請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64243
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 趙本秀 | |
dc.contributor.author | Shou-Chien Shen | en |
dc.contributor.author | 沈守謙 | zh_TW |
dc.date.accessioned | 2021-06-16T17:36:33Z | - |
dc.date.available | 2012-08-19 | |
dc.date.copyright | 2012-08-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-15 | |
dc.identifier.citation | 1. Jitpukdeebodintra, S., Y. Chai, and M.L. Snead, Developmental patterning of the circumvallate papilla. Int J Dev Biol, 2002. 46(5): p. 755-63.
2. Juliano, R.L. and S. Haskill, Signal transduction from the extracellular matrix. J Cell Biol, 1993. 120(3): p. 577-85. 3. Martin, P., Wound healing--aiming for perfect skin regeneration. Science, 1997. 276(5309): p. 75-81. 4. Bernstein, L.R. and L.A. Liotta, Molecular mediators of interactions with extracellular matrix components in metastasis and angiogenesis. Curr Opin Oncol, 1994. 6(1): p. 106-13. 5. Parente, L., et al., Studies on cell motility in inflammation. I. The chemotactic activity of experimental, immunological and non-immunological, inflammatory exudates. Agents Actions, 1979. 9(2): p. 190-5. 6. Harland, B., S. Walcott, and S.X. Sun, Adhesion dynamics and durotaxis in migrating cells. Phys Biol, 2011. 8(1): p. 015011. 7. Rodriguez, O.C., et al., Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol, 2003. 5(7): p. 599-609. 8. Worthylake, R.A., et al., RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol, 2001. 154(1): p. 147-60. 9. Welch, M.D. and R.D. Mullins, Cellular control of actin nucleation. Annu Rev Cell Dev Biol, 2002. 18: p. 247-88. 10. Emsley, J., et al., Structural basis of collagen recognition by integrin alpha2beta1. Cell, 2000. 101(1): p. 47-56. 11. Zaidel-Bar, R., et al., Hierarchical assembly of cell-matrix adhesion complexes. Biochem Soc Trans, 2004. 32(Pt3): p. 416-20. 12. Ridley, A.J., et al., Cell migration: integrating signals from front to back. Science, 2003. 302(5651): p. 1704-9. 13. Carter, S.B., Principles of cell motility: the direction of cell movement and cancer invasion. Nature, 1965. 208(5016): p. 1183-7. 14. Carter, S.B., Haptotaxis and the mechanism of cell motility. Nature, 1967. 213(5073): p. 256-60. 15. Lowe, B., The role of Ca2+ in deflection-induced excitation of motile, mechanoresponsive balancer cilia in the ctenophore statocyst. J Exp Biol, 1997. 200(Pt 11): p. 1593-606. 16. Saranak, J. and K.W. Foster, Rhodopsin guides fungal phototaxis. Nature, 1997. 387(6632): p. 465-6. 17. Erickson, C.A. and R. Nuccitelli, Embryonic fibroblast motility and orientation can be influenced by physiological electric fields. J Cell Biol, 1984. 98(1): p. 296-307. 18. Lo, C.M., et al., Cell movement is guided by the rigidity of the substrate. Biophys J, 2000. 79(1): p. 144-52. 19. Discher, D.E., P. Janmey, and Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science, 2005. 310(5751): p. 1139-43. 20. Ulrich, T.A., E.M. de Juan Pardo, and S. Kumar, The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res, 2009. 69(10): p. 4167-74. 21. McBeath, R., et al., Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell, 2004. 6(4): p. 483-95. 22. Jacot, J.G., A.D. McCulloch, and J.H. Omens, Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J, 2008. 95(7): p. 3479-87. 23. Guo, W.H., et al., Substrate rigidity regulates the formation and maintenance of tissues. Biophys J, 2006. 90(6): p. 2213-20. 24. Chrzanowska-Wodnicka, M. and K. Burridge, Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol, 1996. 133(6): p. 1403-15. 25. Hinz, T., et al., Inhibition of protein synthesis by the T cell receptor-inducible human TDAG51 gene product. Cell Signal, 2001. 13(5): p. 345-52. 26. Pelham, R.J., Jr. and Y. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A, 1997. 94(25): p. 13661-5. 27. Kawano, T. and S. Kidoaki, Elasticity boundary conditions required for cell mechanotaxis on microelastically-patterned gels. Biomaterials, 2011. 32(11): p. 2725-33. 28. Nemir, S. and J.L. West, Synthetic materials in the study of cell response to substrate rigidity. Ann Biomed Eng, 2010. 38(1): p. 2-20. 29. Pelham, R.J., Jr. and Y.L. Wang, Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biol Bull, 1998. 194(3): p. 348-9; discussion 349-50. 30. Fu, J., et al., Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods, 2010. 7(9): p. 733-6. 31. Androutsellis-Theotokis, A., et al., Notch signalling regulates stem cell numbers in vitro and in vivo. Nature, 2006. 442(7104): p. 823-6. 32. Wozniak, M.A. and C.S. Chen, Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol, 2009. 10(1): p. 34-43. 33. Ingber, D.E., Mechanical control of tissue morphogenesis during embryological development. Int J Dev Biol, 2006. 50(2-3): p. 255-66. 34. Moore, K.A., et al., Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. Dev Dyn, 2005. 232(2): p. 268-81. 35. Malek, A.M. and S. Izumo, Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J Cell Sci, 1996. 109 ( Pt 4): p. 713-26. 36. Kaunas, R., et al., Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc Natl Acad Sci U S A, 2005. 102(44): p. 15895-900. 37. Ruiz, S.A. and C.S. Chen, Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells, 2008. 26(11): p. 2921-7. 38. Huebsch, N., et al., Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater, 2010. 9(6): p. 518-26. 39. Georges, P.C. and P.A. Janmey, Cell type-specific response to growth on soft materials. J Appl Physiol, 2005. 98(4): p. 1547-53. 40. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-89. 41. Harris, A., Behavior of cultured cells on substrata of variable adhesiveness. Exp Cell Res, 1973. 77(1): p. 285-97. 42. Chiu, D.T., et al., Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc Natl Acad Sci U S A, 2000. 97(6): p. 2408-13. 43. Kloxin, A.M., J.A. Benton, and K.S. Anseth, In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials, 2010. 31(1): p. 1-8. 44. Burdick, J.A., A. Khademhosseini, and R. Langer, Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir, 2004. 20(13): p. 5153-6. 45. Rotsch, C. and M. Radmacher, Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J, 2000. 78(1): p. 520-35. 46. Rotsch, C., K. Jacobson, and M. Radmacher, Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc Natl Acad Sci U S A, 1999. 96(3): p. 921-6. 47. Chao, P.H., et al., Chondrocyte translocation response to direct current electric fields. J Biomech Eng, 2000. 122(3): p. 261-7. 48. Provenzano, P.P., et al., Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys J, 2008. 95(11): p. 5374-84. 49. Lin, P.W., et al., Characterization of cortical neuron outgrowth in two- and three-dimensional culture systems. J Biomed Mater Res B Appl Biomater, 2005. 75(1): p. 146-57. 50. Berry, M.F., et al., Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol, 2006. 290(6): p. H2196-203. 51. Engler, A.J., et al., Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci, 2008. 121(Pt 22): p. 3794-802. 52. Haan, M.N., et al., C-reactive protein and rate of dementia in carriers and non carriers of Apolipoprotein APOE4 genotype. Neurobiol Aging, 2008. 29(12): p. 1774-82. 53. Gray, D.S., J. Tien, and C.S. Chen, Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus. J Biomed Mater Res A, 2003. 66(3): p. 605-14. 54. Isenberg, B.C., et al., Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys J, 2009. 97(5): p. 1313-22. 55. Xi, T.F., et al., Cytotoxicity and altered c-myc gene expression by medical polyacrylamide hydrogel. J Biomed Mater Res A, 2006. 78(2): p. 283-90. 56. Leong, W.S., et al., Thickness sensing of hMSCs on collagen gel directs stem cell fate. Biochem Biophys Res Commun, 2010. 401(2): p. 287-92. 57. Roy, P., et al., Effect of cell migration on the maintenance of tension on a collagen matrix. Ann Biomed Eng, 1999. 27(6): p. 721-30. 58. Sen, S., A.J. Engler, and D.E. Discher, Matrix strains induced by cells: Computing how far cells can feel. Cell Mol Bioeng, 2009. 2(1): p. 39-48. 59. Nelson, C.M., et al., Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA. Mol Biol Cell, 2004. 15(6): p. 2943-53. 60. Lazopoulos, K.A. and D. Stamenovic, Durotaxis as an elastic stability phenomenon. J Biomech, 2008. 41(6): p. 1289-94. 61. Lee, J., et al., Regulation of cell movement is mediated by stretch-activated calcium channels. Nature, 1999. 400(6742): p. 382-6. 62. Peyton, S.R., et al., The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system. Biomaterials, 2008. 29(17): p. 2597-607. 63. Solon, J., et al., Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J, 2007. 93(12): p. 4453-61. 64. Yeung, T., et al., Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton, 2005. 60(1): p. 24-34. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64243 | - |
dc.description.abstract | 細胞與其機械環境的交互作用在許多生理機制中扮演重要角色,包括形態發育,免疫反應, 傷口癒合以及腫瘤細胞惡性轉移等。近期研究顯示,細胞有優先朝機械性質較硬的區域去遷移的現象,稱為durotaxis。本研究的目的為發展一個有連續彈性梯度的系統,是以膠原蛋白膠體為基礎的複合微結構基材,來促使細胞產生durotaxis,並更進一步探討其機制。研究結果顯示細胞durotaxis的表現與其彈性梯度的強度相關。此外也發現durotaxis 只會出現在細胞密度較低時;細胞與細胞的交互作用會造成durotaxis表現下降。藥物抑制的研究顯示細胞受基材機械性質影響而產生方向性遷移的行為是與Rho及myosin所調控細胞收縮的機制相關。本系統為全新的實驗平台來幫助深入探討基材彈性梯度對細胞反應與其內部分子機制的影響。 | zh_TW |
dc.description.abstract | Cell interaction with their physical environment has been shown to play an important role in physiological processes, including morphogenesis, immune response, wound healing, and tumor metastasis. Recent studies have demonstrated that preferential migration of cells toward mechanically stiff regions; a process known as durotaxis. However, much of this phenomenon is still not fully understood. In this study, we developed a novel system of a continuous stiffness gradient with a collagen hydrogel-based composite microstructural substrate. Our results indicated that induction of durotaxis depends on the magnitude of the elasticity jump. In addition, our results provide a quantitative confirmation that increases in cell density reduce cell durotaxis, which can be observed only at low cell density, where there is less cell-cell interaction. Pharmacologic inhibition studies suggested that cell migration directed by substrate mechanical stiffness was regulated by a Rho- and myosin-dependent cell contractility mechanism. This novel platform allows for better understanding of the cellular response to substrate stiffness gradients and the underlying molecular mechanisms. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:36:33Z (GMT). No. of bitstreams: 1 ntu-101-R99548045-1.pdf: 1868340 bytes, checksum: a1aed36c389a040fe96f621a5ce106f2 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員會審定書 2
致謝 3 摘要 i Abstract ii Chapter 1 Introduction 1 1.1. Cell migration 1 1.2. Durotaxis 3 1.3. Mechanotransduction 5 Experimental Design 6 Chapter 2 Materials and Methods 8 2.1 Cell Culture 8 2.2 Composite substrate preparation 8 2.3 Collagen hydrogel preparation 9 2.4 Measurement of the surface elasticity distribution 9 2.5 Time-lapse observation of Cell Behavior 10 2.6 Immunofluorescence microscopic observation 10 2.7 Pharmacological inhibition 11 2.8 Statistical Analysis 12 Chapter 3 Results 13 Chapter 4 Discussion 18 Chapter 5 Conclusions 23 Reference 41 Appendix 46 | |
dc.language.iso | en | |
dc.title | 以複合式微結構平台來探討細胞在彈性梯度上的移動行為 | zh_TW |
dc.title | A Composite Microstructural Substrate with Stiffness Gradient for the Study of Cell Migration | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王兆麟,蔡偉博,郭柏齡 | |
dc.subject.keyword | 細胞遷移,durotaxis,彈性梯度,mechanosensing,細胞骨架,細胞力學,原子力顯微鏡, | zh_TW |
dc.subject.keyword | Cell migration,durotaxis,stiffness gradient,mechanosensing,cytoskeleton,cell mechanics,atomic force microscopy, | en |
dc.relation.page | 49 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。