請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64297完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻(Tai-Horng Young) | |
| dc.contributor.author | Nai-Chen Cheng | en |
| dc.contributor.author | 鄭乃禎 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:39:22Z | - |
| dc.date.available | 2017-08-21 | |
| dc.date.copyright | 2012-08-21 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-14 | |
| dc.identifier.citation | [1] Cohen IG, Adashi EY. Human embryonic stem-cell research under siege--battle won but not the war. N Engl J Med. 2011;364:e48.
[2] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861-72. [3] Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315-7. [4] Gimble JM, Guilak F. Differentiation potential of adipose derived adult stem (ADAS) cells. Current topics in developmental biology. 2003;58:137-60. [5] Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6:7-14. [6] Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006;24:150-4. [7] Estes BT, Wu AW, Storms RW, Guilak F. Extended passaging, but not aldehyde dehydrogenase activity, increases the chondrogenic potential of human adipose-derived adult stem cells. J Cell Physiol. 2006;209:987-95. [8] Guilak F, Lott KE, Awad HA, Cao Q, Hicok KC, Fermor B, et al. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol. 2006;206:229-37. [9] Anghileri E, Marconi S, Pignatelli A, Cifelli P, Galie M, Sbarbati A, et al. Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev. 2008;17:909-16. [10] Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quinn G, et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology. 2007;46:219-28. [11] Baer PC, Griesche N, Luttmann W, Schubert R, Luttmann A, Geiger H. Human adipose-derived mesenchymal stem cells in vitro: evaluation of an optimal expansion medium preserving stemness. Cytotherapy. 2010;12:96-106. [12] Park E, Patel AN. Changes in the expression pattern of mesenchymal and pluripotent markers in human adipose-derived stem cells. Cell Biol Int. 2010;34:979-84. [13] Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science. 2000;287:1427-30. [14] Bartosh TJ, Wang Z, Rosales AA, Dimitrijevich SD, Roque RS. 3D-model of adult cardiac stem cells promotes cardiac differentiation and resistance to oxidative stress. J Cell Biochem. 2008;105:612-23. [15] Frith JE, Thomson B, Genever PG. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng Part C Methods. 2010;16:735-49. [16] Lin SJ, Jee SH, Hsiao WC, Yu HS, Tsai TF, Chen JS, et al. Enhanced cell survival of melanocyte spheroids in serum starvation condition. Biomaterials. 2006;27:1462-9. [17] Young TH, Lee CY, Chiu HC, Hsu CJ, Lin SJ. Self-assembly of dermal papilla cells into inductive spheroidal microtissues on poly(ethylene-co-vinyl alcohol) membranes for hair follicle regeneration. Biomaterials. 2008;29:3521-30. [18] Cheng NC, Estes BT, Awad HA, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A. 2009;15:231-41. [19] Chen MH, Chen YJ, Liao CC, Chan YH, Lin CY, Chen RS, et al. Formation of salivary acinar cell spheroids in vitro above a polyvinyl alcohol-coated surface. J Biomed Mater Res A. 2009;90:1066-72. [20] Lee WY, Chang YH, Yeh YC, Chen CH, Lin KM, Huang CC, et al. The use of injectable spherically symmetric cell aggregates self-assembled in a thermo-responsive hydrogel for enhanced cell transplantation. Biomaterials. 2009;30:5505-13. [21] Sekine H, Shimizu T, Hobo K, Sekiya S, Yang J, Yamato M, et al. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation. 2008;118:S145-52. [22] Yeh YC, Lee WY, Yu CL, Hwang SM, Chung MF, Hsu LW, et al. Cardiac repair with injectable cell sheet fragments of human amniotic fluid stem cells in an immune-suppressed rat model. Biomaterials. 2010;31:6444-53. [23] Bartosh TJ, Ylostalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A. 2010;107:13724-9. [24] Wang W, Itaka K, Ohba S, Nishiyama N, Chung UI, Yamasaki Y, et al. 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials. 2009;30:2705-15. [25] Edwards J, Stapley S. Debridement of diabetic foot ulcers. Cochrane Database Syst Rev. 2010:CD003556. [26] Cheer K, Shearman C, Jude EB. Managing complications of the diabetic foot. BMJ. 2009;339:b4905. [27] Blumberg SN, Berger A, Hwang L, Pastar I, Warren SM, Chen W. The role of stem cells in the treatment of diabetic foot ulcers. Diabetes Res Clin Pract. 2011. [28] Branski LK, Gauglitz GG, Herndon DN, Jeschke MG. A review of gene and stem cell therapy in cutaneous wound healing. Burns. 2009;35:171-80. [29] Hunter S, Langemo DK, Anderson J, Hanson D, Thompson P. Hyperbaric oxygen therapy for chronic wounds. Adv Skin Wound Care. 2010;23:116-9. [30] Vuorisalo S, Venermo M, Lepantalo M. Treatment of diabetic foot ulcers. J Cardiovasc Surg (Torino). 2009;50:275-91. [31] Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16:585-601. [32] Langer A, Rogowski W. Systematic review of economic evaluations of human cell-derived wound care products for the treatment of venous leg and diabetic foot ulcers. BMC Health Serv Res. 2009;9:115. [33] Yang J, Woo SL, Yang G, Wang J, Cui L, Liu W, et al. Construction and clinical application of a human tissue-engineered epidermal membrane. Plast Reconstr Surg. 2010;125:901-9. [34] Krueger WW, Goepfert H, Romsdahl M, Herson J, Withers RH, Jesse RH. Fibroblast implantation enhances wound healing as indicated by breaking strength determinations. Otolaryngology. 1978;86:ORL-804-11. [35] Amos PJ, Kapur SK, Stapor PC, Shang H, Bekiranov S, Khurgel M, et al. Human adipose-derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery. Tissue engineering Part A. 2010;16:1595-606. [36] Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant. 2011;20:205-16. [37] Lee EY, Xia Y, Kim WS, Kim MH, Kim TH, Kim KJ, et al. Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen. 2009;17:540-7. [38] Oh JS, Ha Y, An SS, Khan M, Pennant WA, Kim HJ, et al. Hypoxia-preconditioned adipose tissue-derived mesenchymal stem cell increase the survival and gene expression of engineered neural stem cells in a spinal cord injury model. Neurosci Lett. 2010;472:215-9. [39] Ye J, Yao K, Kim JC. Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model: engraftment and involvement in wound healing. Eye (Lond). 2006;20:482-90. [40] Zhuo S, Chen J, Xie S, Fan L, Zheng L, Zhu X, et al. Monitoring Dermal Wound Healing After Mesenchymal Stem Cell Transplantation Using Nonlinear Optical Microscopy. Tissue Eng Part C Methods. 2010. [41] Riekstina U, Cakstina I, Parfejevs V, Hoogduijn M, Jankovskis G, Muiznieks I, et al. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev. 2009;5:378-86. [42] Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res. 2006;133:185-92. [43] Lin SJ, Jee SH, Hsaio WC, Lee SJ, Young TH. Formation of melanocyte spheroids on the chitosan-coated surface. Biomaterials. 2005;26:1413-22. [44] Yang TL, Young TH. The specificity of chitosan in promoting branching morphogenesis of progenitor salivary tissue. Biochem Biophys Res Commun. 2009;381:466-70. [45] Yeh LK, Chen YH, Chiu CS, Hu FR, Young TH, Wang IJ. The phenotype of bovine corneal epithelial cells on chitosan membrane. J Biomed Mater Res A. 2009;90:18-26. [46] Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials. 2001;22:261-8. [47] Chen YH, Wang IJ, Young TH. Formation of keratocyte spheroids on chitosan-coated surface can maintain keratocyte phenotypes. Tissue Eng Part A. 2009;15:2001-13. [48] Ahmed SA, Gogal RM, Jr., Walsh JE. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J Immunol Methods. 1994;170:211-24. [49] Battula VL, Bareiss PM, Treml S, Conrad S, Albert I, Hojak S, et al. Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation. 2007;75:279-91. [50] Jang S, Cho HH, Cho YB, Park JS, Jeong HS. Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol. 2010;11:25. [51] Coradeghini R, Guida C, Scanarotti C, Sanguineti R, Bassi AM, Parodi A, et al. A comparative study of proliferation and hepatic differentiation of human adipose-derived stem cells. Cells Tissues Organs. 2010;191:466-77. [52] Vormoor J, Lapidot T, Pflumio F, Risdon G, Patterson B, Broxmeyer HE, et al. Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood. 1994;83:2489-97. [53] Lemischka IR, Raulet DH, Mulligan RC. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell. 1986;45:917-27. [54] Lavker RM, Sun TT. Epidermal stem cells: properties, markers, and location. Proc Natl Acad Sci U S A. 2000;97:13473-5. [55] Barzilay R, Melamed E, Offen D. Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells. 2009;27:2509-15. [56] Barzilay R, Kan I, Ben-Zur T, Bulvik S, Melamed E, Offen D. Induction of human mesenchymal stem cells into dopamine-producing cells with different differentiation protocols. Stem Cells Dev. 2008;17:547-54. [57] Loh KM, Lim B. A precarious balance: pluripotency factors as lineage specifiers. Cell Stem Cell. 2011;8:363-9. [58] Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol. 2008;6:e253. [59] Sugii S, Kida Y, Kawamura T, Suzuki J, Vassena R, Yin YQ, et al. Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc Natl Acad Sci U S A. 2010;107:3558-63. [60] Miyagawa Y, Okita H, Hiroyama M, Sakamoto R, Kobayashi M, Nakajima H, et al. A microfabricated scaffold induces the spheroid formation of human bone marrow-derived mesenchymal progenitor cells and promotes efficient adipogenic differentiation. Tissue Eng Part A. 2011;17:513-21. [61] Wartenberg M, Gunther J, Hescheler J, Sauer H. The embryoid body as a novel in vitro assay system for antiangiogenic agents. Lab Invest. 1998;78:1301-14. [62] Shao HJ, Lee YT, Chen CS, Wang JH, Young TH. Modulation of gene expression and collagen production of anterior cruciate ligament cells through cell shape changes on polycaprolactone/chitosan blends. Biomaterials. 2010;31:4695-705. [63] Bhang SH, Cho SW, La WG, Lee TJ, Yang HS, Sun AY, et al. Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials. 2011;32:2734-47. [64] Dromard C, Bourin P, Andre M, De Barros S, Casteilla L, Planat-Benard V. Human adipose derived stroma/stem cells grow in serum-free medium as floating spheres. Exp Cell Res. 2011;317:770-80. [65] Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials. 2004;25:3211-22. [66] Cheng YH, Yang SH, Lin FH. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration. Biomaterials. 2011;32:6953-61. [67] Yu J, Gu Y, Du KT, Mihardja S, Sievers RE, Lee RJ. The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials. 2009;30:751-6. [68] Gimble JM, Grayson W, Guilak F, Lopez MJ, Vunjak-Novakovic G. Adipose tissue as a stem cell source for musculoskeletal regeneration. Front Biosci (Schol Ed). 2011;3:69-81. [69] Badylak SF, Gilbert TW. Immune response to biologic scaffold materials. Semin Immunol. 2008;20:109-16. [70] Lu Z, Zandieh-Doulabi B, Huang C, Bank RA, Helder M. Collagen Type II Enhances Chondrogenesis in Adipose Tissue-Derived Stem Cells by affecting cell shape. Tissue Eng Part A. 2009. [71] Han Y, Wei Y, Wang S, Song Y. Enhanced Chondrogenesis of Adipose-Derived Stem Cells by the Controlled Release of Transforming Growth Factor-beta1 from Hybrid Microspheres. Gerontology. 2009. [72] Seda Tigli R, Ghosh S, Laha MM, Shevde NK, Daheron L, Gimble J, et al. Comparative chondrogenesis of human cell sources in 3D scaffolds. J Tissue Eng Regen Med. 2009;3:348-60. [73] Tsai T, Chien HF, Wang TH, Huang CT, Ker YB, Chen CT. Chitosan augments photodynamic inactivation of gram-positive and gram-negative bacteria. Antimicrob Agents Chemother. 2011;55:1883-90. [74] Sechriest VF, Miao YJ, Niyibizi C, Westerhausen-Larson A, Matthew HW, Evans CH, et al. GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. J Biomed Mater Res. 2000;49:534-41. [75] Cui YL, Qi AD, Liu WG, Wang XH, Wang H, Ma DM, et al. Biomimetic surface modification of poly(L-lactic acid) with chitosan and its effects on articular chondrocytes in vitro. Biomaterials. 2003;24:3859-68. [76] Risbud M, Ringe J, Bhonde R, Sittinger M. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue. Cell Transplant. 2001;10:755-63. [77] Kim S, Nimni ME, Yang Z, Han B. Chitosan/gelatin-based films crosslinked by proanthocyanidin. J Biomed Mater Res B Appl Biomater. 2005;75:442-50. [78] Cheng M, Deng J, Yang F, Gong Y, Zhao N, Zhang X. Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials. 2003;24:2871-80. [79] Dhandayuthapani B, Krishnan UM, Sethuraman S. Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res B Appl Biomater. 2010;94:264-72. [80] Franco RA, Nguyen TH, Lee BT. Preparation and characterization of electrospun PCL/PLGA membranes and chitosan/gelatin hydrogels for skin bioengineering applications. J Mater Sci Mater Med. 2011;22:2207-18. [81] Li J, Sun H, Zhang R, Li R, Yin Y, Wang H, et al. Modulation of mesenchymal stem cells behaviors by chitosan/gelatin/pectin network films. J Biomed Mater Res B Appl Biomater. 2010;95:308-19. [82] Chiono V, Pulieri E, Vozzi G, Ciardelli G, Ahluwalia A, Giusti P. Genipin-crosslinked chitosan/gelatin blends for biomedical applications. J Mater Sci Mater Med. 2008;19:889-98. [83] Pulieri E, Chiono V, Ciardelli G, Vozzi G, Ahluwalia A, Domenici C, et al. Chitosan/gelatin blends for biomedical applications. J Biomed Mater Res A. 2008;86:311-22. [84] Vickers SM, Squitieri LS, Spector M. Effects of cross-linking type II collagen-GAG scaffolds on chondrogenesis in vitro: dynamic pore reduction promotes cartilage formation. Tissue Eng. 2006;12:1345-55. [85] Cheng NC, Wang S, Young TH. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials. 2012;33:1748-58. [86] Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV. In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials. 2005;26:7616-27. [87] Mao JS, Cui YL, Wang XH, Sun Y, Yin YJ, Zhao HM, et al. A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis. Biomaterials. 2004;25:3973-81. [88] Shao HJ, Chen CS, Lee YT, Wang JH, Young TH. The phenotypic responses of human anterior cruciate ligament cells cultured on poly(epsilon-caprolactone) and chitosan. J Biomed Mater Res A. 2010;93:1297-305. [89] Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26:5983-90. [90] Tuzlakoglu K, Alves CM, Mano JF, Reis RL. Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications. Macromol Biosci. 2004;4:811-9. [91] Ryan PL, Foty RA, Kohn J, Steinberg MS. Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity. Proc Natl Acad Sci U S A. 2001;98:4323-7. [92] Kim WS, Park BS, Sung JH, Yang JM, Park SB, Kwak SJ, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci. 2007;48:15-24. [93] Nambu M, Ishihara M, Nakamura S, Mizuno H, Yanagibayashi S, Kanatani Y, et al. Enhanced healing of mitomycin C-treated wounds in rats using inbred adipose tissue-derived stromal cells within an atelocollagen matrix. Wound Repair Regen. 2007;15:505-10. [94] Tsai CC, Chen YJ, Yew TL, Chen LL, Wang JY, Chiu CH, et al. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood. 2011;117:459-69. [95] Cai L, Johnstone BH, Cook TG, Liang Z, Traktuev D, Cornetta K, et al. Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. Stem Cells. 2007;25:3234-43. [96] Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature medicine. 2004;10:858-64. [97] Potapova IA, Brink PR, Cohen IS, Doronin SV. Culturing of human mesenchymal stem cells as three-dimensional aggregates induces functional expression of CXCR4 that regulates adhesion to endothelial cells. The Journal of biological chemistry. 2008;283:13100-7. [98] Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J. Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells 'hide out' in the bone marrow. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, UK. 2004;18:29-40. [99] Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, et al. Regulation of the chemokine receptor CXCR4 by hypoxia. The Journal of experimental medicine. 2003;198:1391-402. [100] Bobis-Wozowicz S, Miekus K, Wybieralska E, Jarocha D, Zawisz A, Madeja Z, et al. Genetically modified adipose tissue-derived mesenchymal stem cells overexpressing CXCR4 display increased motility, invasiveness, and homing to bone marrow of NOD/SCID mice. Experimental hematology. 2011;39:686-96 e4. [101] Cho HH, Kyoung KM, Seo MJ, Kim YJ, Bae YC, Jung JS. Overexpression of CXCR4 increases migration and proliferation of human adipose tissue stromal cells. Stem cells and development. 2006;15:853-64. [102] Huang W, Wang T, Zhang D, Zhao T, Dai B, Ashraf A, et al. Mesenchymal stem cells overexpressing CXCR4 attenuate remodeling of postmyocardial infarction by releasing matrix metalloproteinase-9. Stem cells and development. 2012;21:778-89. [103] Pedroso DC, Tellechea A, Moura L, Fidalgo-Carvalho I, Duarte J, Carvalho E, et al. Improved survival, vascular differentiation and wound healing potential of stem cells co-cultured with endothelial cells. PLoS One. 2011;6:e16114. [104] Hung SC, Pochampally RR, Hsu SC, Sanchez C, Chen SC, Spees J, et al. Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PloS one. 2007;2:e416. [105] Mazumdar J, O'Brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS, et al. O2 regulates stem cells through Wnt/beta-catenin signalling. Nature cell biology. 2010;12:1007-13. [106] Rustad KC, Wong VW, Sorkin M, Glotzbach JP, Major MR, Rajadas J, et al. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials. 2012;33:80-90. [107] Silva EA, Kim ES, Kong HJ, Mooney DJ. Material-based deployment enhances efficacy of endothelial progenitor cells. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:14347-52. [108] Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol. 2008;180:2581-7. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64297 | - |
| dc.description.abstract | 間葉幹細胞 (mesenchymal stem cells)具有迅速增殖和分化成多種類型細胞的特性,因此被認為應用在再生醫學方面有很大的潛力。脂肪幹細胞(adipose-derived stem cells)已被證明與從骨髓中分離的間葉幹細胞具類似特性,而且可藉由抽脂手術大量取得。但是脂肪幹細胞的幹細胞特性,特別是多能分化指標 (pluripotency markers)的表現,卻會於體外培養過程中迅速下降。這個問題將會限制脂肪幹細胞在細胞治療或組織工程方面的應用。文獻報告曾指出以三維細胞球體型態培養之間葉幹細胞可提高其治療潛力。因此,我們的實驗目的是研究培養人類脂肪幹細胞在甲殼素 (chitosan)表面,而引起細胞結為團塊之現象。隨著我們增加播種細胞之密度,脂肪幹細胞球體的形成速度更快,直徑表也更大。活/死細胞染色試驗顯示三維細胞球體內部大部分細胞仍是存活的。而且三維細胞球體培養時,多能分化指標的基因表現,如Sox-2, Oct-4及 Nanog,相較於平面培養皆顯著提高。我們並使用西方點墨法和免疫螢光染色確認人類脂肪幹細胞以三維細胞球體培養時,其多能分化指標有表現增強現象。我們亦發現人類脂肪幹細胞形成三維細胞球體後會具有出較強的再生能力,包括細胞增殖活性和細胞群落形成能力。最後,我們測試人類脂肪幹細胞在三維細胞球體中的分化潛能,在適當的培養環境下可保持誘導脂肪分化、骨分化 (中胚層)的能力,而朝神經 (外胚層)和肝 (內胚層)分化的能力甚至更強。
有鑑於這些令人鼓舞的結果,我們進而設計了複合的甲殼素/明膠薄膜作為提升脂肪幹細胞的轉移及成球效率之生物材料。我們發現75%甲殼素/25%明膠混摻組合之薄膜可用於動態調控細胞,具最有效率轉移脂肪幹細胞的用途,具做為敷料基材或組織修復貼片的潛力,例如可應用於治療皮膚傷口。表皮困難傷口之癒合不良是一棘手的臨床問題,目前的治療方式皆有其限制,幹細胞療法為一具有潛力的新治療方式。脂肪幹細胞可以通過分化及分泌生長因子的機制促進皮膚傷口癒合,而且我們進一步發現人類脂肪幹細胞若在甲殼素膜的表面形成球體後再打散於二維系統中以單層培養,仍會保持其較強的多能分化指標表現 (Sox-2, Oct-4及Nanog)與血管新生相關生長因子生成 (hepatocyte growth factor及vascular endothelial growth factor)。這些經短暫成球處理的脂肪幹細胞並具較高之增殖活性、較低之細胞凋亡率、較高之基質金屬蛋白酶(matrix metalloproteinases)生成,這些現象皆與此類細胞具較高之CXCR4表現有關,而受傷組織釋放之stromal-derived factor-1 (SDF-1)和CXCR4之間的相互作用對間葉幹細胞往損傷部位歸巢 (homing)扮演著重要的角色。此外,在傷口模式的動物實驗中,施以脂肪幹細胞球體打散再培養的細胞治療會比以持續單層培養的脂肪幹細胞更加強傷口癒合,而其加強傷口癒合的機制來自較高的脂肪幹細胞存活率、較強的幹細胞分化潛能與血管新生能力。綜上所述,以生醫材料調控人類脂肪幹細胞形成球狀體確有其施用於臨床上幫助組織修復之價值。 | zh_TW |
| dc.description.abstract | Because of their abilities of rapid proliferation and differentiation into multiple cell types, mesenchymal stem cells are regarded to have great potentials for application in regenerative medicine. The adipose-derived stem cells (ASCs) have been shown to share similar characteristics of mesenchymal stem cells isolated from bone marrow, and they can be harvested in large amount by liposuction. However, the stem cell characteristics of ASC, indicated by the expression of pluripotency markers, quickly decreased during in vitro culture. This problem has limited the application of ASCs in cell therapy or tissue engineering. Previous reports have suggested that culture as three-dimensional spheroids can increase therapeutic potentials of mesenchymal stem cells. Therefore, we aimed to manipulate the spheroid formation of human ASCs by culturing them on chitosan films. With the increasing seeding density of ASCs on chitosan films, we found that ASC spheroids formed faster and exhibited a larger diameter. Live/dead assay further showed that ASCs within the spheroid were largely viable. Importantly, significant upregulation of stemness marker genes Sox-2, Oct-4 and Nanog was noted in cells within ASC spheroids comparing to monolayer culture. We also used western blot and immunofluorescence to confirm the enhanced expression of pluripotency markers in ASC spheroids. Secondly, we demonstrated a higher regenerative power of ASCs after spheroid formation by examining proliferation activity and colony-forming capability. Finally, we investigated the differentiation potentials of ASC spheroids when cultured in appropriate induction media. Not only differentiation capability toward adipogenic and osteogenic lineages (mesoderm) was maintained, but neurogenic (ectoderm) and hepatogenic (endoderm) differentiation of ASC spheroids was even enhanced after spheroid formation.
To facilitate ASC transfer, we further designed a composite membrane made of chitosan/gelatin (C/G) for ASC culture and subsequent application to injured tissues. Increasing chitosan content within the C/G blends enhanced the sample’s mechanical properties, including tensile strength and elongation-at-break ratio. Although ASC spheroids developed shortly after seeding on pure chitosan films, increasing gelatin proportion in the C/G blends promoted cell adhesion onto the membranes. However, gradual gelatin release from the C/G blend films, leading to enriched chitosan content in the blends, encouraged ASC detachment and spheroid formation. We found that a blend made of 75% chitosan and 25% gelatin was most efficient in modulating ASCs for cell transfer. Therefore, C/G films in combination with ASCs have potentials of clinical application, such as treating a cutaneous wound. Healing of difficult cutaneous wounds is a challenging clinical problem, and current treatment modalities have their limitations. ASC can contribute to cutaneous wound healing through differentiation and paracrine effects. We observed that after spheroid formation of human ASCs on chitosan films, their stemness markers Sox-2, Oct-4 and Nanog were still maintained with spheroid dissociation and further monolayer culture. These spheroid-derived ASCs also expressed significantly more angiogenic growth factors, including hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF), comparing to monolayer ASCs. The upregulation of CXCR4 in the spheroid-derived ASCs is associated with enhanced proliferation, reduced apoptosis and increased expression of matrix metalloproteinases. The interaction between stromal-derived factor-1 (SDF-1) and CXCR4 plays an important role in the homing of mesenchymal stem cells to the site of injury. In our animal study, we observed significantly more cellular engraftment of spheroid-derived ASCs in the cutaneous wound tissue with accelerated wound healing comparing to monolayer-cultured ASCs. The mechanism could be attributed to a higher cellular retention rate, enhanced differentiation and angiogenesis. Therefore, biomaterial modulation of ASCs for spheroid formation can provide important therapeutic potentials for tissue regeneration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:39:22Z (GMT). No. of bitstreams: 1 ntu-101-D94548005-1.pdf: 4226482 bytes, checksum: edf5d9ae01e9ac737d8078224b4dde92 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Chapter 1: Background……………………………………………… 1
1.1 Adipose-derived stem cells…………………………………… 1 1.2 Three-dimensional cell culture……………………………… 3 1.3 Cell therapy for cutaneous wound healing………………… 4 Chapter 2: Spheroid formation of human adipose-derived stem cells on chitosan films…………………………………………… 8 2.1 Introduction……………………………………………………… 8 2.2 Materials and methods………………………………………… 9 2.3 Results…………………………………………………………… 19 2.4 Figures……………………………………………………………25 2.5 Discussion…………………………………………………………33 2.6 Summary……………………………………………………………38 Chapter 3: Efficient transfer of human adipose-derived stem cells by chitosan /gelatin blend films………………………39 3.1 Introduction…………………………………………………… 39 3.2 Materials and methods…………………………………………41 3.3 Results………………………………………………………… 47 3.4 Figures……………………………………………………………52 3.5 Discussion……………………………………………………… 58 3.6 Summary………………………………………………………… 63 Chapter 4: Short term spheroid formation of human adipose-derived stem cells enhanced their wound healing capability………………………………………………………… 64 4.1 Introduction…………………………………………………… 64 4.2 Materials and methods…………………………………………65 3.3 Results………………………………………………………… 74 4.4 Figures……………………………………………………………80 4.5 Discussion…………………………………………………………87 4.6 Summary……………………………………………………………92 Chapter 5: Conclusion and future perspectives………………94 Chapter 6: Table and references…………………………………97 Chapter 7: List of publications…………………………………108 | |
| dc.language.iso | en | |
| dc.subject | 球體;脂肪幹細胞;甲殼素;幹細胞特性;分化 | zh_TW |
| dc.subject | adipose-derived stem cell | en |
| dc.subject | chitosan | en |
| dc.subject | stemness | en |
| dc.subject | differentiation | en |
| dc.subject | spheroid | en |
| dc.title | 以生醫材料調控人類脂肪幹細胞形成球狀體之研究 | zh_TW |
| dc.title | Biomaterial Modulation of Human Adipose-derived Stem Cells for Spheroid Formation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 宋信文,賴鴻緒,簡雄飛,洪士杰,馬旭 | |
| dc.subject.keyword | 球體;脂肪幹細胞;甲殼素;幹細胞特性;分化, | zh_TW |
| dc.subject.keyword | spheroid,adipose-derived stem cell,chitosan,stemness,differentiation, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
