Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64339
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴美淑(Mei-Shu Lai)
dc.contributor.authorCheng-Yu Changen
dc.contributor.author張晟瑜zh_TW
dc.date.accessioned2021-06-16T17:41:34Z-
dc.date.available2015-09-17
dc.date.copyright2012-09-17
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citationReference:
1.Lowy, F.D., Staphylococcus aureus infections. N Engl J Med, 1998. 339(8): p. 520-32.
2.Wisplinghoff, H., et al., Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis, 2004. 39(3): p. 309-17.
3.National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control, 2004. 32(8): p. 470-85.
4.Steinberg, J.P., C.C. Clark, and B.O. Hackman, Nosocomial and community-acquired Staphylococcus aureus bacteremias from 1980 to 1993: impact of intravascular devices and methicillin resistance. Clin Infect Dis, 1996. 23(2): p. 255-9.
5.Noskin, G.A., et al., The burden of Staphylococcus aureus infections on hospitals in the United States: an analysis of the 2000 and 2001 Nationwide Inpatient Sample Database. Arch Intern Med, 2005. 165(15): p. 1756-61.
6.Valles, J., et al., Community-acquired bloodstream infection in critically ill adult patients: impact of shock and inappropriate antibiotic therapy on survival. Chest, 2003. 123(5): p. 1615-24.
7.Spellberg, B., et al., Trends in antimicrobial drug development: implications for the future. Clin Infect Dis, 2004. 38(9): p. 1279-86.
8.Shorr, A.F., Epidemiology of staphylococcal resistance. Clin Infect Dis, 2007. 45 Suppl 3: p. S171-6.
9.Styers, D., et al., Laboratory-based surveillance of current antimicrobial resistance patterns and trends among Staphylococcus aureus: 2005 status in the United States. Ann Clin Microbiol Antimicrob, 2006. 5: p. 2.
10.Biedenbach, D.J., G.J. Moet, and R.N. Jones, Occurrence and antimicrobial resistance pattern comparisons among bloodstream infection isolates from the SENTRY Antimicrobial Surveillance Program (1997-2002). Diagn Microbiol Infect Dis, 2004. 50(1): p. 59-69.
11.Chang, S.C., et al., Increasing nosocomial infections of methicillin-resistant Staphylococcus aureus at a teaching hospital in Taiwan. Int J Antimicrob Agents, 1997. 8(2): p. 109-14.
12.Ho, M., et al., Surveillance of antibiotic resistance in Taiwan, 1998. J Microbiol Immunol Infect, 1999. 32(4): p. 239-49.
13.Leibovici, L., et al., The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med, 1998. 244(5): p. 379-86.
14.Lodise, T.P., et al., Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis, 2003. 36(11): p. 1418-23.
15.Hsu, R.B., Risk factors for nosocomial infective endocarditis in patients with methicillin-resistant Staphylococcus aureus bacteremia. Infect Control Hosp Epidemiol, 2005. 26(7): p. 654-7.
16.Jensen, A.G., et al., Increasing frequency of vertebral osteomyelitis following Staphylococcus aureus bacteraemia in Denmark 1980-1990. J Infect, 1997. 34(2): p. 113-8.
17.Mitchell, D.H. and B.P. Howden, Diagnosis and management of Staphylococcus aureus bacteraemia. Intern Med J, 2005. 35 Suppl 2: p. S17-24.
18.Fowler, V.G., Jr., et al., Clinical identifiers of complicated Staphylococcus aureus bacteremia. Arch Intern Med, 2003. 163(17): p. 2066-72.
19.Mensa, J., et al., [Guidelines for the treatment on infections caused by methicillin-resistant Staphylococcus aureus]. Rev Esp Quimioter, 2008. 21(4): p. 234-58.
20.Bressler, A.M., et al., Peripheral neuropathy associated with prolonged use of linezolid. Lancet Infect Dis, 2004. 4(8): p. 528-31.
21.Van Laethem, Y., et al., Teicoplanin compared with vancomycin in methicillin-resistant Staphylococcus aureus infections: preliminary results. J Antimicrob Chemother, 1988. 21 Suppl A: p. 81-7.
22.Gilbert, D.N., C.A. Wood, and R.C. Kimbrough, Failure of treatment with teicoplanin at 6 milligrams/kilogram/day in patients with Staphylococcus aureus intravascular infection. The Infectious Diseases Consortium of Oregon. Antimicrob Agents Chemother, 1991. 35(1): p. 79-87.
23.Van der Auwera, P., M. Aoun, and F. Meunier, Randomized study of vancomycin versus teicoplanin for the treatment of gram-positive bacterial infections in immunocompromised hosts. Antimicrob Agents Chemother, 1991. 35(3): p. 451-7.
24.Charbonneau, P., et al., Teicoplanin: a well-tolerated and easily administered alternative to vancomycin for gram-positive infections in intensive care patients. Intensive Care Med, 1994. 20 Suppl 4: p. S35-42.
25.Rolston, K.V., et al., A randomized double-blind trial of vancomycin versus teicoplanin for the treatment of gram-positive bacteremia in patients with cancer. J Infect Dis, 1994. 169(2): p. 350-5.
26.Rolston, K.V., G.P. Bodey, and A.W. Chow, Prospective, double-blind, randomized trial of teicoplanin versus vancomycin for the therapy of vascular access-associated bacteremia caused by gram-positive pathogens. J Infect Chemother, 1999. 5(4): p. 208-212.
27.Rubinstein, E., et al., Linezolid (PNU-100766) versus vancomycin in the treatment of hospitalized patients with nosocomial pneumonia: a randomized, double-blind, multicenter study. Clin Infect Dis, 2001. 32(3): p. 402-12.
28.Stevens, D.L., et al., Linezolid versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis, 2002. 34(11): p. 1481-90.
29.Wunderink, R.G., et al., Continuation of a randomized, double-blind, multicenter study of linezolid versus vancomycin in the treatment of patients with nosocomial pneumonia. Clin Ther, 2003. 25(3): p. 980-92.
30.Jaksic, B., et al., Efficacy and safety of linezolid compared with vancomycin in a randomized, double-blind study of febrile neutropenic patients with cancer. Clin Infect Dis, 2006. 42(5): p. 597-607.
31.Kohno, S., et al., Linezolid versus vancomycin for the treatment of infections caused by methicillin-resistant Staphylococcus aureus in Japan. J Antimicrob Chemother, 2007. 60(6): p. 1361-9.
32.Wunderink, R.G., et al., Early microbiological response to linezolid vs vancomycin in ventilator-associated pneumonia due to methicillin-resistant Staphylococcus aureus. Chest, 2008. 134(6): p. 1200-7.
33.Wunderink, R.G., et al., Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis, 2012. 54(5): p. 621-9.
34.Wilcox, M., D. Nathwani, and M. Dryden, Linezolid compared with teicoplanin for the treatment of suspected or proven Gram-positive infections. J Antimicrob Chemother, 2004. 53(2): p. 335-44.
35.Cepeda, J.A., et al., Linezolid versus teicoplanin in the treatment of Gram-positive infections in the critically ill: a randomized, double-blind, multicentre study. J Antimicrob Chemother, 2004. 53(2): p. 345-55.
36.Khanna, N. and T. Inkster, Meticillin-resistant Staphylococcus aureus hepatic abscess treated with tigecycline. J Clin Pathol, 2008. 61(8): p. 967-8.
37.Grolman, D.C., Therapeutic applications of tigecycline in the management of complicated skin and skin structure infections. Int J Infect Dis, 2007. 11 Suppl 1: p. S7-15.
38.Florescu, I., et al., Efficacy and safety of tigecycline compared with vancomycin or linezolid for treatment of serious infections with methicillin-resistant Staphylococcus aureus or vancomycin-resistant enterococci: a Phase 3, multicentre, double-blind, randomized study. J Antimicrob Chemother, 2008. 62 Suppl 1: p. i17-28.
39.Sacchidanand, S., et al., Efficacy and safety of tigecycline monotherapy compared with vancomycin plus aztreonam in patients with complicated skin and skin structure infections: Results from a phase 3, randomized, double-blind trial. Int J Infect Dis, 2005. 9(5): p. 251-61.
40.Breedt, J., et al., Safety and efficacy of tigecycline in treatment of skin and skin structure infections: results of a double-blind phase 3 comparison study with vancomycin-aztreonam. Antimicrob Agents Chemother, 2005. 49(11): p. 4658-66.
41.Chuang, Y.C., et al., Efficacy and safety of tigecycline monotherapy compared with vancomycin-aztreonam in the treatment of complicated skin and skin structure infections in patients from India and Taiwan. J Microbiol Immunol Infect, 2011. 44(2): p. 116-24.
42.Stryjewski, M.E., et al., Telavancin versus standard therapy for treatment of complicated skin and skin structure infections caused by gram-positive bacteria: FAST 2 study. Antimicrob Agents Chemother, 2006. 50(3): p. 862-7.
43.Stryjewski, M.E., et al., Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms. Clin Infect Dis, 2008. 46(11): p. 1683-93.
44.Rubinstein, E., et al., Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens. Clin Infect Dis, 2011. 52(1): p. 31-40.
45.Wood, M.J., The comparative efficacy and safety of teicoplanin and vancomycin. J Antimicrob Chemother, 1996. 37(2): p. 209-22.
46.Svetitsky, S., L. Leibovici, and M. Paul, Comparative efficacy and safety of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrob Agents Chemother, 2009. 53(10): p. 4069-79.
47.Cavalcanti, A.B., et al., Teicoplanin versus vancomycin for proven or suspected infection. Cochrane Database Syst Rev, 2010(6): p. CD007022.
48.Kalil, A.C., et al., Linezolid versus vancomycin or teicoplanin for nosocomial pneumonia: a systematic review and meta-analysis. Crit Care Med, 2010. 38(9): p. 1802-8.
49.Beibei, L., et al., Linezolid versus vancomycin for the treatment of gram-positive bacterial infections: meta-analysis of randomised controlled trials. Int J Antimicrob Agents, 2010. 35(1): p. 3-12.
50.Lin, Z.Q., et al., [Linezolid versus vancomycin in the treatment of pneumonia caused by Gram-positive cocci: meta-analysis of randomised controlled trials]. Zhonghua Jie He He Hu Xi Za Zhi, 2010. 33(12): p. 900-6.
51.Cai, Y., et al., Systematic review and meta-analysis of the effectiveness and safety of tigecycline for treatment of infectious disease. Antimicrob Agents Chemother, 2011. 55(3): p. 1162-72.
52.Yahav, D., et al., Efficacy and safety of tigecycline: a systematic review and meta-analysis. J Antimicrob Chemother, 2011. 66(9): p. 1963-71.
53.Tasina, E., et al., Efficacy and safety of tigecycline for the treatment of infectious diseases: a meta-analysis. Lancet Infect Dis, 2011. 11(11): p. 834-44.
54.Rybak, M.J., E.M. Bailey, and L.H. Warbasse, Absence of 'red man syndrome' in patients being treated with vancomycin or high-dose teicoplanin. Antimicrob Agents Chemother, 1992. 36(6): p. 1204-7.
55.Neville, L.O., et al., Teicoplanin vs. vancomycin for the treatment of serious infections: a randomised trial. Int J Antimicrob Agents, 1995. 5(3): p. 187-93.
56.Kielstein, J.T., et al., Efficacy and cardiovascular tolerability of extended dialysis in critically ill patients: a randomized controlled study. Am J Kidney Dis, 2004. 43(2): p. 342-9.
57.Kasbekar, N., Tigecycline: a new glycylcycline antimicrobial agent. Am J Health Syst Pharm, 2006. 63(13): p. 1235-43.
58.Saravolatz, L.D., G.E. Stein, and L.B. Johnson, Telavancin: a novel lipoglycopeptide. Clin Infect Dis, 2009. 49(12): p. 1908-14.
59.Nathwani, D., et al., Guidelines for UK practice for the diagnosis and management of methicillin-resistant Staphylococcus aureus (MRSA) infections presenting in the community. J Antimicrob Chemother, 2008. 61(5): p. 976-94.
60.Kollef, M.H., Limitations of vancomycin in the management of resistant staphylococcal infections. Clin Infect Dis, 2007. 45 Suppl 3: p. S191-5.
61.Fowler, V.G., Jr., et al., Recurrent Staphylococcus aureus bacteremia: pulsed-field gel electrophoresis findings in 29 patients. J Infect Dis, 1999. 179(5): p. 1157-61.
62.Chang, F.Y., et al., Staphylococcus aureus bacteremia: recurrence and the impact of antibiotic treatment in a prospective multicenter study. Medicine (Baltimore), 2003. 82(5): p. 333-9.
63.Waldecker, B., et al., Long-term follow-up after direct percutaneous transluminal coronary angioplasty for acute myocardial infarction. J Am Coll Cardiol, 1998. 32(5): p. 1320-5.
64.Lamer, C., et al., Analysis of vancomycin entry into pulmonary lining fluid by bronchoalveolar lavage in critically ill patients. Antimicrob Agents Chemother, 1993. 37(2): p. 281-6.
65.Albanese, J., et al., Cerebrospinal fluid penetration and pharmacokinetics of vancomycin administered by continuous infusion to mechanically ventilated patients in an intensive care unit. Antimicrob Agents Chemother, 2000. 44(5): p. 1356-8.
66.Hidayat, L.K., et al., High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med, 2006. 166(19): p. 2138-44.
67.Sorrell, T.C. and P.J. Collignon, A prospective study of adverse reactions associated with vancomycin therapy. J Antimicrob Chemother, 1985. 16(2): p. 235-41.
68.Kahne, D., et al., Glycopeptide and lipoglycopeptide antibiotics. Chem Rev, 2005. 105(2): p. 425-48.
69.Ansari, F., et al., Outcomes of an intervention to improve hospital antibiotic prescribing: interrupted time series with segmented regression analysis. J Antimicrob Chemother, 2003. 52(5): p. 842-8.
70.Pea, F., et al., Teicoplanin therapeutic drug monitoring in critically ill patients: a retrospective study emphasizing the importance of a loading dose. J Antimicrob Chemother, 2003. 51(4): p. 971-5.
71.Greenberg, R.N., Treatment of bone, joint, and vascular-access-associated gram-positive bacterial infections with teicoplanin. Antimicrob Agents Chemother, 1990. 34(12): p. 2392-7.
72.Gee, T., et al., Pharmacokinetics and tissue penetration of linezolid following multiple oral doses. Antimicrob Agents Chemother, 2001. 45(6): p. 1843-6.
73.Sanchez Garcia, M., et al., Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit. JAMA, 2010. 303(22): p. 2260-4.
74.Bergeron, J., et al., Glycylcyclines bind to the high-affinity tetracycline ribosomal binding site and evade Tet(M)- and Tet(O)-mediated ribosomal protection. Antimicrob Agents Chemother, 1996. 40(9): p. 2226-8.
75.Bhattacharya, M., A. Parakh, and M. Narang, Tigecycline. J Postgrad Med, 2009. 55(1): p. 65-8.
76.Reid, G.E., et al., Rapid development of Acinetobacter baumannii resistance to tigecycline. Pharmacotherapy, 2007. 27(8): p. 1198-201.
77.Rodvold, K.A., et al., Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose. J Antimicrob Chemother, 2006. 58(6): p. 1221-9.
78.Lunde, C.S., et al., Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid II. Antimicrob Agents Chemother, 2009. 53(8): p. 3375-83.
79.Song, F., et al., Methodological problems in the use of indirect comparisons for evaluating healthcare interventions: survey of published systematic reviews. BMJ, 2009. 338: p. b1147.
80.Glenny, A.M., et al., Indirect comparisons of competing interventions. Health Technol Assess, 2005. 9(26): p. 1-134, iii-iv.
81.Bucher, H.C., et al., The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol, 1997. 50(6): p. 683-91.
82.Caldwell, D.M., A.E. Ades, and J.P. Higgins, Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ, 2005. 331(7521): p. 897-900.
83.Song, F., et al., Inconsistency between direct and indirect comparisons of competing interventions: meta-epidemiological study. BMJ, 2011. 343: p. d4909.
84.Logman, J.F., et al., Comparative effectiveness of antibiotics for the treatment of MRSA complicated skin and soft tissue infections. Curr Med Res Opin, 2010. 26(7): p. 1565-78.
85.Bounthavong, M., et al., Cost-effectiveness analysis of linezolid, daptomycin, and vancomycin in methicillin-resistant Staphylococcus aureus: complicated skin and skin structure infection using Bayesian methods for evidence synthesis. Value Health, 2011. 14(5): p. 631-9.
86.Moher, D., et al., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med, 2009. 151(4): p. 264-9, W64.
87.Higgins, J.P.A., D. G, Assessing Risk of Bias in Included Studies, in Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series, J.P.H.S. Green, Editor 2008, John Wiley & Sons, Ltd: Chichester. p. 187-241.
88.Higgins, J.P., et al., Measuring inconsistency in meta-analyses. BMJ, 2003. 327(7414): p. 557-60.
89.Ades, A.E., et al., Bayesian methods for evidence synthesis in cost-effectiveness analysis. Pharmacoeconomics, 2006. 24(1): p. 1-19.
90.Song, F., et al., Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses. BMJ, 2003. 326(7387): p. 472.
91.Sutton, A., et al., Use of indirect and mixed treatment comparisons for technology assessment. Pharmacoeconomics, 2008. 26(9): p. 753-67.
92.Liu CY, L.W., Fung CP, Comparative study of teicoplanin vs vancomycin for the treatment of methicillin-resistant Staphylococcus aureus bacteremia Clinical Drug Investigation 1996. 12: p. 80-87.
93.Pham Dang C, G.F., Touchais S, The comparative vancomycin treatment versus teicoplanin in methicillin-resistant staphylococci Pathologie Biologie 2001. 49: p. 587-596.
94.Zhao, Tecoplanin versus vancomycin in treatment of severe gram positive infections Jiangsu Medical journal 2003. 29: p. 913-915.
95.D'Antonio, D., et al., Addition of teicoplanin or vancomycin for the treatment of documented bacteremia due to gram-positive cocci in neutropenic patients with hematological malignancies: microbiological, clinical and economic evaluation. Chemotherapy, 2004. 50(2): p. 81-7.
96.Dong-fang Lin, Y.-y.Z., Ju-fang Wu Linezolid for the treatment of infections caused by Gram-positive pathogens in China International Journal of Antimicrobial Agents 2008. 32: p. 241-249.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64339-
dc.description.abstract細菌的抗藥性在最近這幾十年中不斷的上升,尤其是在革蘭氏陽性菌的抗藥性上的改變造成了醫院內敗血症病人的增加。在美國,革蘭氏陽性菌在加護病房中有高達百分之六十為抗藥性金黃色葡萄球菌。而在台灣,根據2008年全國院內感染偵測系統的報告指出,在醫學中心的加護病房中革蘭氏陽性菌已經有高達百分之八十為抗藥性金黃色葡萄球菌。萬古黴素(Vancomycin)是標準的治療抗藥性金黃色葡萄球菌的藥物,但它的副作用所造成的腎臟毒性卻為人所詬病。隨著藥物發展的日新月異,有多種治療抗藥性金黃色葡萄球菌的抗生素陸續問世,臨床上常使用的藥物包括vancomycin,teicoplanin,linezolid,tigecycline以及telavancin。經過文獻回顧後,我們發現之前的研究多著重於一對一藥物配對分析。然而,對於臨床決策而言,我們更希望知道這些藥物的臨床治療效力及副作用上,彼此之間的差異性。於是,我們設計了這個研究來針對革蘭氏陽性菌感染的病人,使用不同的抗生素,所造成的腎毒性及治療效力的網路統合分析。
研究方法:
我們搜尋了Medline,Cochrane Library,Pubmed資料庫中與vancomycin,teicoplanin,linezolid,teicoplanin,tigecycline以及telavancin所有相關用來治療革蘭氏陽性菌感染的臨床試驗及統合性分析。收錄的研究時間從1988年1月起到2011年12月為止。除此之外,我們也從美國衛生研究院的臨床研究註冊系統中找尋與這些藥相關的研究結果並加入我們的系統性回顧中。從這些研究內容裡面,我們收集了作者,研究設計,性別,平均年齡,病人數,感染部位,藥物的種類及用量,臨床治療成功率,微生物清除率,藥物副作用及腎毒性。我們以腎毒性作為藥物安全性的評估,以臨床治療成功率及微生物清除率作為藥物療效的評估,把收錄到的研究,進行直接與間接統合性分析。
研究結果:
根據系統性文獻搜尋,我們找出390篇相關研究,符合納入條件後共有26篇隨機臨床試驗,共計8094位參加者。在直接比較的統合性分析結果方面,teicoplanin比起vancomycin所造成的腎毒性來的低(勝算比為0.37, 95%信頼區間為0.19-0.70)。但在臨床治癒率上,這些藥物皆無統計學的差異。而在微生物清除率上,linezolid 比起vancomycin有更好的效果(勝算比為1.29, 95%信頼區間為1.02-1.63)。
經過間接的網路統合分析發現,在這些抗生素中,telavancin造成腎毒性的風險最高。Telavancin比起teicoplanin (勝算比為8.63, 95%信頼區間為2.26-66.47)跟linezolid (勝算比為6.88, 95%信頼區間為1.50-58.15)的腎毒性都來的高出許多。而這五種抗生素之中,teicoplanin是腎毒性最低的藥物,不管是間接比較或直接比較法都支持這樣的結果。而linezolid不只在臨床療效上優於vancomycin(勝算比為1.4, 95%信頼區間為1.01-1.93),在微生物清除率上也比起傳統的vancomycin有更好的表現(勝算比為1.32, 95%信頼區間為1.03-1.7)。
結論:
本研究發現在藥物安全性上,telavancin造成腎毒性的風險最高,teicoplanin造成腎毒性的風險最低。在療效上,linezolid有最佳的臨床治療效果與微生物清除率。
zh_TW
dc.description.abstractBackground:Bacterial resistance has risen dramatically during the last few decades and infections caused by Gram-positive organisms constituting nowadays the main cause of sepsis in in-hospital patients. In the United States, more than 60% of the Gram-positive organisms isolates in intensive care units are methicillin resistance Staphylococcus aureus now (MRSA). In Taiwan nosocomial surveillance system reports, the prevalence of MRSA in Gram-positive organisms is up to 80% in medical centers. There is uncertainty as to whether vancomycin in cause permanent or temporary kidney damage. Many studies have shown an increased risk of kidney failure after vancomycin treatment. At least five agents of antibiotics, including vancomycin, teicoplanin, linezolid, tigecycline and telavancin can against MRSA infection. The efficacies and nephrotoxicity of different antibiotics have been studies by traditional meta-analysis method. However, for clinical decisions, we need to know the safety and effective of each possible in comparison with all relevant alternatives, not just one. We conducted a network meta-analysis study of comparative nephrotoxicity and efficacy of antibiotics for the treatment of Gram-positive bacterial infections.
Method: We searched the Medline, Cochrane Library, PubMed databases to identify published clinical trials in which vancomycin, linezolid, telavancin, teicoplanin and tigecycline were used to treat Gram positive infection from January 1988 to December 2011. We also searched trials in “clnicaltrials.gov” which is a service of clinical trial registry in U.S. National institutes of Health. Among included articles, the following variables were abstracted and collected in a standardized form: authors; year of publication ; study design; gender; mean age; number of patients ; site of infection; antimicrobial agents and dosages used ; microorganism species and susceptibility; clinical cure outcome; microbiological eradication; survival; adverse events; and serious adverse events. The safety outcome is nephrotoxicity and efficacy outcomes are clinical cure and microbiological eradication. We analyzed direct and indirect comparisons of different treatments using Bayesian network meta-analysis.
Results:Literature searching and systematic review identified 390 non-duplicate citations, of which 26 trials comprising 8094 participants were included. In direct comparison, lower risk of nephrotoxicity in teicoplanin compared with vancomycin (OR: 0.37, 95% C.I: 0.19-0.70). There was no statistical difference in clinical cure between these antibiotic agents. In microbiological eradication, linezolid is significant more effective than vancomycin (OR: 1.29, 95%C.I: 1.02-1.63). In indirect comparison, telavancin was the antibiotics of most high risk nephrotoxicity than others, compare with teicoplanin (OR: 8.63, 95% credible interval (CrI): 2.26-66.47) and linezolid (OR: 6.88, 95%CrI: 1.50-58.15). The lower risk of nephrotoxicity with teicoplanin was observed. Compared with vancomycin, teicoplanin showed significant decrease the risk of nephrotoxicity (OR: 0.29, 95%CrI: 0.11-0.67). Linezolid was superior to vancomycin in clinical cure (OR: 1.4, 95%CrI: 1.01-1.93) and microbiological eradication (OR: 1.32, 95%CrI: 1.03-1.7).
Conclusion:Telavancin is associated with a greater risk of renal toxicity than other comparators. It is a novel concept in traditional and network meta-analysis study. Teicoplanin appear the lower risk of nephrotoxicity in treatment of Gram positive bacterial infection. Linezolid showed a significant superior efficacy in clinical cure and microbiological eradication than others. Better performed randomized trials on antibiotic treatment of Gram-positive infection are needed to build a more robust network meta-analysis.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:41:34Z (GMT). No. of bitstreams: 1
ntu-101-R99849034-1.pdf: 981357 bytes, checksum: 8abc0c727f9d7d52b36fa0815625c93c (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書……………………………………2
誌謝……………………………………………………3
中文摘要……………………………………………4
英文摘要……………………………………………6
目錄…………………………………………………9
圖目錄………………………………………………12
表目錄………………………………………………13
Chapter I Background…………………………………………………………14
1.1 Epidemiology of Gram positive organisms and methicillin-resistant Staphylococcus auras (MRSA)…………………………………………………14
Chapter II Literature Review………………………………19
2.1 Evolution of antibiotics development to treat Gram positive and MRSA infection ……………19
2.2 Efficacy study of newly developed antibiotics…22
2.2.1 RCT study……………………………………………22
2.2.2 Meta-analysis study……………………………………26
2.3 Safety study of newly developed antibiotics……29
2.3.1 RCT study…………………………………………………29
2.3.2 Meta-analysis study………………………………………33
2.4 Pharmacodynamics and possible mechanism of the drug efficacy and safety………………………………………………37
2.5 Gap ……………………………………………………………42
2.6 Network meta-analysis: background, principle, advantage and limitation…43
Chapter III Study Purpose …………………………………45
Chapter IV Study Methods …………………………………46
4.1 Systematic review………………………………………46
4.1.1 Data sources and searching strategy………………46
4.1.2 Study selection…………………………………………48
4.1.3 Quality assessment………………………………………49
4.1.4 Analyzed outcomes………………………………………50
4.2 Quantitative analysis……………………………………51 4.2.1 Data extraction………………………………51
4.2.2Data synthesis and analysis…………………………53
4.2.2.1 Traditional meta-analysis……………………53
4.2.2.2 Network meta-analysis …………………………53
Chapter V Study Results ………………………………………54
5.1 Systematic review of the efficacy and safety…………54
5.1.1 Identification of studies……………………………54
5.1.2 Study characteristics……………………………………57
5.1.3 Report of quality………………………………………59
5.2 Qualitative analysis……………………………………62
5.2.1 Synthesis of efficacy………………………………62
5.2.2 Synthesis of nephrotoxicity…………………………66
5.3 Results of meta-analysis………………………………68
5.3.1 Nephrotoxicity of 5 anti-microbial agents……68
5.3.2 Efficacy of 5 anti-microbial agents……………71
5.4 Results of network meta-analysis……………………75
5.4.1 Relative nephrotoxicity………………………………75
5.4.2 Relative efficacies…………………………………77
5.5 Results of subgroup analysis…………………………79
5.5.1 Pneumonia ………………………………………………79
5.5.2 Complicated skin and soft tissue infections……81
Chapter VI Discussion …………………………………………83
6.1 Overall description………………………………………83
6.2 Level of evidence…………………………………………85
6.3 Limitation of study………………………………………86
6.4 Conclusion…………………………………………………88
Reference…………………………………………………………89
圖目錄
Fig 1-1 Worldwide prevalence of MRSA bacteremia in 2006…………………17
Fig 1-2 MRSA clinical isolates in National Taiwan University Hospital………18
Fig 1-3 The prevalence of MRSA infection in Chang Gung Medical Hospital…18
Fig 1-4 Association between the Staphylococcus aureus bacteremia (SAB) score..21
Fig 2-1 The rate of nephrotoxicity from pooled data ……………………………36
Fig 5-1 Identification and flow diagram of the RCTs reviewed…………………55
Fig 5-2 Connections between treatment arms…………56
Fig 5-3 Summary of risk of bias of including studies……61
Fig 5-4 Nephrotoxicity of traditional meta-analysis……69
Fig 5-5 The odds ratio in nephrotoxicity between treatment arms………………69
Fig 5-6 Nephrotoxicity of traditional meta-analysis after exclude teicoplanin vs. linezolid…………………………70
Fig 5-7 Clinical cure of traditional meta-analysis………72
Fig 5-8 The odds ratio in clinical cure between treatment arms…………………72
Fig 5-9 Clinical cure of traditional meta-analysis after exclude teicoplanin vs. linezolid…………………………73
Fig 5-10 Microbiological eradication of traditional meta-analysis……………74
Fig 5-11 The odds ratio in microbiological eradication between treatment arms…74
Fig 5-12 The odds ratio in nephrotoxicity between treatment arms (network meta-analysis)……………………76
Fig 5-13 The odds ratio in clinical cure between treatment arms (network meta-analysis)………………………………78
Fig 5-14 The odds ratio in microbiological eradication between treatment arms (network meta-analysis)…………78
Fig.5-15 Nephrotoxicity of pneumonia subgroup……………80
Fig 5-16 Clinical cure of pneumonia subgroup………………80
Fig.5-17 Nephrotoxicity of complicated soft and skin tissue infections group……82
表目錄
Table 5-1 Study characteristics of included RCTs…………58
Table 5-2 quality assessment of including studies………60
Table 5-3 Summarized drug doses, numbers of clinical cure, microbiological eradication and percentage of MRSA pathogen……………………………………63
Table 5-4 summarized the definition and numbers of nephrotoxicity in RCTs……67
dc.language.isoen
dc.subject微生物清除率zh_TW
dc.subject臨床治癒率zh_TW
dc.subject網路統合分析研究zh_TW
dc.subject腎毒性zh_TW
dc.subject抗藥性金黃色葡萄球菌zh_TW
dc.subject革蘭氏陽性菌zh_TW
dc.subjectnetwork meta-analysisen
dc.subjectmethicillin-resistance Staphylococcus aureus (MRSA)en
dc.subjectnephrotoxicityen
dc.subjectclinical cureen
dc.subjectmicrobiological eradicationen
dc.subjectGram-positive bacillien
dc.title比較不同抗生素對治療革蘭氏陽性菌感染的腎毒性及治療效力-系統性回顧與網絡統合分析研究zh_TW
dc.titleComparative Nephrotoxicity and Efficacy of antibiotics for the treatment of Gram-Positive Bacterial Infections --
A systematic review and network meta-analysis
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張家勳(Chia-Hsuin Chang),邵文逸(Wen-Yi Shau),林先和(Hsien-Ho Lin),廖俊星(Chun-Hsing Liao)
dc.subject.keyword革蘭氏陽性菌,抗藥性金黃色葡萄球菌,腎毒性,臨床治癒率,微生物清除率,網路統合分析研究,zh_TW
dc.subject.keywordGram-positive bacilli,methicillin-resistance Staphylococcus aureus (MRSA),nephrotoxicity,clinical cure,microbiological eradication,network meta-analysis,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2012-08-15
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
958.36 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved