Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64409
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光
dc.contributor.authorYing-Heng Chienen
dc.contributor.author錢映亨zh_TW
dc.date.accessioned2021-06-16T17:45:31Z-
dc.date.available2015-08-16
dc.date.copyright2012-08-16
dc.date.issued2012
dc.date.submitted2012-08-13
dc.identifier.citation[1] Mugele F, and Baret J, “Electrowetting: from basics to applications” J. Phys.: Condens, Matter, 17 R705-74, 2005.
[2] S. Kuiper, B. H. W. Hendriks, R. A. Hayes, B. J. Feenstra, and J. M. E. Baken, 'Electrowetting-Based Optics,' Proc. of SPIE 5908, 0R1-0R7, 2005.
[3] G Lippmann, 'Relation entre les phenomenes electriques et capillaires,' Ann. Chim. Phys., vol. 5, pp. 494-549, 1875.
[4] Berge B, 'Electrocapillarite et mouillage de films isolants par l’eau,' C. R. Acad. Sci. II 317 157, 1993.
[5] Yang S, Krupenkin TN, Mach P and Chandross E A, 'Tunable and latchable liquid microlens with photopolymerizable components' Adv. Mater., 15 940, 2003
[6] S. Kuiper, and B. Hendriks, 'Variable-focus liquid lens for miniature cameras,' Appl. Phys. Lett. 85, 1128, 2004.
[7] Hayes RA, Feenstra BJ, 'Video-speed electronic paper based on electrowetting,' Nature 425 383-5., 2003.
[8] Heikenfeld J, and Steckl A J, 'High-transmission electrowetting light valves,' Appl. Phys. Lett. 86 151121, 2005.
[9] Zhou, J Heikenfeld, K A Dean, E M Howard and M R Johnson, 'A full description of a simple and scalable fabrication process for electrowetting displays, ' J. Micromech. Microeng., 19 065029, 2009.
[10] Pollack M G, Fair R B, and Shenderov A D, 'Electrowetting-based actuation of liquid droplets for microfluidic applications' Appl. Phys. Lett. 77 1725-6., 2000
[11] S. A. Reza, and N. A. Riza, 'A liquid lens-based broadband variable fiber optical attenuator, 'Opt. Commun.282(7), 1298–1303, 2009.
[12] J. D. Zook, 'Light beam deflector performance: a comparative analysis,' Appl. Opt. 13, 875-887, 1974.
[13] L. Sun, J. H. Kim, C. H. Jang, D. C. An, X. J. Lu, Q. J. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. N. Tang, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, 'Polymeric waveguide prism-based electro-optic beam deflector,' Opt. Eng. 40, 1217-1222, 2001.
[14] B. D. Duncan, P. J. Bos, and V. Sergan, 'Wide-angle achromatic prism beam steering for infrared countermeasure applications, ' Opt. Eng. 42(4), 1038–1047 , 2003.
[15] J. L. Gibson, B. D. Duncan, E. A. Watson and J. S. Loomis, 'Wide-angle decentered lens beam steering for infrared countermeasures applications,' Opt. Eng. 43, 2312-2321, 2004.
[16] P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, 'Optical Phased Array Technology, ' Proc. IEEE 84(2),268–298, 1996.
[17] S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, 'Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,' Jpn. J. Appl. Phys. 43(No. 11A), 7634–7638, 2004.
[18] P. F. McManamon, 'Agile Nonmechanical Beam Steering,' Opt. Photonics News 17(3), 24–29, 2006.
[19] L. Glebov, 'Fluorinated silicate glass for conventional and holographic optical elements,' Proc. SPIE Window Dome Technol. Mater. X, vol. 6545, p. 654 507, 2007.
[20] J. Shi, P. J. Bos, B. Winker, and P. McManamon, 'Switchable optical phased prism arrays for beam steering, ' in Proc.SPIE, vol. 5553, pp. 102–111, 2004.
[21] J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, 'Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings, ' in Proc. SPIE Adv. Wavefront Contr.: Methods, Devices, Applicat. VI, vol. 7093, 2008.
[22] Smith N R, Abeysinghe D C, Haus J W, and Heikenfeld J, 'Agile wide-angle beam steering with electrowetting microprisms,' Optics Express 14 6557-63, 2006.
[23] Hou L, Smith N, and Heikenfeld J, 'Electrowetting modulation of any flat optical film, 'Appl. Phys. Lett. 90 251114, 2007.
[24] Bart D B, Freek S, Mischa M, Szabolcs D, and Stein K, 'Control of an electrowetting based beam deflector' J. of Appl. Phys. 107 063101, 2010.
[25] Hsiu-Hsiang Chen, and Chien-Chung Fu, 'Low Voltage Electrowetting Optical Deflector,' Japanese Journal of Applied Physics 50 037202, 2011.
[26] Han W, Haus J W, McManamon P, Heikenfeld J, Smith N R, and Yang J, 'Transmissive beam steering through electrowetting microprism arrays, ' Optics Communications 283 1174-81, 2010.
[27] 何慶浤, 曹恒光, '電解質溶液的表面張力-蒙地卡羅模擬法,' 國立中央大學化學工程與材料工程研究所, 2003.
[28] J. Lee and C. J. Kim, 'Surface-tension-driven microactuation based on continuous electrowetting,' J Microelectromech Syst 9, 171-180, 2000.
[29] S. Romi, A. David, and B. Bruno, C. B. Gorman, H. A. Biebuyck, and G. M.
Whitesides, 'Control of the Shape of Liquid Lenses on a Modified Gold Surface using an Applied Electrical Potential Across a Self-Assembled Monolayer,' Langmuir 11,2242-2246, 1995.
[30] T.A. Mcmahon and J.T. Bonner, 'On Size and Life,' Scientific American Books,1983.
[31] Sears, Francis Weston; Zemanski, Mark W. 'University Physics,' 2nd ed. Addison Wesley, 1955.
[32] J. O. M. Bockris, and A. K. N. Reddy, 'Modern electrochemistry, ' Plenum Press, New York, Ch. 7 and 8, 1970.
[33] Sung Kwon Cho, Hyejin Moon, Jesse Fowler, and Chang-Jin Kim , 'SPLITTING A LIQUID DROPLET FOR ELECTRO -WETTING -BASED MICROFLUIDICS, ' Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition November 11-16, New York, NY, 2001.
[34] Jones T B, Fowler J D, Chang Y S and Kim C J, ' Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation, ' Langmuir 19 7646, 2003.
[35] Jones T B, Wang K L and Yao D J, 'Frequency-dependent electromechanics of aqueous liquids:Electrowetting and dielectrophoresis, ' Langmuir 20 2813, 2004
[36] H. J. J. Verheijen and M. W. J. Prins, 'Reversible Electrowetting and Trapping of Charge:Model and Experiments,' Langmuir 15, 6616-6620, 1999.
[37] Papathanasiou A G and Boudouvis A G, 'A manifestation of the connection between dielectric breakdown strength and contact angle saturation in electrowetting, ' Appl. Phys. Lett, 86, 164102, 2005.
[38] Vallet M, Vallade M, Berge B., 'Limiting phenomena for the spreading of water on polymer films by electrowetting, ' Eur.Phys. J. ŽB.;11:583 591, 1999.
[39] Raj B, Dhindsa M, Smith N. R, Laughlin B, Heikenfeld J, 'Ion and Liquid Dependent Dielectric Failure in Electrowetting Systems, ' Langmuir, 25 (20), 12387–12392, 2009.
[40] Shaun Berry, Jakub Kedzierski, and Behrouz Abedian, 'Irreversible Electrowetting on Thin Fluoropolymer Films, 'Langmuir, 23, 12429-12435, 2007.
[41] Emilie Seyrat, and Robert A. Hayes, 'Amorphous fluoropolymers as insulators for reversible low-voltage electrowetting,' J. Appl. Phys. 90, 1383, 2001.
[42] http://www2.dupont.com/DuPont_Home/en_US/
[43] Moon H, Cho S, Garrrell R, and Kim C, 'Low voltage electrowetting-on-dielectric, ' J. of Appl. Phys. 92 4080–7, 2002.
[44] Berry S, Kedzierski J, and Abedian B, 'Low voltage electrowetting using thin fluoroploymer films, ' J. of Colloid and Interface Science 303 517-24, 2006.
[45] http://www.piezotech.fr/
[46] T. Sekitani, K. Zaitsu, Y. Noguchi, K. Ishibe, M. Takamiya, T. Sakurai, and T.Someya, 'Printed Nonvolatile Memory for a Sheet-Type Communication System,' IEEE Transactions on Electron Devices, vol. 56, pp. 1027-1035, 2009.
[47] V. Bystrov, N. Bystrova, D. Kisilev, E. Paramonova, M. Kuhn, H. Kliem, and A. Kholkin, 'MOLECULAR MODEL OF POLARIZATION SWITCHING AND NANOSCALE PHYSICAL PROPERTIES OF THIN FERROELECTRIC LANGMUIR-BLODGETT P(VDF-TrFE) FILMS,' Integrated Ferroelectrics, vol. 99, pp. 31-40, 2008.。
[48] Y. Z. Chen, J. Ma, and L. B. Kong, 'Seeding in sol-gel process for Pb(Zr0.52Ti0.48)O3 powder fabrication, ' Materials Chemistry and Physics,Vol. 75, pp. 225-228, 2002.
[49] D. Kim, and T. Y. Kim, 'Microstructure control in MOCVD PZT thin films, ' Materials Research Society Symposium-Proceeding, Vol. 433, pp.213-224, 1996.
[50] 周嘉峰, '雷射退火低溫製備鈦鋯酸鉛薄膜之研究, ' 國立台灣科技大學碩士論文, 2001.
[51] Berthier J, 'Microdrops and Digital Microfluidic, ' William Andrew Publishing Norwich, NY, 2008.
[52] Weinstein I, and Zatsepin A., 'Extended Abbe diagram for dense flints, ' .Glass Phys. Chem. 32, 136, 2006.
[53] J. Zhang, D. Van Meter, L. Hou, N. Smith, J. Yang, A. Stalcup, R. Laughlin, and J. Heikenfeld., 'Preparation and Analysis of 1-Chloronaphthalene for Highly Refractive Electrowetting Optics, ' Langmuir 25 10413, 2009.
[54] Berry S, Kedzierski J, and Abedian B, 'Irreversible electrowetting on thin fluoropolymer films, ' Langmuir 23 12429–12435, 2007.
[55] http://www.lumtec.com.tw/product4.asp?id=52
[56] http://www.plaspv.com/index.php?type=products&id=26
[57] www.3M.com/industrial
[58] M. Dhindsa et al., 'Reliable and low-voltage electrowetting on thin Parylene films, ' Thin Solid Films 519(10), 3346–3351, 2011.
[59] Yen-Sheng Lu et al, 'Three-dimensional illumination system using dielectric liquid lenses, ' OPTICS EXPRESS A7404, Vol. 19, No. S4 , July 2011
[60] D. Koyama, R. Isago, and K. Nakamura, “High-speed focus scanning by an acoustic variable-focus liquid lens,” Jpn. J. Appl. Phys., vol. 50, no. 7, art. no. 07HE26, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64409-
dc.description.abstract隨著科技日新月異的發展,可調變光學偏折器在光學系統中,像是可3-D 調變的智慧照明系統、主動轉向頭燈、3-D 全像投影、激光雷達等,扮演舉足輕重的角色。為了改善傳統機械轉向系統具有體積大、靈敏度低及機械耗損等問題。過去已發展出許多非機械式的光偏折器。然而研發一個具有大角度、低電壓、高靈敏度、光束頻寬大、透光效率佳及光偏振獨立的單一電制光偏折元件,仍然是各方努力的目標。
目前電濕潤光偏折器已具備光束頻寬大、透光效率佳、光偏振獨立的特性。為了使電濕潤光偏折器具有低電壓與大偏折角度的特性,本文從電濕潤的基礎理論著手,分析交流電場作用與介電層、疏水層所使用的材料,對飽和接觸角的影響,並透過探討此系統所需使用的材料,包括具有高介電常數的P(VDF-TrFE)與PZT 作為介電層以及降低水溶液與絕緣油的界面張力,來減少電濕潤所需的外加電壓,並提升液體接觸角的變化量。此外,使用具有高折射率且與水溶液密度匹
配的絕緣油,來達成較大的光偏轉角。
最後,我們選用厚度600 nm 的P(VDF-TrFE)介電層,搭配30 nm 的AF1601疏水層,並在孔徑大小3 mm*3 mm 的腔體內灌入1wt%SDS 與CN:C12=67.62:32.38 的絕緣油,進行光偏折測試。結果顯示,此系統在外加100Hz 交流電壓11V時,可產生約+_30 o 的液面傾斜角,並造成約14 o ( +_7o )的光束偏折角。
zh_TW
dc.description.abstractAs technology advances, variable optical deflector plays an important role in optical systems, such as 3-D lighting systems, adaptive front lighting system, 3-D holographic displays, Ladar, to name a few. With an attempt to overcome the bulk, high cost, slow speed, and lack of agility associate with mechanical beam steering approaches such as the dual-axis gimbaled mirror, several types of non mechanical optical deflections have been proposed over the years. Despites all these efforts, developing a wide-angle, low-voltage, high speed, polarization independent, high
steering efficiency and broadband beam steering device is still a highly desirable goal.
Electrowetting optical deflector (EOD) developed previously were known to have performance characteristics such as broadband, high steering efficiency, polarization independent. The main bottleneck to be overcome lies on lowering the operating voltage. To achieve low operating voltage and wide steering angle features, we started
from the fundamental electrowetting theory to describe the limiting phenomena of contact angle saturation and analyzed the influence of the externally applied AC electric
field, the dielectric layer material, and the hydrophobic layer, etc. in this dissertation. The dielectric layers with high K and low interfacial tension between the aqueous
solution and insulating oils were investigated in order to investigate the possibility of reducing the operation voltage and the saturation of contact angle. Furthermore, we
developed insulating oil with characteristics such as high refractive index and density identical to the adjacent aqueous solution to achieve wide-angle while lessening the
influence of gravity.
Finally, we utilized 600 nm-thick P(VDF-TrFE) and 30 nm-thick AF1601 to fabricate a deflector with an aperture size of 3 mm*3 mm. The deflection was filled with the aqueous (1wt%SDS) and the mixed oil (CN:C12=67.62: 32.38) to test the beam steering angle. We demonstrated our deflector to have switching performance of 30o tilt angle of flat meniscus interface, which led to 14 o ( +_7o )beam steering angle
on two deflection axes.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:45:31Z (GMT). No. of bitstreams: 1
ntu-101-R99525068-1.pdf: 5839381 bytes, checksum: bf2ddefb6f084cbf953d78ef8c00154b (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 x
表格目錄 xiv
第 一 章 緒論 1
1-1 前言 1
1-2 研究背景 4
1-3 研究動機 8
1-4 論文架構 8
第 二 章 電濕潤基礎理論探討 9
2-1 表面張力 9
2-2 電雙層(Electric Double Layer) 11
2-3 Lippmann’s Equation 11
2-4 Young-Lippmann’ Equation 13
2-4-1 Young’s Equation (楊氏方程式) 13
2-4-2 Lippmann-Young Equation 14
2-5 交流電場之作用 16
2-6 接觸角飽和現象 18
2-6-1 電荷注入 18
2-6-2 空氣電離 19
2-7 液體尺寸對重力效應與反應速率的關係 21
第 三 章 實驗材料與實驗架設 22
3-1 元件材料 22
3-1-1 疏水層 22
3-1-2 介電層 24
3-2 元件液體 27
3-2-1 油類 27
3-2-2 水溶液混合界面活性劑 29
3-3 接觸角量測 31
3-4 元件側壁接觸角量測 33
3-5 傾斜角與光偏折量測 34
3-6 實驗設備 37
第 四 章 試片製作與分析 41
4-1 基板選用與清洗 41
4-1-1 基板選用 41
4-1-2 基板清洗 42
4-2 介電層製作與探討 43
4-2-1 P(VDF-TrFE) 43
4-2-2 PZT sol-gel 45
4-3 疏水層製作 46
4-4 絕緣油製作與分析 46
4-5 水溶液製作與分析 47
4-6 光偏折器製作 48
第 五 章 結果與討論 50
5-1 疏水層厚度與接觸角之關係 50
5-2 介電層厚度與接觸角之關係 53
5-2-1 P(VDF-TrFE) 53
5-2-2 PZT sol-gel 56
5-3 交流電壓頻率 58
5-4 混合油的比例與水溶液之元件側壁接觸角量測 60
5-5 兩液體交界面之傾斜角量測 67
5-6 光偏折量測 71
第 六 章 結論與未來展望 73
6-1 結論 73
6-2 未來展望 74
參考資料 75
附錄A 液滴接觸角量測圖 80
A-1圖5-1.2 Teflon厚度與接觸角變化之關係圖 80
A-1-1液滴接觸角量測圖(Teflon6%/P(VDF-TrFE)1.6um/DI water) 80
A-1-2液滴接觸角量測圖(Teflon5%/P(VDF-TrFE)1.6um/DI water) 80
A-1-3液滴接觸角量測圖(Teflon4%/P(VDF-TrFE)1.6um/DI water) 81
A-1-4液滴接觸角量測圖(Teflon3%/P(VDF-TrFE)1.6um/DI water) 81
A-1-5液滴接觸角量測圖(Teflon2%/P(VDF-TrFE)1.6um/DI water) 82
A-1-6液滴接觸角量測圖(Teflon1%/P(VDF-TrFE)1.6um/DI water) 83
A-1-7液滴接觸角量測圖(Teflon0.5%/P(VDF-TrFE)1.6um/DI water) 83
A-2 圖5-2.1 P(VDF-TrFE)厚度與接觸角變化之關係圖 84
A-2-1液滴接觸角量測圖(Teflon1%30nm/P(VDF-TrFE)1080nm/DI water) 84
A-2-2液滴接觸角量測圖(Teflon1%30nm/P(VDF-TrFE)988.8nm/DI water) 84
A-2-3液滴接觸角量測圖(Teflon1%30nm/P(VDF-TrFE)829.6nm/DI water) 85
A-2-4液滴接觸角量測圖(Teflon1%30nm/P(VDF-TrFE)696.3nm/DI water) 85
A-2-5液滴接觸角量測圖(Teflon1%30nm/P(VDF-TrFE)600nm/DI water) 86
A-3 圖5-2.4 PZT厚度與接觸角之關係圖 87
A-3-1液滴接觸角量測圖(Teflon1%30nm/PZT 1layer/DI water) 87
A-3-2液滴接觸角量測圖(Teflon1%30nm/PZT 2layers/DI water) 87
A-3-3液滴接觸角量測圖(Teflon1%30nm/PZT 3layers/DI water) 87
A-4 圖5-3.1外加電壓AC與DC之接觸角比較圖 88
A-4-1 外加電壓DC之液滴接觸角量測圖(Teflon1%30nm/P(VDF-TrFE)600nm/DI water) 88
A-4-2外加電壓AC100Hz之液滴接觸角量測(Teflon1%30nm/P(VDF-TrFE)600nm/DI water) 89
附錄B 側壁接觸角量測圖 90
B-1圖5-4.4外加直流電壓之側壁接觸角比較圖 90
B-1-1 CN:C12=0:100 / 1wt% SDS 90
B-1-2 CN:C12=55:45/1wt% SDS 91
B-1-3 CN:C12=67.62: 32.38/1wt% SDS 93
B-2 圖5-4.5外加交流電壓之側壁接觸角比較圖 95
B-2-1 CN:C12=0: 100/1wt% SDS 95
B-2-2 CN:C12=55:45/1wt% SDS 97
B-2-3 CN:C12=67.62: 32.38/1wt% SDS 99
圖目錄
圖 1-1.1 EWOD液態鏡頭結構與運作的示意圖[6] 2
圖 1-1.2 EWOD電子紙的基本架構圖[7] 2
圖 1-2.1 電濕潤光偏折器內液體交界面 (a) 斜平面, and (b) 不對稱曲面[2] 4
圖 1-2.2 Heikenfeld的光偏折器側視圖(a)未加電壓(b-d)施加電壓與液面形狀[22]。 5
圖 1-2.3 方形元件腔體內液面形狀 (a)斜左平面 (b)斜右平面 (c)凸面 (d)凹面[23] 5
圖 1-2.4 孔徑5mm 5mm的正方形腔體,兩液面間夾住一反光片及液面傾斜圖[23] 6
圖 1-2.5 Philips Research Laboratories的光偏折器 7
圖 1-2.6 Hsiu-Hsiang Chen等人光偏折器之光束偏折量測圖[25] 7
圖 2-1.1 液體內部水分子間作用力合力為零,而液體表面向內的分子間作用力形成表面張力[27]。 9
圖 2-1.2 重力與分子附著力在各種尺度的關係[30]。 10
圖 2-1.3表面張力與接觸角示意圖。左圖接觸角大於 ,右圖接觸角則小於 。 與 分別為液-氣與液-固表面張力[31]。 10
圖 2-2.1 電雙層示意圖 11
圖 2-3.1電濕潤原理 (a) 未外加電壓時,電荷分佈於電極與電解液的界面,構成電雙層。(b) 外加電壓時,接觸角與 隨著電雙層的電荷密度改變而有所變動。 12
圖 2-3.2介電式電濕潤原理 (a) 未外加電壓時,無電荷累積於介電層與電解液之界面 (b) 外加電壓時,電荷累積於介電層與電解液之界面,使得 與 皆下降。 13
圖 2-4.1 三相接觸線的示意圖。 14
圖 2-4.2三相接觸線位移圖 14
圖 2-5.1 平行板電極產生介電濕潤 17
圖 2-5.2 液體上升高度與不同頻率之電壓平方的關係圖[35] 17
圖 2-6.1電荷注入介電層之三相接觸線位移圖 19
圖 2-6.2 接觸角飽和現象示意圖 (a) 未施加電壓 (b) 電荷累積於液滴,造成接觸角變化的理想狀態 (c) 電荷注入疏水層 (d) 絕緣油遭擊穿 (e) 介電層遭擊穿產生液滴電解[39]. 20
圖 3-1.1 EWOD元件結構剖面圖。 22
圖 3-1.2 P(VDF-TrFE)結構圖 24
圖 3-1.3 P(VDF-TrFE)共聚物 phase形態示意圖(箭頭P表示電場方向)[46] 25
圖 3-1.4鋯鈦酸鉛PZT 相圖[50] 27
圖 3-2.1 surfactant 之結構示意圖 29
圖 3-3.1 液滴實驗架設圖 31
圖 3-3.2 液滴接觸角量測系統示意圖 32
圖 3-4.1 電濕潤光偏折器之元件示意圖 33
圖 3-4.2 元件側壁接觸角量測系統示意圖(紅色框架) 34
圖 3-5.1 光偏折示意圖 34
圖 3-5.2 光偏折量測系統示意圖 35
圖 3-5.3 光偏折器內光偏折路徑示意圖 36
圖 3-6.1 Spin Coater 37
圖 3-6.2 烤盤 Hotplate 38
圖 3-6.3 烤箱 38
圖 3-6.4 屈折計ATAGO ABBE T3 39
圖 3-6.5 精密切割機 Dicing Saw 39
圖 3-6.6 探針式表面分析儀 39
圖 3-6.7 XRD (X-ray Diffraction) 40
圖 3-6.8 RCL meter 40
圖 3-6.9 Agilent E4980A,精密阻抗分析儀 40
圖 4-2.1 孔洞結構P(VDF-TrFE)之表面輪廓圖 43
圖 4-2.2 P(VDF-TrFE)之XRD圖 44
圖 4-2.3 7% P(VDF-TrFE) 表面輪廓圖 45
圖 4-2.4 PZT 2layers之XRD量測晶格方向圖 45
圖 4-4.1 CN與水的波長從400nm到2200nm之透射光譜 [53] 46
圖 4-6.1 (a) 元件試片切割圖 (b) 光偏折器組裝圖 48
圖 4-6.2 Epoxy Adhesive DP100 Plus Clear 49
圖 5-1.1 Teflon厚度與稀釋濃度的關係圖 51
圖 5-1.2 Teflon厚度與接觸角變化之關係圖 52
圖 5-2.1 P(VDF-TrFE)厚度與接觸角變化之關係圖 54
圖 5-2.2 不同濃度之P(VDF-TrFE)與接觸角的關係圖 55
圖 5-2.3 (a) 7% P(VDF-TrFE) (25V) (b) 5% P(VDF-TrFE) (25V) 55
圖 5-2.4 PZT厚度與接觸角之關係圖 56
圖 5-2.5 PZT I-V圖 57
圖 5-3.1 外加電壓AC與DC之接觸角比較圖 59
圖 5-3.2 AC 1kHz (a) 80 90度 (b) 130 66度。 59
圖 5-4.1 混合油CN:C12=0:100搭配 1wt% SDS之光偏折器元件側壁接觸角與施加電壓關係圖(a)左側壁(b)右側壁 61
圖 5-4.2 混合油CN:C12=55:45搭配 1wt% SDS之光偏折器元件側壁接觸角與施加電壓關係圖(a)左側壁(b)右側壁 62
圖 5-4.3混合油CN:C12=67.62: 32.38搭配 1wt% SDS之光偏折器元件側壁接觸角與施加電壓關係圖(a)左側壁(b)右側壁 63
圖 5-4.4 外加直流電壓之側壁接觸角比較圖 65
圖 5-4.5外加交流電壓之側壁接觸角比較圖 66
圖 5-5.1 施加100Hz交流電壓之光偏折器液面傾斜角量測圖(W:1wt%SDS,O: CN:C12=67.62:32.38),以W-phase 為下電極ITO接地(側壁電極結構:30nmTeflon/600nmP(VDF-TrFE)/ITO) 69
圖 5-5.2施加1kHz交流電壓之光偏折器液面傾斜角量測圖(W:1wt%SDS,O: CN:C12=67.62:32.38),以W-phase 為下電極ITO接地(側壁電極結構:30nmTeflon/600nmP(VDF-TrFE)/ITO) 70
圖 5-5.3 (a) CN:C12=80:20的混合油(d=1.065)搭配 1wt% SDS (b) CN:C12=90:10的混合油搭配DI water 70
圖 5-6.1 光點位移量及其對應的傾斜角(W:1wt%SDS,O: CN:C12=67.62:32.38) (a) (b) (c) 以W-phase 為下電極ITO接地(側壁電極構:30nmTeflon/600nmP(VDF-TrFE)/ITO) 72
表格目錄
表格 3-1.1 Index of Teflon® AF 23
表格 3-1.2 P(VDF-TrFE)規格表[45] 25
表格 3-2.1 絕緣油規格表 28
表格 3-2.2 SDS 規格表 30
表格 4-1.1 ITO導電玻璃的規格 41
表格 4-1.2 FTO導電玻璃的規格[56] 42
表格 4-4.1 混和油之折射率與密度 47
表格 4-5.1 水溶液與混合油之界面張力[53] 48
表格 4-6.1 接著劑規格表[57] 49
表格 5-6.1 光偏折計算數據 71
dc.language.isozh-TW
dc.title介電式電濕潤(EWOD)光偏折器之優化試驗研究zh_TW
dc.titleExperimental Investigation of EWOD Based Optical Beam Deflectoren
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊鏡堂,吳文中,黃卯生
dc.subject.keyword電濕潤,光學偏折器,低電壓,大偏折角,介電常數,zh_TW
dc.subject.keywordElectrowetting,Optic deflector,Low voltage,Wide-angle,Dielectric constant,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2012-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
5.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved