請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6425
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃千芬(Chen-Fen Huang) | |
dc.contributor.author | Khang-Yen Leow | en |
dc.contributor.author | 廖康淵 | zh_TW |
dc.date.accessioned | 2021-05-16T16:29:08Z | - |
dc.date.available | 2013-08-25 | |
dc.date.available | 2021-05-16T16:29:08Z | - |
dc.date.copyright | 2013-08-25 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-19 | |
dc.identifier.citation | [1] E. H. Barton. On the refraction of sound by wind. Proceedings of the Physical Society of London, 17(1):534-542, 1899.
[2] E. P. Chassignet, H. E. Hurlburt, E. J. Metzger, O. M. Smedstad, J. A. Cummings, G. R. Halliwell, R. Bleck, R. Baraille, A. J. Wallcraft, C. Lozano, H. L. Tolman, A. Srinivasan, S. Hankin, P. Cornillon, R. Weisberg, A. Barth, R. He, F. Werner, and J. Wilkin. US GODAE: Global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography, 22:64-75, 2009. [3] J. A. Colosi. Geometric sound propagation through an inhomogeneous and moving ocean: Scattering by small scale internal wave currents. The Journal of the Acoustical Society of America, 119(2):705-708, 2006. [4] J. R. Dormand and P. J. Prince. A family of embedded Runge-Kutta formulae. Journal of computational and applied mathematics, 6(1):19-26, 1980. [5] T. F. Duda. Ocean sound channel ray path perturbations from internal-wave shear and strain. The Journal of the Acoustical Society of America, 118(5):2899-2903, 2005. [6] B. D. Dushaw and J. A. Colosi. Ray tracing for ocean acoustic tomography. Technical report, Applied Physics Laboratory University of Washington, APL-UW TM 3-98., 1998. [7] E. R. Franchi and M. J. Jacobson. Ray propagation in a channel with depth-variable sound speed and current. The Journal of the Acoustical Society of America, 52(1):316-331, 1972. [8] E. R. Franchi and M. J. Jacobson. An environmental-acoustics model for sound propagation in a geostrophic flow. The Journal of the Acoustical Society of America, 53(3):835-847, 1973. [9] E. R. Franchi and M. J. Jacobson. Effect of hydrodynamic variations on sound transmission across a geostrophic flow. The Journal of the Acoustical Society of America, 54(5):1302-1311, 1973. [10] D. Houcque. Applications of MATLAB: Ordinary Differential Equations (ODE), 2008. [11] C.-F. Huang. Acoustic wave scattering from rough sea surface and seabed. Master's thesis, Institute of Undersea Technology, National Sun Yat-sen University, 1998. [12] C.-F. Huang. Realization of parametric power spectra and its applications on acoustic wave scattering. (unpublished), 2001. [13] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt. Computational Ocean Acoustics. AIP Press, 1990. [14] W.-D. Liang, T.Y. Tang, Y.J. Yang, M.T. Ko, and W.-S. Chuang. Upper-ocean currents around Taiwan. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6-7):1085-1105, 2003. [15] C.-S. Liu, S.-Y. Liu, S. E. Lallemand, N. Lundberg, and D. L. Reed. Digital elevation model offshore Taiwan and its tectonic implications. Terrestrial, Atmospheric and Oceanic Sciences, 9:705-738, 1998. [16] R. Mcgill, J. W. Tukey, and W. A. Larsen. Variations of box plots. The American Statistician, 32(1):12-16, 1978. [17] W. Munk and C. Wunsch. Ocean acoustic tomography: a scheme for large scale monitoring. Deep Sea Research Part A. Oceanographic Research Papers, 26(2):123-161, 1979. [18] W. Munk, P. Worcester, and C. Wunsch. Ocean Acoustic Tomography. Cambridge University Press, 1995. [19] L. Nghiem-Phu and F. Tappert. Parabolic equation modeling of the effects of ocean currents on sound transmission and reciprocity in the time domain. The Journal of the Acoustical Society of America, 78(2):642-648, 1985. [20] V. E. Ostashev. Acoustics in Moving Inhomogeneous Media. E & FN Spon, 1997. [21] D. R. Palmer, T. M. Georges, and R. M. Jones. Classical chaos and the sensitivity of the acoustic field to small-scale ocean structure. Computer Physics Communications, 65(1):219-223, 1991. [22] D. R. Palmer, L. M. Lawson, D. A. Seem, and Y.-H. Daneshzadeh. Ray path identification and acoustic tomography in the Straits of Florida. Journal of Geophysical Research: Oceans, 90(C3):4977-4989, 1985. [23] A. D. Pierce. Acoustics: An introduction to its physical principles and applications. Acoustical Society of America, 1989. [24] M. B. Porter. The BELLHOP manual and user's guide: Preliminary draft. Heat, Light, and Sound Research, Inc. La Jolla, CA, USA, http://oalib.hlsresearch.com/Rays/HLS-2010-1. pdf, Tech. Rep, 2011. [25] J. S. Robertson, W. L. Siegmann, and M. J. Jacobson. Current and current shear effects in the parabolic approximation for underwater sound channels. The Journal of the Acoustical Society of America, 77(5):1768-1780, 1985. [26] J. S. Robertson, W. L. Siegmann, and M. J. Jacobson. Acoustical effects of ocean current shear structures in the parabolic approximation. The Journal of the Acoustical Society of America, 82(2):559-573, 1987. [27] O. Rodriguez. General description of the BELLHOP ray tracing program (october 2007 release), 2007. [28] L. A. Stallworth. A new method for measuring ocean and tidal currents. In Ocean '73 (proceedings of the IEEE International Conference on Engineering in the Ocean Environment, 25-28 Sept. 1973, Seattle, WA), pages 55-58, 1973. [29] L. A. Stallworth and M. J. Jacobson. Acoustic propagation in an isospeed channel with uniform tidal current and depth change. The Journal of the Acoustical Society of America, 48(1):382-391, 1970. [30] L. A. Stallworth and M. J. Jacobson. Sound transmission in an isospeed ocean channel with depth-dependent current. The Journal of the Acoustical Society of America, 51(5):1738-1750, 1972. [31] P. F. Worcester. Reciprocal acoustic transmission in a midocean environment. The Journal of the Acoustical Society of America, 62(4):895-905, 1977. [32] 劉金源,《水中聲學-水聲系統之基本原理操作》,國立編譯館,2001。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6425 | - |
dc.description.abstract | 本研究發展一考慮流動介質之聲線追蹤程式 (Current Ray-Tracing program) 以探討海流對高頻聲波傳播的影響。為符合高準確度之計算要求,本研究使用可變步階的高階 Runge-Kutta 演算法求解聲線微分方程。利用 Current Ray-Tracing 程式進行數值模擬研究探討等速流或等流切環境下之聲線傳播:結果顯示,在等速流的環境,聲線特性的擾動與流速有直接的關係。走時的擾動量主要受到沿聲線平均速度擾動量的影響,而走時的擾動量隨著角度的變化則受到聲線長度擾動量的影響。流速所造成之擾動量之數值並不大。在等流切環境,聲線會向流速較小的地方偏折。聲線偏折之垂直分量隨距離的變化與流切成反比。較平緩的聲線受到流切的影響較大。當流切大於聲速梯度,將對聲線路徑有顯著的影響。在地形隨距離呈小尺度變化的聲傳環境中,蒙地卡羅模擬顯示在較大的流速情形或較陡峭的聲線,其聲線之不可預測性較高。另,以等效聲速法模擬所造成的走時誤差主要來自與聲線長度與沿聲線平均速度的誤差。若使用 ESSP 法(將流速投影到波陣面法線方向上),其走時的誤差將降低至聲線長度的誤差。研究結果顯示,於具小尺度地形特徵之波導環境,高角度聲線之遠距離聲傳應使用正確的聲線追蹤方式進行模擬。 | zh_TW |
dc.description.abstract | A ray-tracing program for a moving medium (Current Ray-Tracing program) is developed to study the effects of ocean current on high-frequency acoustic propagation. A higher-order Runge-Kutta integration algorithm with adjustable step size is implemented for high accuracy. Numerical simulations for the waveguide of constant current velocity or constant current shear agree well with the analytic solutions. For the case of constant current velocity, the average along-ray speed perturbation is the dominant factor in perturbed travel time. The angular variation of perturbed travel time is due to the perturbed ray length. The magnitude of all perturbed ray properties are very small. For the case of constant current shear, the range variation of vertical component of wavefront normal is inversely proportional to current shear and has less dependence of the wavefront normal angle. The gradual rays are more sensitive to the current shear. For the range-dependent waveguide of deterministic small-scale bathymetric structure, Monte Carlo simulations show that the small bottom slopes have a dramatic effect on ray paths: larger predictive uncertainty is observed for steeper rays or for the case of larger current magnitude. Modeling error of effective sound speed approaches on predicting travel time comes from errors in both ray length and average along-ray speed. When using the ESSP approach (projected current on the sound speed) the dominant error is the ray length prediction. The importance of correct inclusion of ocean current in the ray-tracing program for long-range acoustic propagation is shown using a realistic ocean environment with deterministic irregular bottom topography. | en |
dc.description.provenance | Made available in DSpace on 2021-05-16T16:29:08Z (GMT). No. of bitstreams: 1 ntu-102-R00241103-1.pdf: 2432514 bytes, checksum: 106d15e86a646ad7a22ac064744beded (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 iii Abstract v 1 Introduction 1 1.1 Background and Motivation 1 1.2 A Concise Survey of Literature 2 1.3 Objectives 4 1.4 Scopes of the Thesis 5 2 Theory 7 2.1 General Ray Theory in a Moving Medium 7 2.2 Ray Equations for a Moving Medium: Ocean 9 2.3 Ray Equations for a Stationary Medium 11 2.4 Effective Sound Speed Approaches 13 3 Numerical Simulation 17 3.1 Current Ray-Tracing Program 17 3.1.1 Integration of the Differential Equations 17 3.1.2 Sound Speed and Horizontal Current Velocity 18 3.1.3 Boundaries and Reflection 18 3.2 Environments 19 3.2.1 Shallow Water Environment 19 3.2.2 Modeled Environment 20 3.3 Validation with BELLHOP Ray-Tracing Program 21 3.4 Perturbations in the Bathymetry 23 4 Results and Discussions 25 4.1 Current Velocity 26 4.2 Current Shear 35 4.3 Small-Scale Bathymetric Structure 40 4.4 Effective Sound Speed Approaches 45 4.5 High Frequency Sound Propagation in a Realistic Environment 50 4.5.1 Effective Sound Speed Approach 50 4.5.2 Simplified Effective Sound Speed Approach 53 5 Conclusions 57 5.1 Conclusions 57 5.2 Suggestions for Future Research 58 Appendix A Ray Equations for a Moving Medium 61 Appendix B 65 Bibliography 71 | |
dc.language.iso | en | |
dc.title | 淺海環境中流速對高頻聲波傳播之研究 | zh_TW |
dc.title | A Study of Ocean Current on High-Frequency Acoustic Propagation in Coastal Water Environments | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉金源,楊子江,黃清哲,谷口直和 | |
dc.subject.keyword | Runge-Kutta,考慮流速的聲線追蹤,幾何聲學,聲波傳播,水中聲音, | zh_TW |
dc.subject.keyword | Runge-Kutta,ray-tracing with current,geometric acoustics,acoustic propagation,underwater sound, | en |
dc.relation.page | 73 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2013-08-19 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf | 2.38 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。