Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64275
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor施信民
dc.contributor.authorPo-Han Linen
dc.contributor.author林柏翰zh_TW
dc.date.accessioned2021-06-16T17:38:12Z-
dc.date.available2012-08-19
dc.date.copyright2012-08-19
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citationAnderson, P. J.; Horlock, R. F.; Avery, R. G. (1965)Effects of Water Vapor During the Preparation and Alcination of Oxide Powders. Proc. Br. Ceram. Soc. 3, 33.
Badin, E. J. and Frazier, G. C. (1985). Sorbents for fluidized-bed combustion. Environmental Science & Technology 19(10): 894-901.
Bardakci, T. (1984). Diffusional study of the reaction of sulfur dioxide with reactive porous matrices. Thermochimica Acta 76(3): 287-300.
Barker, R. (1973). The reversibility of the reaction CaCO3 ⇄ CaO+CO2. Journal of Applied Chemistry and Biotechnology 23(10): 733-742.
Bhatia, S. K. and Perlmutter, D. D. (1981). The effect of pore structure on fluid-solid reactions: Application to the SO2-lime reaction. AIChE Journal 27(2): 226-234.
Bhatia, S. K. and Perlmutter, D. D. (1983). Effect of the product layer on the kinetics of the CO2-lime reaction. AIChE Journal 29(1): 79-86.
Borgwardt, R. H. (1970). Kinetics of the reaction of sulfur dioxide with calcined limestone. Environmental Science & Technology 4(1): 59-63.
Borgwardt, R. H. (1989a). Sintering of nascent calcium oxide. Chemical Engineering Science 44(1): 53-60.
Borgwardt, R. H. (1989b). Calcium oxide sintering in atmospheres containing water and carbon dioxide. Industrial & Engineering Chemistry Research 28(4): 493-500.
Borgwardt, R. H. and Harvey, R. D. (1972). Properties of carbonate rocks related to sulfur dioxide reactivity. Environmental Science & Technology 6(4): 350-360.
Borgwardt, R. H. and Rochelle, G. T. (1990). Sintering and sulfation of calcium silicate-calcium aluminate. Industrial & Engineering Chemistry Research 29(10): 2118-2123.
Bruce, K. R., Gullett, B. K. and Beach, L. O. (1989). Comparative SO2 reactivity of CaO derived from CaCO3 and Ca(OH)2. AIChE Journal 35(1): 37-41.
Christman, P. G. &Edgar, T. F. (1983). Distributed pore-size model for sulfation of limestone. AIChE Journal 29(3): 388-395.
Desai, N. J. and Yang, R. T. (1983). Catalytic fluidized-bed combustion. Enhancement of sulfation of calcium oxide by iron oxide. Industrial & Engineering Chemistry Process Design and Development 22(1): 119-123.
Emery, J. J. (1981). Properties of Flexible Pavement Materials.
Ettarh, C. and Galwey, A. K. (1996). A kinetic and mechanistic study of the thermal decomposition of calcium nitrate. Thermochimica Acta 288(1): 203-219.
Gerdemann, S. J., O'Connor, W. K., Dahlin, D. C., Penner, L. R. and Rush, H. (2007). Ex Situ Aqueous Mineral Carbonation. Environmental Science & Technology 41(7): 2587-2593.
Gillespie, R. J., Eaton, D. R., Humphreys, D. A. and Robinson, E. A. (1994). Atoms, Molecules, and Reactions: An Introduction to Chemistry, Prentice-Hall, Englewood Cliffs, NJ.
Gillot, J. E. (1967). Carbonation of Ca(OH)2, investigated by thermal and X-ray diffraction methods of analysis. J. appl. Chem., 17: 185.
Glasson, D. R. (1960). Reactivity of lime and related oxides. IV. carbonatation of lime. Journal of Applied Chemistry 10(1): 42-48.
Gupta, H. and Fan, L.-S. (2002). Carbonation−Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas. Industrial & Engineering Chemistry Research 41(16): 4035-4042.
Hartman, M. and Coughlin, R. W. (1976). Reaction of sulfur dioxide with limestone and the grain model. AIChE Journal 22(3): 490-498.
Haul, R. A. W., Stein, L. H. and De Villiers, J. W. L. (1953). Exchange of Carbon-13 Dioxide between Calcite Crystals and Gaseous Carbon Dioxide. Nature 171(4353): 619-620.
Huijgen, W. J. J. and Comans, R. N. J. (2005). Mineral CO2 Sequestration by Steel Slag Carbonation. Environmental Science & Technology 39(24): 9676-9682.
IEA (2011). Coal Information 2011. OECD Publishing.
IPCC (2005)(IntergoVernmental Panel on Climate Change) Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press:Cambridge, UK.
Ishizuka, T., Kabashima, H., Yamaguchi, T., Tanabe, K. and Hattori, H. (2000). Initial Step of Flue Gas DesulfurizationAn IR Study of the Reaction of SO2 with NOx on CaO. Environmental Science & Technology 34(13): 2799-2803.
Lee, K. T., Bhatia, S. and Mohamed, A. R. (2005). Removal of sulfur dioxide using absorbent synthesized from coal fly ash: Role of oxygen and nitrogen oxide in the desulfurization reaction. Chemical Engineering Science 60(12): 3419-3423.
Li, G. G., Keener, T. C., Stein, A. W. and Khang, S. J. (2000). CO2 reaction with Ca(OH)2 during SO2 removal with convective pass sorbent injection and high temperature filtration. Environmental Engineering and Policy 2(1): 47-56.
Liu, C.-F., Shih, S.-M. and Yang, J.-H. (2009). Reactivities of NaOH Enhanced Iron Blast Furnace Slag/Hydrated Lime Sorbents toward SO2 at Low Temperatures: Effects of the Presence of CO2, O2, and NOx. Industrial & Engineering Chemistry Research 49(2): 515-519.
Mahuli, S. K., Agnihotr, R., Jadhav, R., Chauk, S. and Fan, L. S. (1999). Combined calcination, sintering and sulfation model for CaCO3-SO2 reaction. AIChE Journal 45(2): 367-382.
Manovic, V. and Anthony, E. J. (2010a). Competition of Sulphation and Carbonation Reactions during Looping Cycles for CO2 Capture by CaO-Based Sorbents+. The Journal of Physical Chemistry A 114(11): 3997-4002.
Manovic, V. &Anthony, E. J. (2010b). Lime-Based Sorbents for High-Temperature CO2 Capture—A Review of Sorbent Modification Methods. International Journal of Environmental Research and Public Health 7(8): 3129-3140.
Marier, P. and Dibbs, H. P. (1974). The catalytic conversion of SO2 to SO3 by fly ash and the capture of SO2 and SO3 by CaO and MgO. Thermochimica Acta 8(1–2): 155-165.
Materic, V. and Smedley, S. I. (2011). High Temperature Carbonation of Ca(OH)2. Industrial & Engineering Chemistry Research 50(10): 5927-5932.
Mikhail, S. A. and Turcotte, A. M. (1995). Thermal behaviour of basic oxygen furnace waste slag. Thermochimica Acta 263(0): 87-94.
Miller, M. J. (1986). Retrofit SO2 and NOx control technologies for coal-fired power plants. Environmental Progress 5(3): 171-177.
Nikulshina, V., Gálvez, M. E. and Steinfeld, A. (2007). Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle. Chemical Engineering Journal 129(1-3): 75-83.
Ruiz-Alsop, R. N. and Rochelle, G. T. (1986).Effect of Deliquescent Salt Additives on the Reaction of SO2 with Ca(OH)2. In Fossil Fuels Utilization, Vol. 319, 208-222: American Chemical Society.
Satriana, M. (1981). New developments in flue gas desulfurization technology / edited by M. Satriana. Park Ridge, N.J. Noyes Data Corp.
Shih, S.-M., Hung, J.-T., Wang, T.-Y. and Lin, R.-B. (2004). Kinetics of the Reaction of Sulfur Dioxide with Calcium Oxide Powder. Journal of the Chinese Institute of Chemical Engineers 35(4): 447-454.
Slack, A. V. and Hollinden, G. A. (1975). Sulfur dioxide removal from waste gases; Noyes Data Corp.: Park Ridge, NJ.
Srivastava, R. K. &Jozewicz, W. (2001). Flue Gas Desulfurization: The State of the Art. Journal of the Air & Waste Management Association 51(12): 1676-1688.
Stouffer, M. R., Yoon, H. and Burke, F. P. (1989). An investigation of the mechanisms of flue gas desulfurization by in-duct dry sorbent injection. Industrial & Engineering Chemistry Research 28(1): 20-27.
Sun, P., Grace, J. R., Lim, C. J. and Anthony, E. J. (2006). Removal of CO2 by Calcium-Based Sorbents in the Presence of SO2. Energy & Fuels 21(1): 163-170.
Tullin, C., Nyman, G. and Ghardashkhani, S. (1993). Direct sulfation of calcium carbonate: the influence of carbon dioxide partial pressure. Energy & Fuels 7(4): 512-519.
Vamvuka, D., Arvanitidis, C. and Zachariadis (2004). Flue gas desulfurization at high temperatures : A review. Larchmont, NY, ETATS-UNIS: Liebert.
Wang, C., Jia, L., Tan, Y. and Anthony, E. J. (2011). Influence of Water Vapor on the Direct Sulfation of Limestone under Simulated Oxy-fuel Fluidized-Bed Combustion (FBC) Conditions. Energy & Fuels 25(2): 617-623.
Yang, J.-H., Shih, S.-M. and Lin, P.-H. (2012). Effect of Carbon Dioxide on the Sulfation of High Surface Area CaCOd3at High Temperatures. Industrial & Engineering Chemistry Research 51(6): 2553-2559.
Yang, R. T., Shen, M.-S. and Steinberg, M. (1978). Fluidized-bed combustion of coal with lime additives: catalytic sulfation of lime with iron compounds and coal ash. Environmental Science & Technology 12(8): 915-918.

中聯爐石處理資源化股份有限公司,中聯資源,2003
陳茂松, “CO2回收及其處理技術”, 臺電工程月刊, 第527期, 第54頁, 1992
林忠永, “低孔隙度氧化鈣顆粒與二氧化碳反應的動力學研究” , 碩士論文, 國立台灣大學, 台北, 台灣,1990
蕭國源, “固體吸收劑二氧化碳吸收能力評估” , 碩士論文, 國立台灣大學, 台北, 台灣 ,2000
宋文方, “轉爐石吸收二氧化硫之研究” , 碩士論文, 國立台灣大學, 台北, 台灣,2005
施信民, “能源政策與能源結構發展方向”,全國能源會議,6,20-21,台北市國際會議中心,2005
蔣本基,“利用礦物、鹼性固體廢棄物為吸附劑進行二氧化碳封存技術評估 ,環保署/國科會空污防制科研合作計畫報告成果完整報告,2006
廖坤祥 “高爐爐石/氫氧化鈣與轉爐爐石/氫氧化鈣吸收劑在高溫下與二氧化硫反應之研究” , 碩士論文, 國立台灣大學, 台北, 台灣 ,2008
郭賢章,“高爐爐石/氫氧化鈣與轉爐爐石/氫氧化鈣吸收劑在煙道氣中高溫下吸收二氧化硫之研究”, 碩士論文, 國立台灣大學, 台北, 台灣,2009
楊榮欣, “高比表面積碳酸鈣的製備及其高溫碳酸化反應之研究” , 博士論文, 國立台灣大學, 台北, 台灣,2009
程士豪, “模擬煙道氣進行轉爐石碳酸化之研究” , 碩士論文, 輔英科技大學, 高雄, 台灣,2009
朱怡誠, “轉爐爐石煅燒/碳酸化循環捕捉二氧化碳之研究” , 碩士論文, 國立台灣大學, 台北, 台灣 ,2011
許書凡, “高比表面積碳酸鈣高溫硫酸化反應之研究”, 碩士論文, 國立台灣大學, 台北, 台灣,2011
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64275-
dc.description.abstract本研究以微分固定床反應器探討燃煤廢氣成分(SO2、CO2、O2、H2O和NOx)對氫氧化鈣(HL)、轉爐爐石(BOFS)以及HL/BOFS(9/1)吸收劑在高溫下的硫酸化與碳酸化反應之影響。
各吸收劑硫酸化反應轉化率隨反應溫度(750-950℃)和SO2(1000-5000ppm)上升而上升。Ca(OH)2和HL/BOFS(9/1)吸收劑之轉化率大約相同,皆高於BOFS。與Ca(OH)2或BOFS在二氧化硫/氧氣/氮氣中反應的結果比較,水氣單獨加入反應氣體中、水氣與氮氧化物同時加入,以及在氮氧化物存在時增加氧氣濃度,皆明顯促進氫氧化鈣之硫酸化反應,其餘氣體組成條件則無影響;對BOFS而言,單獨加入氮氧化物,以及高濃度水氣(20%)與二氧化碳同時存在時,會明顯降低其硫酸化反應,但其餘氣體組成條件則有助益。
氫氧化鈣最佳碳酸化溫度為600℃。提高二氧化碳濃度(13%~80%)能促進碳酸化反應。在600℃、13%CO2和5%O2反應1分鐘與1小時的轉化率分別為0.88和0.93;BOFS在相同條件下反應1小時轉化率為0.24。NOx會輕微抑制氫氧化鈣碳酸化反應,但當氮氧化物與水氣同時加入時,或單獨加入水氣時則無影響。添加氮氧化物對BOFS碳酸化無影響,而水氣存在時有輕微促進作用。二氧化硫與二氧化碳同時存在下,降低反應溫度(600~750℃)、降低SO2濃度和提高CO2濃度,明顯降低硫酸化轉化率、提升碳酸化轉化率。在600℃、13%CO2、5%O2和1000ppmSO2下反應10分鐘後,Ca(OH)2的碳酸化和硫酸化轉化率分別為0.91和0.07,BOFS為0.24和0.07,HL/BOFS為0.78和0.03。
zh_TW
dc.description.abstractThe effects of compoments of flue gas generated from coal combustion on the sulfation and carbonation reactions of Ca(OH)2(HL), basic oxygen furnace slag(BOFS), and HL/BOFS(9/1) sorbents at high temperatures were studied using a differential fixed-bed reactor.
The sulfation rate for each sorbent increased with increasing reaction temperature(750-950℃) and SO2 concentration(1000-3000ppm). The conversions for Ca(OH)2 and HL/BOFS(9/1) were about the same and higher than that for BOFS.For Ca(OH)2, compared to the case of reaction under SO2/O2/N2 mixture, adding H2O alone, or adding H2O and NOx simultaneously, or increasing the O2 concentration(from 5% to 20%) when NOx was added enhanced the sulfation reaction, while the other gas compositions had little effect. For BOFS, adding NOx alone, or increasing H2O concentration(from 10% to 20%) when both H2O and CO2 were added inhibited the sulfation reaction, while the other gas compositions had enhancing effects.
The optimum carbonation temperature was 600℃for Ca(OH)2. The carbonation conversion increased as CO2 concentration (13%-80%) increased. Conversions of 0.88 and 0.93 were achieved when Ca(OH)2 reacted at 600℃,13% CO2, 5% O2 for 1min and 1h, respectively. An 1h conversion of 0.24 was achieved when BOFS was carbonated at same conditions. The presence of NOx slightly inhibited the carbonation of Ca(OH)2, while the precence of H2O or H2O/NOx had little effect. For the carbonation of BOFS, the presence of NOx had little effect and the presence of H2O had a slight enhancement effect. When both SO2 and CO2 were present, the carbonation conversion increased and the sulfation conversion decreased significantly with decreasing reaction temperature (600-750℃) or SO2 concentration (1000-5000ppm) and with increasing the CO2 concentration. The carbonation and sulfation conversions achieved for a sorbent reacted at 600℃,13% CO2, 5% O2 and 1000ppm SO2 for 10min were 0.91 and 0.07 for Ca(OH)2, 0.24 and 0.07 for BOFS, and 0.78 and 0.03 for HL/BOFS, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:38:12Z (GMT). No. of bitstreams: 1
ntu-101-R99524091-1.pdf: 13902996 bytes, checksum: 3ed1e4ae8e124193d86733be406e5575 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌 謝 I
中文摘要 II
Abstract IV
目錄 VI
符號說明 XV
第一章 緒論 17
第二章 文獻回顧 22
2-1二氧化硫脫除技術: 22
2-2二氧化碳捕捉與隔離技術 25
2-3轉爐爐石(Basic Oxygen Furnace Slag, BOFS) 30
2-3-1 轉爐石之來源與應用 30
2-3-2 轉爐石相關的研究 34
2-3-3 含鈣物質碳酸化及硫酸化反應相關研究 39
2-3-4 燒結現象 59
第三章 實驗與分析方法 61
3-1試料來源及吸收劑製備過程 61
3-1-1試料來源 61
3-1-2轉爐石前處理 63
3-1-3 HL/BOFS吸收劑製備程序 64
3-2碳酸化與硫酸化反應實驗 64
3-2-1反應實驗裝置 64
3-2-2試樣置入反應器方法 68
3-2-3反應實驗步驟(無煅燒) 72
3-2-4 BOFS碳酸化反應實驗步驟(具煅燒過程) 73
3-2-5 HL/BOFS碳酸化反應實驗步驟 75
3-3試樣分析儀器 75
3-3-1 原子吸收光譜儀(AA) 75
3-3-2 熱重分析(TGA) 76
3-3-3 X射線繞射分析(XRD) 76
3-3-4 離子層析 (IC) 76
3-3-5 BET比表面積及孔隙體積分佈測定 77
3-3-6 粒徑分析 77
3-3-7 掃描式電子顯微鏡分析(SEM) 77
3-4 試樣轉化率測定 78
3-4-1硫酸化轉化率 78
3-4-2 碳酸化轉化率 82
第四章 結果與討論 88
4-1吸收劑結構性質與成分分析 88
4-1-1 BET比表面積 88
4-1-2粒徑分析 88
4-1-3孔隙體積分佈 89
4-1-4 X-Ray 繞射分析 98
4-1-5熱重分析(TGA) 101
4-2吸收劑高溫硫酸化反應 103
4-2-1 SO2/O2/N2氣體組成下溫度對硫酸化反應的影響 103
4-2-2 一般廢氣組成下溫度對硫酸化的影響 111
4-2-3 添加CO2、H2O和NOx對硫酸化的影響 124
4-3 吸收劑高溫碳酸化反應 136
4-3-1 BOFS煅燒溫度選擇 136
4-3-2 反應溫度對碳酸化反應的影響 137
4-3-3 H2O和NOx 濃度對碳酸化反應的影響 153
4-3-4 SO2濃度對碳酸化反應的影響 155
4-3-5 SO2存在時,CO2濃度對碳酸化反應的影響 162
4-3-6 SO2存在時,溫度對碳酸化反應的影響 162
第五章 結論 168
參考文獻. 170
dc.language.isozh-TW
dc.subject氫氧化鈣zh_TW
dc.subject轉爐石zh_TW
dc.subject碳酸化zh_TW
dc.subject硫酸化zh_TW
dc.subject二氧化硫zh_TW
dc.subject二氧化碳zh_TW
dc.subjectbasic oxygen furnace slagen
dc.subjectsulfationen
dc.subjectcarbonationen
dc.subjectsulfur dioxideen
dc.subjectcarbon dioxideen
dc.subjectcalcium hydroxideen
dc.title轉爐爐石/氫氧化鈣吸收劑高溫硫酸化與碳酸化反應之研究zh_TW
dc.titleSulfation and Carbonation of Basic Oxygen Furnace Slag/Ca(OH)2 Sorbents at High Temperatures.en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐振哲,何春松,林仁斌
dc.subject.keyword氫氧化鈣,轉爐石,二氧化碳,二氧化硫,硫酸化,碳酸化,zh_TW
dc.subject.keywordcalcium hydroxide,basic oxygen furnace slag,carbon dioxide,sulfur dioxide,carbonation,sulfation,en
dc.relation.page175
dc.rights.note有償授權
dc.date.accepted2012-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
13.58 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved