequential rotation array. …………………………………………………………………116 Fig. 7-2 The equivalent circuit diagram of Fig. 7-1…………………………………………………………………120 Fig. 7-3 The prototype of the 1×2 sequential rotation antenna array prototype: (a) the photo (b) the layout.…………………………………………………………………124 Fig. 7-4 The simulated input impedance of the antenna element.…………………………………………………………………125 Fig. 7-5 The reflection coefficient of the 1×2 sequential rotation antenna array.…………………………………………………………………125 Fig. 7-6 The simulated, measured, and predicted AR of the 1×2 sequential rotation antenna array.…………………………………………………………………126 Fig. 7-7 The predicted XPD of the 1×2 sequential rotation antenna array.…………………………………………………………………126 Fig. 7-8 Gain spectrum at zenith of the antenna array shown in Fig. 7-3.…………………………………………………………………127 Fig. 7-9 The patterns of the 1×2 sequential rotation antenna array at different frequencies.…………………………………………………………………130 Fig. 7-10 The prototype of the 2×2 sequential rotation antenna array prototype with the λg/4 λg/4 feed: (a) the photo (b) the layout.…………………………………………………………………132 Fig. 7-11 Reflection coefficient of the antenna array shown in Fig. 7-10.…………………………………………………………………133 Fig. 7-12 Axial ratio of the antenna array shown in Fig. 7-10.…………………………………………………………………133 Fig. 7-13 Gain spectrum at zenith of the antenna array shown in Fig. 7-10.…………………………………………………………………134 Fig. 7-14 The patterns of the 2×2 sequential rotation antenna array shown in Fig. 7-10 at different frequencies. …………………………………………………………………137 Fig. 7-15 The prototype of the 2×2 sequential rotation antenna array prototype with the 3λg/8 3λg/8 feed: (a) the photo (b) the layout.…………………………………………………………………138 Fig. 7-16 Reflection coefficient of the antenna array shown in Fig. 7-15.…………………………………………………………………139 Fig. 7-17 Axial ratio of the antenna array shown in Fig. 7-15.…………………………………………………………………139 Fig. 7-18 Gain spectrum at zenith of the antenna array shown in Fig. 7-15.…………………………………………………………………140 Fig. 7-19 The patterns of the 2×2 sequential rotation antenna array shown in Fig. 7-15 at different frequencies. …………………………………………………………………143 Fig. 7-20 The layout of the 4×4 sequential rotation antenna array.…………………………………………………………………145 Fig. 7-21 The reflection coefficient of the 4×4 sequential rotation antenna array.…………………………………………………………………145 Fig. 7-22 RHCP gain and Axial ratio of the 4×4 sequential rotation antenna array.…………………………………………………………………146 Fig. 7-23 Aperture efficiency of the 4×4 sequential rotation antenna array.…………………………………………………………………146 Fig. 7-24 The gain patterns of the 4×4 sequential rotation antenna array at different frequencies.…………………………………………………………………149 List of Tables Table 5-1 Comparison of the presented antenna with those in reference [30][44]…………………………………………………………………89 Table 6-1 Simulated results of sequential feeding networks at frequencies which AR=3 dB, and the unbalance amplitude variation with respect to -6dB and the unbalance phase variation with respect to 90 degrees difference with the previous port. [18]…………………………………………………………………100 Table 8-1 Comparison of the measured antennas in this dissertation…………………………………………………………………157 Table 8-2 Comparison of the SR antenna array in this dissertation…………………………………………………………………158 | |
| dc.language.iso | en | |
| dc.subject | 漏波天線 | zh_TW |
| dc.subject | 寬頻 | zh_TW |
| dc.subject | 圓極化 | zh_TW |
| dc.subject | 序列式旋轉 | zh_TW |
| dc.subject | broadband | en |
| dc.subject | leaky-wave antenna | en |
| dc.subject | circularly polarized | en |
| dc.subject | sequential rotation | en |
| dc.title | 平面式寬頻圓極化漏波天線與序列式旋轉饋入電路及其天線陣列應用 | zh_TW |
| dc.title | Planar Broadband Circularly Polarized Leaky-Wave Antennas and Sequential Rotation Feed for Array Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳俊雄,張知難,陳富強,張道治,楊成發 | |
| dc.subject.keyword | 寬頻,圓極化,漏波天線,序列式旋轉, | zh_TW |
| dc.subject.keyword | broadband,circularly polarized,leaky-wave antenna,sequential rotation, | en |
| dc.relation.page | 163 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 11.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
