請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64418
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳奕君(I-Chun Cheng) | |
dc.contributor.author | Yun-Shiuan Li | en |
dc.contributor.author | 李昀軒 | zh_TW |
dc.date.accessioned | 2021-06-16T17:46:01Z | - |
dc.date.available | 2015-08-28 | |
dc.date.copyright | 2012-08-28 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2012-08-13 | |
dc.identifier.citation | [1] K. Jain, M. Klosner, M. Zemel, and S. Raghunandan, 'high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production,' IEEE , Flexible Electronics and Displays, vol. 93, pp. 1500-1510, 2005.
[2] L. Zhou, A. Wanga, S. C. Wu, J. Sun, S. Park, and T. N. Jackson, 'All-organic active matrix flexible display,' Applied Physics Letters, vol. 88, pp. 083502-1-3 2006. [3] C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M. Glatthaar, T. Meyer, and A. Meyer, 'Flexible, long-lived, large-area, organic solar cells,' Solar Energy Materials and Solar Cells, vol. 91, pp. 379-384, 2007. [4] A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, 'Flexible OLED displays using plastic substrates,' IEEE, Selected Topics in Quantum Electronics, vol. 10, pp. 107-114, 2004. [5] Y. F. Liew, H. Aziz, N. X. Hu, H. S. O. Chan, G. Xu, and Z. Popovic, 'Investigation of the sites of dark spots in organic light-emitting devices,' Applied Physics Letters, vol. 77, pp. 2650-1-3, 2000. [6] J. H. Lee, G. H. Kim, S. H. Kim, S. C. Lim, Y. S. Yang, J. H. Youk, J. Jang, and T. Zyung, 'Longevity enhancement of organic thin-film transistors by using a facile laminating passivation method,' Synthetic Metals, vol. 143, pp. 21-23, 2004. [7] 武東星, 賴誠忠, 劉嘉翔, 張家豪, and 陳采寧, '軟性基材阻氣性鍍膜製程與透過率量測技術,' 科儀新知, pp. 58-64, 2009. [8] G. Kaltenpoth, W. Siebert, X. Xie, and F. Stubhan, 'The effect of PECVD SiN moisture barrier layers on the degradation of a flip chip underfill material,' Surface Mount Technology, vol. 13, pp. 12-15, 2001. [9] 陳良吉, 'OLED 封裝技術介紹,' 化工, vol. 51, pp. 66-76, 2004. [10] S. Iwamori, Y. Gotoh, and K. Moorthi, 'Characterization of silicon oxynitride gas barrier films,' Vacuum, vol. 68, pp. 113-117, 2002. [11] R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, 'Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,' Applied Physics Letters, vol. 92, pp. 181106-1-3, 2008. [12] A. A. Dameron, S. D. Davidson, B. B. Burton, P. F. Carcia, R. S. McLean, and S. M. George, 'Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition,' The Journal of Physical Chemistry C, vol. 112, pp. 4573-4580, 2008. [13] T. M. Wu and C. W. Wu, 'Surface characterization and properties of plasma‐modified cyclic olefin copolymer/layered silicate nanocomposites,' Journal of Polymer Science part B: Polymer Physics, vol. 43, pp. 2745-2753, 2005. [14] L. L. Moro, T. A. Krajewski, N. M. Rutherford, O. Philips, R. J. Visser, M. E. Gross, W. D. Bennett, and G. L. Graff, 'Process and design of a multilayer thin film encapsulation of passive matrix OLED displays,' Organic Light-emitting Materials and Devices, pp. 83-93, 2004. [15] N. Kim, W. Potscavage Jr, B. Domercq, B. Kippelen, and S. Graham, 'A hybrid encapsulation method for organic electronics,' Applied Physics Letters, vol. 94, pp. 163308-1-3, 2009. [16] P. Mandlik, J. Gartside, L. Han, I. Cheng, S. Wagner, J. A. Silvernail, R. Q. Ma, M. Hack, and J. J. Brown, 'A single-layer permeation barrier for organic light-emitting displays,' Applied Physics Letters, vol. 92, pp. 103309-1-3, 2008. [17] S. wagner, 'Multilayered coating for use on electronic devices or other articles,' US Patent 2008/0102206 A1, 2008. [18] P. M. Sigurd Wagner, 'Hybrid layers for use in coatings on electronic devices or other articles,' US Patent 2008/0102223 A1, 2008. [19] S. W. Prashant Mandlik, Jeffrey A. Silvernail, Ruiqing Ma, Julia J. Brown, Lin Han, 'Hybrid layers for use in coatings on electronic devices or other articles,' US Patent 2011/0114994 A1, 2011. [20] P. M. Sigurd Wagner, 'Hybrid layers for use in coatings on electronic devices or other articles' US Patent 2012/0027984 A1, 2012. [21] D. Wuu, W. Lo, C. Chiang, H. Lin, L. Chang, R. Horng, C. Huang, and Y. Gao, 'Water and oxygen permeation of silicon nitride films prepared by plasma-enhanced chemical vapor deposition,' Surface and Coatings Technology, vol. 198, pp. 114-117, 2005. [22] A. Bieder, A. Gruniger, and R. von Rohr, 'Deposition of SiO2diffusion barriers on flexible packaging materials by PECVD,' Surface and Coatings Technology, vol. 200, pp. 928-931, 2005. [23] K. Teshima, Y. Inoue, H. Sugimura, and O. Takai, 'Gas barrier properties of silicon oxide films prepared by plasma-enhanced CVD using tetramethoxysilane,' Vacuum, vol. 66, pp. 353-357, 2002. [24] A. da Silva Sobrinho, G. Czeremuszkin, M. Latreche, and M. Wertheimer, 'Defect-permeation correlation for ultrathin transparent barrier coatings on polymers,' Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 18, pp. 149-157, 2000. [25] A. da Silva Sobrinho, J. Chasle, G. Dennler, and M. Wertheimer, 'Characterization of defects in PECVD-SiO2 coatings on PET by confocal microscopy,' Plasmas and Polymers, vol. 3, pp. 231-247, 1998. [26] A. Galerie, R. Klein, S. Kang, G. Henshall, J. Bath, C. A. Handwerker, X. Ma, G. R. Arce, W. Rankl, and W. Effing, 'Cold Plasma Materials Fabrication: From Fundamentals to Applications,' 1993. [27] 羅吉宗, 膜科技與應用, 2005. [28] 白. 吉田貞史, 薄膜工程學(二版): 全華科技圖書股份有限公司, 2006. [29] L. Zajičkova, V. Buršikova, D. Franta, A. Bousquet, A. Granier, A. Goullet, and J. Buršik, 'Comparative Study of Films Deposited from HMDSO/O2 in Continuous Wave and Pulsed rf Discharges,' Plasma Processes and Polymers, vol. 4, pp. 287-293, 2007. [30] A. Garcia‐Luis, P. Corengia, D. Gonzalez‐Santamaria, M. Brizuela, I. Braceras, N. Briz, P. Azpiroz, V. Bellido‐Gonzalez, and S. Powell, 'Synthesis and Characterization of Plasma‐Polymerized HMDSO Films Using an Ion Gun Inverse Magnetron Source,' Plasma Processes and Polymers, vol. 4, pp. 766-770, 2007. [31] C. Petit‐Etienne, M. Tatoulian, I. Mabille, E. Sutter, and F. Arefi‐Khonsari, 'Deposition of SiOχ‐Like Thin Films from a Mixture of HMDSO and Oxygen by Low Pressure and DBD Discharges to Improve the Corrosion Behaviour of Steel,' Plasma Processes and Polymers, vol. 4, pp. 562-567, 2007. [32] D. Trunec, Z. Navratil, P. Stahel, L. Zajičkova, V. Buršikova, and J. Cech, 'Deposition of thin organosilicon polymer films in atmospheric pressure glow discharge,' Journal of Physics D: Applied Physics, vol. 37, pp. 2112-2120, 2004. [33] L. Han, P. Mandlik, J. Gartside, S. Wagner, J. A. Silvernail, R. Q. Ma, M. Hack, and J. J. Brown, 'Properties of a Permeation Barrier Material Deposited from Hexamethyl Disiloxane and Oxygen,' Journal of The Electrochemical Society, vol. 156, pp. 106-114, 2009. [34] Y. Hu, V. Topolkaraev, A. Hiltner, and E. Baer, 'Measurement of water vapor transmission rate in highly permeable films,' Journal of Applied Polymer Science, vol. 81, pp. 1624-1633, 2001. [35] E. A. McCullough, M. Kwon, and H. Shim, 'A comparison of standard methods for measuring water vapour permeability of fabrics,' Measurement Science and Technology, vol. 14, pp. 1402-1408, 2003. [36] 王應瓊, 儀器分析: 中央圖書出版社, 2000. [37] '基質輔助雷射脫附游離—飛行時間質譜技術及其應用,' 科學新知, pp. pp.70-80, 1999. [38] R. Paetzold, A. Winnacker, D. Henseler, V. Cesari, and K. Heuser, 'Permeation rate measurements by electrical analysis of calcium corrosion,' Review of Scientific Instruments, vol. 74, pp. 5147-5150, 2003. [39] J. H. Choi, Y. M. Kim, Y. W. Park, J. W. Huh, B. K. Ju, I. S. Kim, and H. N. Hwang, 'Evaluation of gas permeation barrier properties using electrical measurements of calcium degradation,' Review of Scientific Instruments, vol. 78, pp. 064701-1-5, 2007. [40] T. N. corporation, Introduction to Fourier Transform Infrared Spectrometry, 2001. [41] M. Goujon, T. Belmonte, and G. Henrion, 'OES and FTIR diagnostics of HMDSO/O2 gas mixtures for SiOx deposition assisted by RF plasma,' Surface and Coatings Technology, vol. 188, pp. 756-761, 2004. [42] R. Honda, R. Mota, R. Batocki, D. Santos, T. Nicoleti, K. Kostov, M. Kayama, M. Algatti, N. Cruz, and L. Ruggiero, 'Plasma-polymerized hexamethyldisilazane treated by nitrogen plasma immersion ion implantation technique,' Journal of Physics, vol. 167, pp. 012055-1-5, 2009. [43] 國家實驗研究院儀器科技研究中心, 橢圓偏光儀之原理與應用, 2007. [44] V. Donnelly, M. Malyshev, M. Schabel, A. Kornblit, W. Tai, I. Herman, and N. Fuller, 'Optical plasma emission spectroscopy of etching plasmas used in Si-based semiconductor processing,' Plasma Sources Science and Technology, vol. 11, pp. 26-30, 2002. [45] G. Binnig, C. F. Quate, and C. Gerber, 'Atomic force microscope,' Physical Review Letters, vol. 56, pp. 930-933, 1986. [46] U. Cvelbar, N. Krstulovic, S. Milosevic, and M. Mozetic, 'Inductively coupled RF oxygen plasma characterization by optical emission spectroscopy,' Vacuum, vol. 82, pp. 224-227, 2007. [47] C. Lee, D. Graves, M. Lieberman, and D. Hess, 'Global model of plasma chemistry in a high density oxygen discharge,' Journal of The Electrochemical Society, vol. 141, pp. 1546-1555, 1994. [48] G. Taylor and T. Wolf, 'Oxygen plasma removal of thin polymer films,' Polymer Engineering & Science, vol. 20, pp. 1087-1092, 1980. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64418 | - |
dc.description.abstract | 本研究利用電漿輔助化學氣相沉積以有機六甲基二矽氧烷(HMDSO)和氧氣做為前驅氣體來製備薄膜,進行薄膜阻水阻氧特性的研究。本封裝膜是由有機和無機成分混成,由無機成分提供主要的阻水功能,有機成分擔任應力釋放與缺陷填補的角色。實驗中透過選取適當製程功率(60W)以及理想的氧氣與六甲基二矽氧烷流量之比例(O2/HMDSO=15)製備厚度1.5μm之混成封裝膜,其水氣穿透率3.6×10-6g/m2-day,氧氣穿透率1.12×10-3cc/m2-day,在玻璃上可見光穿透率90%,已達到有機太陽能電池的封裝標準。實驗成功的利用有機無機混合的特性取代多層膜的繁複,實現單一製程、低成本、高透光與高阻水性的薄膜,未來對於軟性電子的封裝,有極大的應用價值。此外,藉由混成膜折射係數的調變,可以產生降低反射及提升可見光穿透率的效果。 | zh_TW |
dc.description.abstract | This research studies the permeation barrier properties of thin films deposited from a gas mixture of hexamethyldisiloxane (HMDSO) and oxygen by plasma-enhanced chemical vapor deposition (PECVD) at room temperature. The thin-film is comprised of organic and inorganic compounds. The inorganic compounds can serve as permeation barrier while organic compounds offer mechanical flexibility and reduce defect. With process power(60w) and O2 to HMDSO flow rate ratio(O2/HMDSO=15), a water vapor transmission rate of 3.6×10-6 g/m2-day and an optical transparency higher than 90% in the visible light region can be obtained in a 1.5μm thin film. The result reaches the encapsulation standard for organic solar cells, which has shown a great application potential for flexible large-area manufacturing of thin-film encapsulation at relatively low-cost. The optical reflection can be reduced by properly adjusting the reflective index of the hybrid film. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:46:01Z (GMT). No. of bitstreams: 1 ntu-100-R99941008-1.pdf: 4459314 bytes, checksum: e1ed2259735a0122efa0b504a5ab8358 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 致謝………………………………………………………………………………………………….…….Ⅰ
摘要……………………………………………………………………………………………………..…ⅢAbstract………………………………………………………………………………………………….Ⅳ 目錄……………………………………………………………………………………………………….Ⅴ 圖目錄……………………………………………………………………………………………………Ⅷ 表目錄……………………………………………………………………………………………………Ⅹ 第一章 緒論 1.1 前言…………………...........................................................................................................1 1.2 研究動機………………………………………………………………………………………..1 1.3 封裝方式簡介………………………………………………………………………………...2 1.3.1 封裝蓋技術…………………………………………………………………...3 1.3.2 薄膜封裝技術………………………………………………………………..3 1.4 章節介紹………………………………………………………………………………………..4 第二章 文獻回顧與封裝測試原理 2.1 薄膜封裝技術文獻回顧…………………………………………………………………..5 2.2 電漿補助化學氣相沉積…………………………………………………………………..8 2.2.1 電漿介紹………………………………………………………………..……….8 2.2.2 電漿輔助化學氣相沉積原理…………………………………………...9 2.2.3 前驅氣體介紹……………………………………….………….…………….11 2.3 封裝層水氣穿透率測試方法…………………………………………….…….……...11 2.3.1 Weight loss量測法……………………………………………….………12 2.3.2 MOCON量測法…………………………………………………….………12 2.3.3 質譜量測法…………………………………………………...…….……….12 2.3.4 鈣測試法…………………………………………………………….………13 第三章 實驗方法 3.1 封裝膜製備…………………………………………………………...……….…………….17 3.1.1 基板清洗…………………………………………………………………….. 17 3.1.2 鍍膜機台介紹……………………………………………………………….18 3.2 封裝膜性質量測方法……………………………………………………………………19 3.2.1 傅立葉轉換紅外線光譜儀……………………………………………..19 3.2.2 水接觸角…………………………………………………………………........20 3.2.3 化學分析電子儀……………………………………………………………20 3.2.4 穿透光譜儀………………………………………………………………...…20 3.2.5 橢圓偏光儀…………………………………………………………...………20 3.2.6 電漿放射光譜……………………………………….……………………….21 3.2.7 原子力顯微鏡..…………………………………….………………...………22 3.3 封裝膜阻水氧量測方法…………………………………………………………………22 3.3.1 封裝鈣測試結構介紹……………………………………………………..22 3.3.2 降低反射的封裝膜製備…..……………………………..………………24 第四章 結果與討論 4.1 薄膜成分及表面性質分析……………………………………………………………25 4.1.1傅立葉轉換紅外線光譜…………………………………………………..25 4.1.2水接觸角………………………………………………………………….…….28 4.1.3 化學分析電子儀……………………………………………………..……..29 4.2 光學性質分析………………………………………………….………………………….. 31 4.2.1 穿透率…………………………………………………………………………..31 4.2.2 折射係數……………………...……………………………………...………….32 4.2.3 電漿放射光譜…………………………………………………..…..………....35 4.3 表面型態分析……………………………………………………………….…….….…..37 4.3.1 原子力顯微鏡 ……………………………………………………….…..…...37 4.4 水氣氧氣穿透率分析…………………………………………………………………..39 4.5 封裝膜降低反射效果檢測…………………………………………………………...45 第五章 結論 5.1 結論與未來工作…………………………………………………………………………48 參考文獻…………………………………………………………………………….……………………49 圖目錄 圖 1-1 封裝層在不同應用下之水氣與氧氣穿透率需求……………………..…….3 圖 1-2 封裝蓋技術………………………………………………………………………………….3 圖 2-1 電漿輔助化學氣相沉積系統示意圖…………………………………………….10 圖 2-2 六甲基二矽氮烷之化學結構…………………………………………...…………..11 圖 2-3 MOCON量測法示意圖……………………………………………………………..……12 圖 2-4 鈣測試法結構示意圖(a)顯微鏡法(b)光穿透法(c)電阻法………….14 圖 3-1 PECVD機台架構圖………………………………………………………………….……19 圖 3-2 偏振光束在界面時出現的偏振轉換……………………………………………21 圖 3-3 鈣測試電阻法結構一………………………………………………………………….22 圖 3-4 鈣測試電阻法結構二………………………………………………………………….23 圖 4-1 不同O2/HMDSO的傅立葉轉換紅外線吸收頻譜圖…………………………..25 圖 4-2 不同製程功率的傅立葉轉換紅外線吸收頻譜圖……………………...….26 圖 4-3 不同O2/HMDSO的傅立葉轉換紅外線主要鍵結吸收強度量化圖….….27 圖4-4 不同製程功率的傅立葉轉換紅外線主要鍵結吸收強度量化圖……..27 圖 4-5 不同O2/HMDSO的水接觸角…………………………………………………………..28 圖 4-6 不同製程功率的水接觸角……………………………………………………….....28 圖 4-7 化學分析電子儀薄膜元素頻譜圖…………………………… …………………30 圖 4-8 不同O2/HMDSO的穿透光譜…………………………………………………………..32 圖 4-9 不同製程功率的穿透光譜………………………………………………………….32 圖4-10 不同O2/HMDSO的折射係數………………………………………………….…….34 圖 4-11 不同製程功率的折射係數………………………………………………………..34 圖4-12 不同製程條件下的氧電漿光譜…………………………………………..……..36 圖4-13(a) 不同製程條件下的碳電漿光譜……………………………………...………36 圖 4-13(b) 不同製程條件下的碳光譜與氧光譜強度比較……………………….37 圖 4-14 不同O2/HMDSO沉積的薄膜之表面型態(Power=45) ……………………37 圖 4-15 不同製程功率沉積的薄膜之表面型態O2/HMDSO=15 ………………….38 圖 4-16 不同O2/HMDSO製備之封裝膜的水氣穿透率(WVTR) ……………………42 圖 4-17 不同製程功率製備之封裝膜的水氣穿透率(WVTR) …………………...42 圖4-18 不同O2/HMDSO製備之封裝膜的水氣穿透率與粗糙度比較…………43 圖 4-19 不同製程功率製備之封裝膜的水氣穿透率與粗糙度比較…………43 圖4-20 封裝鈣測試:電阻值隨時間的變化…………………………………….………44 圖 4-21 封裝鈣測試結構一試片上視圖…………………………………………………44 圖 4-22 封裝鈣測試:封裝鈣光學顯微鏡觀察其隨時間的變化……………….44 圖 4-23 封裝鈣測試:電阻值隨時間的變化……………………………………………45 圖 4-24 封裝鈣測試:封裝鈣光學顯微鏡觀察其隨時間的變化……………….45 圖4-25 封裝膜降低反射模擬結果………………………………………………………….46 圖4-26 封裝膜降低積分反射效果比較…………………………………………………..47 圖4-27 封裝膜降低徑向反射效果比較…………………………………………………..47 表目錄 表 2-1 薄膜封裝文獻整理……………………………………………………………………….7 表 4-1 不同O2/HMDSO沉積薄膜所含碳、矽與氧百分比例比較表…………30 表 4-2 不同製程功率沉積薄膜所含碳、矽與氧百分比例比較表…………….31 | |
dc.language.iso | zh-TW | |
dc.title | 以六甲基二矽氧烷與氧氣輝光放電製備之SiOxCyHz薄膜阻水阻氧特性研究 | zh_TW |
dc.title | Permeation Barrier Properties of SiOxCyHz Thin Films Deposited from HMDSO and Oxygen by Glow Discharge | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳建彰(Jian-Zang Chen),吳志毅(Chih-I Wu),蔡豐羽(Feng-Yu Tsai) | |
dc.subject.keyword | 六甲基二矽氧烷, | zh_TW |
dc.subject.keyword | Hmdso, | en |
dc.relation.page | 52 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-14 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 4.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。