Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 文學院
  3. 圖書資訊學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64305
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor唐牧群(Muh-Chyun Tang)
dc.contributor.authorCheng-Yi Wuen
dc.contributor.author吳承奕zh_TW
dc.date.accessioned2021-06-16T17:39:46Z-
dc.date.available2020-03-03
dc.date.copyright2020-03-03
dc.date.issued2020
dc.date.submitted2020-02-27
dc.identifier.citationAdomavicius, G., &Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749. https://doi.org/10.1109/TKDE.2005.99
Aggarwal, C. C. (2016a). An Introduction to Recommender Systems. In Recommender Systems: The Textbook (pp. 1–28). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-29659-3_1
Aggarwal, C. C. (2016b). Content-Based Recommender Systems. In Recommender Systems: The Textbook (pp. 139–166). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-29659-3_4
Aggarwal, C. C. (2016c). Neighborhood-Based Collaborative Filtering. In Recommender Systems: The Textbook (pp. 29–70). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-29659-3_2
Aljukhadar, M., Senecal, S., &Daoust, C.-E. (2012). Using Recommendation Agents to Cope with Information Overload. International Journal of Electronic Commerce, 17(2), 41–70. https://doi.org/10.2753/JEC1086-4415170202
Anderson, C. (2008). The New Tastemakers. In The Long Tail: Why the Future of Business is Selling Less of More (pp. 98–124). New York, NY, USA: Hachette Books.
Baltrunas, L., &Ricci, F. (2009). Item Weighting Techniques for Collaborative Filtering. In B.Berendt, D.Mladenič, M.deGemmis, G.Semeraro, M.Spiliopoulou, G.Stumme, …F.Železný (Eds.), Knowledge Discovery Enhanced with Semantic and Social Information (pp. 109–126). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-01891-6_7
Bansal, J., &Woolhouse, M. (2015). Predictive Power of Personality on Music-Genre Exclusivity. In the International Society for Music Information Retrieval (pp. 652–658).
Bettman, J. R., Luce, M. F., &Payne, J. W. (1998). Constructive Consumer Choice Processes. Journal of Consumer Research, 25(3), 187–217. https://doi.org/10.1086/209535
Bettman, J. R., &Park, C. W. (1980). Effects of Prior Knowledge and Experience and Phase of the Choice Process on Consumer Decision Processes: A Protocol Analysis. Journal of Consumer Research, 7(3), 234–248. Retrieved from http://www.jstor.org/stable/2489009
Bogdanov, D. (2013). From music similarity to music recommendation: Computational approaches based on audio features and metadata. Universitat Pompeu Fabra, Barcelona, Spain.
Breese, J. S., Heckerman, D., &Kadie, C. (1998). Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (pp. 43–52). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved from http://dl.acm.org/citation.cfm?id=2074094.2074100
Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction, 12(4), 331–370. https://doi.org/10.1023/A:1021240730564
Burke, R. (2007). Hybrid Web Recommender Systems. In P.Brusilovsky, A.Kobsa, &W.Nejdl (Eds.), The Adaptive Web: Methods and Strategies of Web Personalization (pp. 377–408). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-72079-9_12
Castells, P., Hurley, N. J., &Vargas, S. (2015). Novelty and Diversity in Recommender Systems. In F.Ricci, L.Rokach, &B.Shapira (Eds.), Recommender Systems Handbook (pp. 881–918). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4899-7637-6_26
Celma, Ò. (2010a). Evaluation Metrics. In Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play in the Digital Music Space (pp. 109–128). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-13287-2_5
Celma, Ò. (2010b). The Long Tail in Recommender Systems. In Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play in the Digital Music Space (pp. 87–107). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-13287-2_4
Celsi, R. L., &Olson, J. C. (1988). The Role of Involvement in Attention and Comprehension Processes. Journal of Consumer Research, 15(2), 210–224. Retrieved from http://www.jstor.org/stable/2489526
Chaaya, G., Abdo, J. B., Demerjian, J., Chiky, R., Metais, E., &Barbar, K. (2018). An improved non-personalized combined-heuristic strategy for collaborative filtering recommender systems. In 2018 IEEE Middle East and North Africa Communications Conference (MENACOMM) (pp. 1–6). IEEE. https://doi.org/10.1109/MENACOMM.2018.8371042
Cohen, J. (1988). The Significance of a Product Moment rs. In Statistical Power Analysis for the Behavioral Sciences (2nd ed., pp. 75–107). Lawrence Erlbaum Associates. https://doi.org/10.4324/9780203771587
Cremonesi, P., Garzotto, F., Negro, S., Papadopoulos, A. V., &Turrin, R. (2011). Looking for “‘Good’” Recommendations: A Comparative Evaluation of Recommender Systems. In P.Campos, N.Graham, J.Jorge, N.Nunes, P.Palanque, &M.Winckler (Eds.), Human-Computer Interaction–INTERACT 2011 (pp. 152–168). Berlin, Heidelberg: Springer Berlin Heidelberg.
deGemmis, M., Lops, P., Musto, C., Narducci, F., &Semeraro, G. (2015). Semantics-Aware Content-Based Recommender Systems. In F.Ricci, L.Rokach, &B.Shapira (Eds.), Recommender Systems Handbook (pp. 119–159). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4899-7637-6_4
Druckman, J. N., &Lupia, A. (2000). Preference Formation. Annual Review of Political Science, 3(1), 1–24. https://doi.org/10.1146/annurev.polisci.3.1.1
Elberse, A. (2008). Should You Invest in the Long Tail? Harvard Business Review, 86(7/8), 88–96. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=bsh&AN=32708987&site=ehost-live&scope=site
Felfernig, A., &Burke, R. (2008). Constraint-based Recommender Systems: Technologies and Research Issues. In Proceedings of the 10th International Conference on Electronic Commerce (pp. 3:1--3:10). New York, NY, USA: ACM. https://doi.org/10.1145/1409540.1409544
Freeman III, A. M. (2014). Resource Evaluation and Public Policy. In The Measurement of Environmental and Resource Values (pp. 1–19). Routledge. https://doi.org/10.4324/9781315780917
Gaffney, M., &Rafferty, P. (2009). Making the Long Tail visible: social networking sites and independent music discovery. Program, 43(4), 375–391. https://doi.org/10.1108/00330330910998039
Garcia-Gathright, J., St.Thomas, B., Hosey, C., Nazari, Z., &Diaz, F. (2018). Understanding and Evaluating User Satisfaction with Music Discovery. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (pp. 55–64). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3209978.3210049
Gauch, S., Speretta, M., Chandramouli, A., &Micarelli, A. (2007). User Profiles for Personalized Information Access. In P.Brusilovsky, A.Kobsa, &W.Nejdl (Eds.), The Adaptive Web: Methods and Strategies of Web Personalization (pp. 54–89). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-72079-9_2
Ge, M., Delgado-Battenfeld, C., &Jannach, D. (2010). Beyond Accuracy: Evaluating Recommender Systems by Coverage and Serendipity. In Proceedings of the Fourth ACM Conference on Recommender Systems (pp. 257–260). New York, NY, USA: ACM. https://doi.org/10.1145/1864708.1864761
Goldberg, L. R. (1993). The structure of phenotypic personality traits. American Psychologist. US: American Psychological Association. https://doi.org/10.1037/0003-066X.48.1.26
Gottschlich, J., Heimbach, I., &Hinz, O. (2013). The Value Of Users’ Facebook Profile Data-Generating Product Recommendations For Online Social Shopping Sites. In European Conference on Information Systems (p. 117). Retrieved from https://aisel.aisnet.org/ecis2013_cr/117
Greasley, A., Lamont, A., &Sloboda, J. (2013). Exploring Musical Preferences: An In-Depth Qualitative Study of Adults’ Liking for Music in Their Personal Collections. Qualitative Research in Psychology, 10(4), 402–427. https://doi.org/10.1080/14780887.2011.647259
Gregory, R., Lichtenstein, S., &Slovic, P. (1993). Valuing environmental resources: A constructive approach. Journal of Risk and Uncertainty, 7(2), 177–197. https://doi.org/10.1007/BF01065813
Hargreaves, D. J., Macdonald, R., &Miell, D. (2017). The Changing Identity of Musical Identities. In Handbook of Musical Identities. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199679485.003.0001
Herlocker, J. L., Konstan, J. A., Borchers, A., &Riedl, J. (1999). An Algorithmic Framework for Performing Collaborative Filtering. In Proceedings of the 22Nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 230–237). New York, NY, USA: ACM. https://doi.org/10.1145/312624.312682
Herlocker, J. L., Konstan, J. A., Terveen, L. G., &Riedl, J. T. (2004). Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems, 22(1), 5–53. https://doi.org/10.1145/963770.963772
Hibbett, R. (2005). What Is Indie Rock? Popular Music and Society, 28(1), 55–77. https://doi.org/10.1080/0300776042000300972
Hinz, O., &Eckert, J. (2010). The Impact of Search and Recommendation Systems on Sales in Electronic Commerce. Business & Information Systems Engineering, 2(2), 67–77. https://doi.org/10.1007/s12599-010-0092-x
Huang, Z., Chung, W., &Chen, H. (2004). A Graph Model for E-commerce Recommender Systems. Journal of the American Society for Information Science and Technology, 55(3), 259–274. https://doi.org/10.1002/asi.10372
International Federation of the Phonographic Industry. (2019). IFPI Global Music Report 2019 // State of the Industry. Retrieved from https://www.ifpi.org/downloads/gmr2019.pdf
Jawaheer, G., Szomszor, M., &Kostkova, P. (2010). Comparison of Implicit and Explicit Feedback from an Online Music Recommendation Service. In Proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems (pp. 47–51). New York, NY, USA: ACM. https://doi.org/10.1145/1869446.1869453
Kahn, B. E. (1995). Consumer variety-seeking among goods and services: An integrative review. Journal of Retailing and Consumer Services, 2(3), 139–148. https://doi.org/https://doi.org/10.1016/0969-6989(95)00038-0
Kaminskas, M., &Bridge, D. (2016). Diversity, Serendipity, Novelty, and Coverage: A Survey and Empirical Analysis of Beyond-Accuracy Objectives in Recommender Systems. ACM Trans. Interact. Intell. Syst., 7(1), 2:1--2:42. https://doi.org/10.1145/2926720
Kapferer, J.-N., &Laurent, G. (1993). Further evidence on the consumer involvement profile: Five antecedents of involvement. Psychology & Marketing, 10(4), 347–355. https://doi.org/10.1002/mar.4220100408
Kotkov, D., Wang, S., &Veijalainen, J. (2016). A survey of serendipity in recommender systems. Knowledge-Based Systems, 111, 180–192. https://doi.org/10.1016/j.knosys.2016.08.014
Kwon, K., Cho, J., &Park, Y. (2009). Influences of customer preference development on the effectiveness of recommendation strategies. Electronic Commerce Research and Applications, 8(5), 263–275. https://doi.org/https://doi.org/10.1016/j.elerap.2009.04.004
LeBlanc, A. (1987). The Development of Music Preference in Children. In J. C.Peery, I. W.Peery, &T. W.Draper (Eds.), Music and Child Development (pp. 137–157). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4613-8698-8_7
March, J. G. (1978). Bounded Rationality, Ambiguity, and the Engineering of Choice. The Bell Journal of Economics, 9(2), 587–608. https://doi.org/10.2307/3003600
McPhee, W. N. (1963). Formal Theories of Mass Behavior. New York, NY, USA: Free Press of Glencoe.
Montaner, M., López, B., &dela Rosa, J. L. (2003). A Taxonomy of Recommender Agents on the Internet. Artificial Intelligence Review, 19(4), 285–330. https://doi.org/10.1023/A:1022850703159
Murakami, T., Mori, K., &Orihara, R. (2008). Metrics for Evaluating the Serendipity of Recommendation Lists. In K.Satoh, A.Inokuchi, K.Nagao, &T.Kawamura (Eds.), New Frontiers in Artificial Intelligence (pp. 40–46). Berlin, Heidelberg: Springer Berlin Heidelberg.
Nadimi-Shahraki, M.-H., &Bahadorpour, M. (2014). Cold-start Problem in Collaborative Recommender Systems: Efficient Methods Based on Ask-to-rate Technique. Journal of Computing and Information Technology, 22(2), 105. https://doi.org/10.2498/cit.1002223
Negus, K. (1996). Popular Music in Theory : An Introduction. Cambridge: Polity Press.
Ning, X., Desrosiers, C., &Karypis, G. (2015). A Comprehensive Survey of Neighborhood-Based Recommendation Methods. In F.Ricci, L.Rokach, &B.Shapira (Eds.), Recommender Systems Handbook (pp. 37–76). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4899-7637-6_2
North, A. C., Desborough, L., &Skarstein, L. (2005). Musical preference, deviance, and attitudes towards music celebrities. Personality and Individual Differences, 38(8), 1903–1914. https://doi.org/https://doi.org/10.1016/j.paid.2004.11.016
North, A., &Hargreaves, D. (2008). The social and applied psychology of music. Oxford University Press.
Payne, J. W., Bettman, J. R., &Johnson, E. J. (1992). Behavioral Decision Research: A Constructive Processing Perspective. Annual Review of Psychology, 43(1), 87–131. https://doi.org/10.1146/annurev.ps.43.020192.000511
Pazzani, M. J., &Billsus, D. (2007). Content-Based Recommendation Systems. In P.Brusilovsky, A.Kobsa, &W.Nejdl (Eds.), The Adaptive Web: Methods and Strategies of Web Personalization (pp. 325–341). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-72079-9_10
Poriya, A., Bhagat, T., Patel, N., &Sharma, R. (2014). Non-personalized recommender systems and user-based collaborative recommender systems. International Journal of Applied Information Systems, 6(9), 22–27.
Rabin, M. (1998). Psychology and Economics. Journal of Economic Literature, 36(1), 11–46. Retrieved from http://www.jstor.org/stable/2564950
Rawlings, D., &Ciancarelli, V. (1997). Music Preference and the Five-Factor Model of the NEO Personality Inventory. Psychology of Music, 25(2), 120–132. https://doi.org/10.1177/0305735697252003
Rentfrow, P. J., &Gosling, S. D. (2003). The do re mi’s of everyday life: the structure and personality correlates of music preferences. Journal of Personality and Social Psychology, 84(6), 1236.
Ricci, F., Rokach, L., &Shapira, B. (2015). Recommender Systems: Introduction and Challenges. In F.Ricci, L.Rokach, &B.Shapira (Eds.), Recommender Systems Handbook (pp. 1–34). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4899-7637-6_1
Rothmann, S., &Coetzer, E. P. (2003). The big five personality dimensions and job performance. SA Journal of Industrial Psychology; Vol 29, No 1 (2003)DO - 10.4102/Sajip.V29i1.88 . Retrieved from https://sajip.co.za/index.php/sajip/article/view/88/84
Rowe, D. (1995). Popular cultures: rock music, sport and the politics of pleasure. Sage Publications. Retrieved from https://books.google.com.tw/books?id=0iraAAAAMAAJ
Salganik, M. J., Dodds, P. S., &Watts, D. J. (2006). Experimental Study of Inequality and Unpredictability in an Artificial Cultural Market. Science, 311(5762), 854–856. https://doi.org/10.1126/science.1121066
Salton, G., Wong, A., &Yang, C. S. (1975). A Vector Space Model for Automatic Indexing. Commun. ACM, 18(11), 613–620. https://doi.org/10.1145/361219.361220
Sánchez, P., &Bellogín, A. (2018). Time-Aware Novelty Metrics for Recommender Systems. In G.Pasi, B.Piwowarski, L.Azzopardi, &A.Hanbury (Eds.), Advances in Information Retrieval (pp. 357–370). Cham: Springer International Publishing.
Sarwar, B., Karypis, G., Konstan, J., &Riedl, J. (2001). Item-based Collaborative Filtering Recommendation Algorithms. In Proceedings of the 10th International Conference on World Wide Web (pp. 285–295). New York, NY, USA: ACM. https://doi.org/10.1145/371920.372071
Schafer, J.Ben, Frankowski, D., Herlocker, J., &Sen, S. (2007). Collaborative Filtering Recommender Systems. In P.Brusilovsky, A.Kobsa, &W.Nejdl (Eds.), The Adaptive Web: Methods and Strategies of Web Personalization (pp. 291–324). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-72079-9_9
Schafer, J.Ben, Konstan, J. A., &Riedl, J. (2001). E-commerce recommendation applications. Data Mining and Knowledge Discovery, 5(1–2), 115–153. https://doi.org/10.1023/A:1009804230409
Schedl, M., Zamani, H., Chen, C. W., Deldjoo, Y., &Elahi, M. (2018). Current challenges and visions in music recommender systems research. International Journal of Multimedia Information Retrieval, 7(2), 95–116. https://doi.org/10.1007/s13735-018-0154-2
Senecal, S., &Nantel, J. (2004). The influence of online product recommendations on consumers’ online choices. Journal of Retailing, 80(2), 159–169. https://doi.org/10.1016/j.jretai.2004.04.001
Shardanand, U., &Maes, P. (1995). Social Information Filtering: Algorithms for Automating &Ldquo;Word of Mouth&Rdquo; In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 210–217). New York, NY, USA: ACM Press/Addison-Wesley Publishing Co. https://doi.org/10.1145/223904.223931
Sherif, M., &Cantril, H. (1947). The psychology of ego-involvements: Social attitudes and identifications. The psychology of ego-involvements: Social attitudes and identifications. Hoboken, NJ, US: John Wiley & Sons Inc. https://doi.org/10.1037/10840-000
Simon, H. A. (1955). A Behavioral Model of Rational Choice. The Quarterly Journal of Economics, 69(1), 99–118. https://doi.org/10.2307/1884852
Simonson, I. (2005). Determinants of Customers’ Responses to Customized Offers: Conceptual Framework and Research Propositions. Journal of Marketing, 69(1), 32–45. Retrieved from http://www.jstor.org/stable/30162031
Slovic, P. (1995). The construction of preference. American Psychologist, 50(5), 364–371. https://doi.org/10.1037/0003-066X.50.5.364
Smyth, B., &McClave, P. (2001). Similarity vs. Diversity. In D. W.Aha &I.Watson (Eds.), Case-Based Reasoning Research and Development (pp. 347–361). Berlin, Heidelberg: Springer Berlin Heidelberg.
Spychiger, M. B. (2017). From Musical Experience to Musical Identity: Musical Self-Concept as a Mediating Psychological Structure. In Handbook of Musical Identities. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199679485.003.0015
StreetVoice 街聲(2020)。StreetVoice 街聲 2019 年度洞察報告暨十年回顧。檢索自 StreetVoice 街聲:https://streetvoice.com/pages/annualreport/2019/
Tang, M.-C. (2014). Exploring the Impact of Users’ Preference Diversity on Recommender System Performance. In F. F.-H.Nah (Ed.), HCI in Business (pp. 681–689). Cham: Springer International Publishing.
Tang, M.-C., &Jhang, P.-S. (2019). Music discovery and revisiting behaviors of individuals with different preference characteristics: An experience sampling approach. Journal of the Association for Information Science and Technology, 0(0), asi.24259. https://doi.org/10.1002/asi.24259
Tang, M.-C., Ke, Y.-L., &Sie, Y.-J. (2013). The Estimation of aNobii Users’ Reading Diversity Using Book Co-ownership Data: A Social Analytical Approach. In A.Jatowt, E.-P.Lim, Y.Ding, A.Miura, T.Tezuka, G.Dias, …B. T.Dai (Eds.), Social Informatics (pp. 274–283). Cham: Springer International Publishing.
Tkalcic, M., &Chen, L. (2015). Personality and Recommender Systems. In F.Ricci, L.Rokach, &B.Shapira (Eds.), Recommender Systems Handbook (pp. 715–739). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4899-7637-6_21
Vargas, S., &Castells, P. (2011). Rank and Relevance in Novelty and Diversity Metrics for Recommender Systems. In Proceedings of the Fifth ACM Conference on Recommender Systems (pp. 109–116). New York, NY, USA: ACM. https://doi.org/10.1145/2043932.2043955
Xiao, B., &Benbasat, I. (2007). E-commerce product recommendation agents: use, characteristics, and impact. MIS Quarterly, 31(1), 137–209.
Zaichkowsky, J. L. (1985). Measuring the Involvement Construct. Journal of Consumer Research, 12(3), 341–352. Retrieved from http://www.jstor.org/stable/254378
Zweigenhaft, R. L. (2008). A do re mi encore: A closer look at the personality correlates of music preferences. Journal of Individual Differences, 29(1), 45–55. https://doi.org/10.1027/1614-0001.29.1.45
中華民國教育部(2017)。學科標準分類第五次修正版本。檢索自 教育統計查詢網:http://stats.moe.gov.tw/files/bcode/106bcode.pdf
何東洪、鄭慧華、羅悅全(2015)。造音翻土:戰後台灣聲響文化的探索。臺北市:遠足文化。
劉官維(2015)。獨立音樂是什麼: 獨立音樂認同界線的生產與游移。未出版之碩士論文,國立清華大學社會學研究所,新竹市。檢索自 臺灣博碩士論文知識加值系統:https://hdl.handle.net/11296/zyvbks
奧利佛 Oliver(2016)。獨立VS 主流?(上)。檢索自 影視及流行音樂產業資訊平臺:https://tavis.tw/files/15-1000-16551,c171-1.php
廖伊涵(2019)。以使用者電影興趣檔與未知電影評價驗證偏好多樣性與偏好開放性。未出版之碩士論文,國立臺灣大學圖書資訊學研究所,臺北市。檢索自 臺灣博碩士論文知識加值系統:https://hdl.handle.net/11296/42b4yz
張媺媺(2015)。電影偏好結構多樣性及開放性之量表建立與驗證。未出版之碩士論文,國立臺灣大學圖書資訊學研究所,臺北市。檢索自 臺灣博碩士論文知識加值系統:https://hdl.handle.net/11296/pvqxgx
張霈萱(2017)。以經驗抽樣法探索不同音樂偏好屬性使用者之日常生活中的音樂聆聽行為。未出版之碩士論文,國立臺灣大學圖書資訊學研究所,臺北市。檢索自 臺灣博碩士論文知識加值系統:https://hdl.handle.net/11296/n5m9x9
懶摸(2016)。獨立樂迷音樂獎觀賞指南(一):什麼是獨立音樂。檢索自 Blow 吹音樂:https://blow.streetvoice.com/22370-獨立樂迷音樂獎觀賞指南(一):什麼是獨立音樂/
楊璨羽(2008)。音樂產業與文化政策:一個獨立音樂視野的探討。未出版之碩士論文,淡江大學大眾傳播學系碩士班,新北市。檢索自 臺灣博碩士論文知識加值系統:https://hdl.handle.net/11296/xa8jkn
王維碩(2011)。搖滾論述與台灣國族主義的扣連:TRA「獨立音樂」論述之形構(2000-2011)。未出版之博士論文,國立成功大學台灣文學系碩博士班,臺南市。檢索自 臺灣博碩士論文知識加值系統:https://hdl.handle.net/11296/h33r69
簡妙如(2013)。台灣獨立音樂的生產政治。思想,24,101–121。檢索自:http://www.linkingbooks.com.tw/lnb/top/C029789570842814.pdf
財團法人資訊工業策進會(2016)。臺灣流行音樂產業科技應用及趨勢分析。檢索自:https://musiccenter.taipei/upload/resources/170213 流行音樂計畫第二期.pdf
鄭凱同(2005)。主流與獨立的再思考:文化價值、音樂產業與文化政策的思辨與探討。未出版之碩士論文,淡江大學大眾傳播學系碩士班,新北市。檢索自 臺灣博碩士論文知識加值系統:https://hdl.handle.net/11296/vkw52j
陳之昊(2014)。社群網站時代的次文化社群:台灣獨立音樂圈的社會與文化資本。未出版之碩士論文,國立交通大學傳播研究所,新竹市。檢索自 臺灣博碩士論文知識加值系統:https://hdl.handle.net/11296/zp43qa
陳昇澤(2016)。台灣「獨立音樂」的「反叛」形象與社會屬性初探。未出版之碩士論文,國立交通大學社會與文化研究所,新竹市。檢索自 臺灣博碩士論文知識加值系統:https://hdl.handle.net/11296/ra6cv3
項亮(2012)。推荐系统实践。北京市:人民邮电出版社。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64305-
dc.description.abstract不同於過往的研究關注在推薦系統演算法的效能表現,本研究更以此為基礎納入音樂聽眾的個體差異因素,試圖確認不同聽眾偏好的結構樣態,是否會有對應合適的推薦策略。另外音樂聽眾研究上,大多將獨立音樂視為主流音樂的分支,又或是聚焦在論述獨立音樂的本質,而鮮少研究著墨於獨立音樂聽眾研究。於此本研究以心理量表與使用者興趣檔量化得知獨立音樂聽眾在偏好結構的特徵表現,並驗證構念與操作化的合適性如何,同時在推薦策略方面,欲釐清不同策略在推薦效能上的表現優劣以及特性,且其中推薦效能之間是否彼此皆為正向關聯,進而揭曉聽眾偏好結構是否對於推薦策略的表現有調節影響。本研究採重複測量設計的實驗法,以StreetVoice獨立音樂平台的使用者為研究對象,共徵集126位研究參與者,測量每位參與者在四種偏好結構的表現-偏好多樣性、偏好開放性、音樂自我認同與音樂涉入程度,並同時給予三種推薦策略-基於使用者協同過濾、基於內容過濾與熱門播放排行,邀請參與者評估各策略在五種推薦效能的表現-未知歌曲比率、使用者滿意度、意外驚喜性、多樣性與新穎性。經統計分析結果發現,聽眾在四種偏好結構的表現上彼此間具有正向關聯,然而在量表與興趣檔指標的量測上未有一致結果,而不同推薦策略確實存在不同的效能表現,但推薦效能之間不一定為正向的關係。最後本研究所關注的主軸,發現聽眾偏好結構的納入,實則會對推薦策略的效能表現有調節影響。zh_TW
dc.description.abstractDifferent from previous studies focused on the effectiveness of recommendation algorithms, this research employs individual differences of music audience as moderator, attains to confirm different preference structures of the audience would correspond to a fitting recommendation strategy. Besides, in other audience research, most of them view independent music as a branch of mainstream music or focus on addressing the concept of independent music, few of them concentrated on independent music audiences. Thus, our research introduces psychological scales and user profiles to quantify the behavior of independent music audiences in the preference structure, plus validates the suitability of construct and operationalization. Meanwhile, it is necessary to clarify whether recommendation strategies have different performances and characteristics, also prove whether the recommendation effectiveness metrics are positively correlated to each other. Furthermore, reveal the hypothesis that assumes the preference structure of the audience has a moderation effect on the effectiveness of the recommendation strategy. This research adopts the within-subject design experiment method, takes users of independent music platform StreetVoice as a research subject, totally recruiting 126 research participants, and measuring the behavior of each participant in four preference structures, such as preference diversity, openness to novelty, music self-identity and music involvement. By given three recommendation strategies, including user-based collaborative filtering, content-based filtering, and top popular charts. Inviting participants to evaluate the performance of each strategy in five recommendation effectiveness, such as unknown ratio, user satisfaction, serendipity, diversity, and novelty. Eventually, findings emerged from the statistical analysis, discover that the audiences have a positive correlation with each other in the behavior of the four preference structures, however, there is no consistent result in the measurement of scale and metrics of user profiles. Additionally, different recommendation strategies are confirmed to have different performances, yet the relationship between these performances is not necessarily positive. Ultimately, it is worth noting that preference structures of music audiences evidenced has a moderation effect on the performance of recommendation strategies.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:39:46Z (GMT). No. of bitstreams: 1
ntu-109-R05126012-1.pdf: 21875589 bytes, checksum: adf0aee64091389cec18ada54ad7e59f (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
Abstract iii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與問題 3
1.3 名詞解釋 5
第二章 文獻探討 8
2.1 獨立音樂 8
2.2 推薦系統 10
2.3 推薦效能與評估 33
2.4 偏好結構 37
第三章 研究設計與實施 41
3.1 研究架構與流程 41
3.2 研究假設 45
3.3 研究工具 47
3.4 研究對象與實驗設計 60
3.5 資料蒐集與分析 63
第四章 研究結果與討論 72
4.1 研究參與者敘述統計 72
4.2 音樂偏好屬性量表分析 74
4.3 偏好結構分析與討論 80
4.4 推薦效能分析與討論 96
4.5 主要效果、交互作用之分析與討論 109
第五章 結論與建議 130
5.1 結論 130
5.2 研究限制與建議 134
參考文獻 137
附錄 147
dc.language.isozh-TW
dc.subject多樣性zh_TW
dc.subject新穎性zh_TW
dc.subject意外驚喜性zh_TW
dc.subject獨立音樂聽眾zh_TW
dc.subject偏好結構zh_TW
dc.subject推薦效能zh_TW
dc.subject使用者興趣檔zh_TW
dc.subject推薦系統zh_TW
dc.subjectIndependent Music Audienceen
dc.subjectNoveltyen
dc.subjectDiversityen
dc.subjectSerendipityen
dc.subjectRecommendation Effectivenessen
dc.subjectRecommender Systemen
dc.subjectUser Profileen
dc.subjectPreference Structureen
dc.title獨立音樂聽眾偏好結構對於推薦策略之效能影響:以 StreetVoice 為例zh_TW
dc.titleInfluences of Independent Music Audience Preference Structure on the Effectiveness of Recommendation Strategies:A Study on StreetVoiceen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳怡瑾(I-Chin Wu),林頌堅(Sung-Chien Lin)
dc.subject.keyword獨立音樂聽眾,偏好結構,使用者興趣檔,推薦系統,推薦效能,意外驚喜性,多樣性,新穎性,zh_TW
dc.subject.keywordIndependent Music Audience,Preference Structure,User Profile,Recommender System,Recommendation Effectiveness,Serendipity,Diversity,Novelty,en
dc.relation.page172
dc.identifier.doi10.6342/NTU202000001
dc.rights.note有償授權
dc.date.accepted2020-02-28
dc.contributor.author-college文學院zh_TW
dc.contributor.author-dept圖書資訊學研究所zh_TW
顯示於系所單位:圖書資訊學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
21.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved