請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64238完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫啟光 | |
| dc.contributor.author | Chen-Ling Wu | en |
| dc.contributor.author | 巫承霖 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:36:18Z | - |
| dc.date.available | 2023-03-05 | |
| dc.date.copyright | 2020-03-05 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-29 | |
| dc.identifier.citation | [1] H.-N. Lin, R. Stoner, and H. Maris, 'Nondestructive testing of microstructures by picosecond ultrasonics,' Journal of nondestructive evaluation, vol. 9, no. 4, pp. 239-246, 1990.
[2] H. Maris, 'Picosecond ultrasonics,' Scientific American, vol. 278, no. 1, pp. 86-89, 1998. [3] K.-H. Lin et al., 'Two-dimensional nanoultrasonic imaging by using acoustic nanowaves,' Applied physics letters, vol. 89, no. 4, p. 043106, 2006. [4] K.-H. Lin et al., 'Spatial manipulation of nanoacoustic waves with nanoscale spot sizes,' Nature nanotechnology, vol. 2, no. 11, p. 704, 2007. [5] P.-A. Mante et al., 'Probing hydrophilic interface of solid/liquid-water by nanoultrasonics,' Scientific reports, vol. 4, p. 6249, 2014. [6] S. Danworaphong et al., 'Three-dimensional imaging of biological cells with picosecond ultrasonics,' Applied physics letters, vol. 106, no. 16, p. 163701, 2015. [7] C. Errico et al., 'Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging,' Nature, vol. 527, no. 7579, p. 499, 2015. [8] C.-C. Shen, M.-Y. Weng, J.-K. Sheu, Y.-T. Yao, and C.-K. Sun, 'In Situ Monitoring of Chemical Reactions at a Solid–Water Interface by Femtosecond Acoustics,' The journal of physical chemistry letters, vol. 8, no. 21, pp. 5430-5437, 2017. [9] T. Zhu, H. J. Maris, and J. Tauc, 'Attenuation of longitudinal-acoustic phonons in amorphous SiO 2 at frequencies up to 440 GHz,' Physical Review B, vol. 44, no. 9, p. 4281, 1991. [10] C. Morath and H. Maris, 'Phonon attenuation in amorphous solids studied by picosecond ultrasonics,' Physical Review B, vol. 54, no. 1, p. 203, 1996. [11] W. Capinski, H. Maris, T. Ruf, M. Cardona, K. Ploog, and D. Katzer, 'Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,' Physical Review B, vol. 59, no. 12, p. 8105, 1999. [12] B. Daly, K. Kang, Y. Wang, and D. G. Cahill, 'Picosecond ultrasonic measurements of attenuation of longitudinal acoustic phonons in silicon,' Physical Review B, vol. 80, no. 17, p. 174112, 2009. [13] Y.-C. Wen, S.-H. Guol, H.-P. Chen, J.-K. Sheu, and C.-K. Sun, 'Femtosecond ultrasonic spectroscopy using a piezoelectric nanolayer: hypersound attenuation in vitreous silica films,' Applied Physics Letters, vol. 99, no. 5, p. 051913, 2011. [14] A. Maznev et al., 'Propagation of THz acoustic wave packets in GaN at room temperature,' Applied Physics Letters, vol. 112, no. 6, p. 061903, 2018. [15] T.-H. Chou et al., 'Long mean free paths of room-temperature THz acoustic phonons in a high thermal conductivity material,' Physical Review B, vol. 100, no. 9, p. 094302, 2019. [16] F. J. Wei, Y.-H. Yeh, J.-K. Sheu, and K.-H. Lin, 'THz acoustic spectroscopy by using double quantum wells and ultrafast optical spectroscopy,' Scientific reports, vol. 6, p. 28577, 2016. [17] A. Maznev, K. J. Manke, K.-H. Lin, K. A. Nelson, C.-K. Sun, and J.-I. Chyi, 'Broadband terahertz ultrasonic transducer based on a laser-driven piezoelectric semiconductor superlattice,' Ultrasonics, vol. 52, no. 1, pp. 1-4, 2012. [18] P.-A. Mante et al., 'THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures,' Ultrasonics, vol. 56, pp. 52-65, 2015. [19] Y. Okada and Y. Tokumaru, 'Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,' Journal of applied physics, vol. 56, no. 2, pp. 314-320, 1984. [20] S. Lambade, G. Sahasrabudhe, and S. Rajagopalan, 'Temperature dependence of acoustic attenuation in silicon,' Physical Review B, vol. 51, no. 22, p. 15861, 1995. [21] K.-S. Im et al., 'Normally off GaN MOSFET based on AlGaN/GaN heterostructure with extremely high 2DEG density grown on silicon substrate,' IEEE Electron Device Letters, vol. 31, no. 3, pp. 192-194, 2010. [22] C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, 'Surface generation and detection of phonons by picosecond light pulses,' Physical Review B, vol. 34, no. 6, p. 4129, 1986. [23] H. T. Grahn, H. J. Maris, and J. Tauc, 'Picosecond ultrasonics,' IEEE Journal of Quantum Electronics, vol. 25, no. 12, pp. 2562-2569, 1989. [24] H. Elsayed-Ali, T. Norris, M. Pessot, and G. Mourou, 'Time-resolved observation of electron-phonon relaxation in copper,' Physical Review Letters, vol. 58, no. 12, p. 1212, 1987. [25] R. Schoenlein, W. Lin, J. Fujimoto, and G. Eesley, 'Femtosecond studies of nonequilibrium electronic processes in metals,' Physical Review Letters, vol. 58, no. 16, p. 1680, 1987. [26] G. Tas and H. J. Maris, 'Electron diffusion in metals studied by picosecond ultrasonics,' Physical Review B, vol. 49, no. 21, p. 15046, 1994. [27] M. Grossmann et al., 'Characterization of thin-film adhesion and phonon lifetimes in Al/Si membranes by picosecond ultrasonics,' New Journal of Physics, vol. 19, no. 5, p. 053019, 2017. [28] D. Gaspar et al., 'Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation,' Scientific reports, vol. 3, p. 1469, 2013. [29] G. Zhao et al., 'Stable ultrathin partially oxidized copper film electrode for highly efficient flexible solar cells,' Nature communications, vol. 6, p. 8830, 2015. [30] X. Yang, P. Gao, Z. Yang, J. Zhu, F. Huang, and J. Ye, 'Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures,' Scientific reports, vol. 7, p. 44576, 2017. [31] S. Khanna, H. Liu, P. Wilson, L. Li, and M. Buchanan, 'High energy proton and alpha radiation effects on GaAs/AlGaAs quantum well infrared photodetectors,' IEEE Transactions on Nuclear Science, vol. 43, no. 6, pp. 3012-3018, 1996. [32] S. Khanna, D. Estan, H. Liu, M. Gao, M. Buchanan, and A. SpringThorpe, '1-15 MeV proton and alpha particle radiation effects on GaAs quantum well light emitting diodes [and QWIPs],' IEEE Transactions on Nuclear Science, vol. 47, no. 6, pp. 2508-2514, 2000. [33] R. J. Walters et al., 'Correlation of proton radiation damage in InGaAs-GaAs quantum-well light-emitting diodes,' IEEE Transactions on Nuclear Science, vol. 48, no. 6, pp. 1773-1777, 2001. [34] A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, 'Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: excitation and detection,' Physical Review Letters, vol. 82, no. 5, p. 1044, 1999. [35] K. Mizoguchi et al., 'Umklapp process in observation of coherent folded longitudinal acoustic phonons in a GaAs/AlAs long-period superlattice,' Physica E: Low-dimensional Systems and Nanostructures, vol. 21, no. 2-4, pp. 646-650, 2004. [36] O. Matsuda, T. Tachizaki, T. Fukui, J. Baumberg, and O. B. Wright, 'Acoustic phonon generation and detection in GaAs∕ Al 0.3 Ga 0.7 As quantum wells with picosecond laser pulses,' Physical Review B, vol. 71, no. 11, p. 115330, 2005. [37] M. Trigo, T. Eckhause, J. Wahlstrand, R. Merlin, M. Reason, and R. Goldman, 'Ultrafast optical generation and remote detection of terahertz sound using semiconductor superlattices,' Applied physics letters, vol. 91, no. 2, p. 023115, 2007. [38] Y.-C. Wen, L.-C. Chou, H.-H. Lin, V. Gusev, K.-H. Lin, and C.-K. Sun, 'Efficient generation of coherent acoustic phonons in (111) In Ga As∕ Ga As multiple quantum wells through piezoelectric effects,' Applied physics letters, vol. 90, no. 17, p. 172102, 2007. [39] G.-W. Chern, K.-H. Lin, and C.-K. Sun, 'Transmission of light through quantum heterostructures modulated by coherent acoustic phonons,' Journal of applied physics, vol. 95, no. 3, pp. 1114-1121, 2004. [40] G.-W. Chern, C.-K. Sun, G. D. Sanders, and C. J. Stanton, 'Generation of coherent acoustic phonons in nitride-based semiconductor nanostructures,' in Ultrafast Dynamical Processes in Semiconductors: Springer, 2004, pp. 339-394. [41] J. Singh, Electronic and optoelectronic properties of semiconductor structures. Cambridge University Press, 2007. [42] Y.-C. Wen, L.-C. Chou, H.-H. Lin, K.-H. Lin, T.-F. Kao, and C.-K. Sun, 'Compositional dependence of longitudinal sound velocities of piezoelectric (111) In x Ga (1− x) as measured by picosecond ultrasonics,' Journal of applied physics, vol. 100, no. 10, p. 103516, 2006. [43] H.-Y. Chen, Y.-R. Huang, H.-Y. Shih, M.-J. Chen, J.-K. Sheu, and C.-K. Sun, 'Extracting elastic properties of an atomically thin interfacial layer by time-domain analysis of femtosecond acoustics,' Applied Physics Letters, vol. 111, no. 21, p. 213101, 2017. [44] D. Royer and E. Dieulesaint, Elastic waves in solids I: Free and guided propagation. Springer Science & Business Media, 1999. [45] N. Chigarev, D. Y. Paraschuk, X. Pan, and V. Gusev, 'Coherent phonon emission in the supersonic expansion of photoexcited electron-hole plasma in Ge,' Physical Review B, vol. 61, no. 23, p. 15837, 2000. [46] M. Perner et al., 'Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,' Physical Review Letters, vol. 85, no. 4, p. 792, 2000. [47] A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, 'Acoustic vibrations of metal nano-objects: time-domain investigations,' Physics Reports, vol. 549, pp. 1-43, 2015. [48] T. Ruf et al., 'Phonon dispersion curves in wurtzite-structure GaN determined by inelastic x-ray scattering,' Physical review letters, vol. 86, no. 5, p. 906, 2001. [49] S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, and I. Tanaka, 'Structures and energetics of Ga2O3 polymorphs,' Journal of Physics: Condensed Matter, vol. 19, no. 34, p. 346211, 2007. [50] P. W. Berg and J. L. McGregor, Elementary partial differential equations. Holden-Day, 1966. [51] D. Miller, D. Chemla, and S. Schmitt-Rink, 'Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,' Physical Review B, vol. 33, no. 10, p. 6976, 1986. [52] J. Chen, D. Tzou, and J. Beraun, 'A semiclassical two-temperature model for ultrafast laser heating,' International journal of heat and mass transfer, vol. 49, no. 1-2, pp. 307-316, 2006. [53] C.-K. Sun, F. Vallée, L. Acioli, E. Ippen, and J. Fujimoto, 'Femtosecond-tunable measurement of electron thermalization in gold,' Physical Review B, vol. 50, no. 20, p. 15337, 1994. [54] J. Shah, Hot carriers in semiconductor nanostructures: Physics and applications. Elsevier, 2012. [55] C.-K. Sun, F. Vallee, S. Keller, J. Bowers, and S. DenBaars, 'Femtosecond studies of carrier dynamics in InGaN,' Applied physics letters, vol. 70, no. 15, pp. 2004-2006, 1997. [56] C.-K. Sun, Y.-L. Huang, S. Keller, U. Mishra, and S. DenBaars, 'Ultrafast electron dynamics study of GaN,' Physical Review B, vol. 59, no. 21, p. 13535, 1999. [57] K. Leo, W. Rühle, and K. Ploog, 'Hot-carrier energy-loss rates in GaAs/Al x Ga 1− x As quantum wells,' Physical Review B, vol. 38, no. 3, p. 1947, 1988. [58] K. Leo, W. Rühle, H. Queisser, and K. Ploog, 'Reduced dimensionality of hot-carrier relaxation in GaAs quantum wells,' Physical Review B, vol. 37, no. 12, p. 7121, 1988. [59] S. Hughes and T. Kobayashi, 'Ultrafast carrier-carrier scattering in wide-gap GaN semiconductor laser devices,' Semiconductor science and technology, vol. 12, no. 6, p. 733, 1997. [60] Y.-C. Huang, J.-C. Liang, C.-K. Sun, A. Abare, and S. P. DenBaars, 'Piezoelectric-field-enhanced lateral ambipolar diffusion coefficient in InGaN/GaN multiple quantum wells,' Applied Physics Letters, vol. 78, no. 7, pp. 928-930, 2001. [61] P. Lugli and S. Goodnick, 'Nonequilibrium longitudinal-optical phonon effects in GaAs-AlGaAs quantum wells,' Physical review letters, vol. 59, no. 6, p. 716, 1987. [62] A. Bhatt, K. Kim, and M. Stroscio, 'Theoretical calculation of longitudinal‐optical‐phonon lifetime in GaAs,' Journal of applied physics, vol. 76, no. 6, pp. 3905-3907, 1994. [63] K.-T. Tsen, D. Ferry, A. Botchkarev, B. Sverdlov, A. Salvador, and H. Morkoc, 'Time-resolved Raman studies of the decay of the longitudinal optical phonons in wurtzite GaN,' Applied physics letters, vol. 72, no. 17, pp. 2132-2134, 1998. [64] C. Kittel, Introduction to solid state physics. Wiley New York, 1976. [65] W. Wei et al., 'Valence band offset of β-Ga 2 O 3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy,' Nanoscale research letters, vol. 7, no. 1, p. 562, 2012. [66] M. Heinemann, J. Berry, G. Teeter, T. Unold, and D. Ginley, 'Oxygen deficiency and Sn doping of amorphous Ga2O3,' Applied Physics Letters, vol. 108, no. 2, p. 022107, 2016. [67] L.-X. Qian, Z.-H. Wu, Y.-Y. Zhang, P. Lai, X.-Z. Liu, and Y.-R. Li, 'Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide,' ACS Photonics, vol. 4, no. 9, pp. 2203-2211, 2017. [68] H. Yang et al., 'Surface/structural characteristics and band alignments of thin Ga2O3 films grown on sapphire by pulse laser deposition,' Applied Surface Science, vol. 479, pp. 1246-1253, 2019. [69] Z. Guo et al., 'Anisotropic thermal conductivity in single crystal β-gallium oxide,' Applied Physics Letters, vol. 106, no. 11, p. 111909, 2015. [70] N. Ma et al., 'Intrinsic electron mobility limits in β-Ga2O3,' Applied Physics Letters, vol. 109, no. 21, p. 212101, 2016. [71] J.-W. Yu et al., 'Short channel effects on gallium nitride/gallium oxide nanowire transistors,' Applied Physics Letters, vol. 101, no. 18, p. 183501, 2012. [72] M. F. Schubert, 'Interband tunnel junctions for wurtzite III-nitride semiconductors based on heterointerface polarization charges,' Physical Review B, vol. 81, no. 3, p. 035303, 2010. [73] K. Ghosh and U. Singisetti, 'Ab initio velocity-field curves in monoclinic β-Ga2O3,' Journal of Applied Physics, vol. 122, no. 3, p. 035702, 2017. [74] J. Lee et al., 'Effect of 1.5 MeV electron irradiation on β-Ga2O3 carrier lifetime and diffusion length,' Applied Physics Letters, vol. 112, no. 8, p. 082104, 2018. [75] T. Barron, J. Collins, and G. White, 'Thermal expansion of solids at low temperatures,' Advances in Physics, vol. 29, no. 4, pp. 609-730, 1980. [76] D.-F. Wang et al., 'Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN,' Journal of Applied Physics, vol. 89, no. 11, pp. 6214-6217, 2001. [77] M.-L. Lee, J.-K. Sheu, and C. Hu, 'Nonalloyed Cr∕ Au-based Ohmic contacts to n-Ga N,' Applied Physics Letters, vol. 91, no. 18, p. 182106, 2007. [78] Q. Qian et al., '2D materials as semiconducting gate for field-effect transistors with inherent over-voltage protection and boosted ON-current,' npj 2D Materials and Applications, vol. 3, no. 1, pp. 1-9, 2019. [79] Y.-C. Wen, C.-Y. Chen, C.-H. Shen, S. Gwo, and C.-K. Sun, 'Ultrafast carrier thermalization in InN,' Applied physics letters, vol. 89, no. 23, p. 232114, 2006. [80] R. Liu et al., 'Femtosecond pump-probe spectroscopy of propagating coherent acoustic phonons in In x Ga 1− x N∕ GaN heterostructures,' Physical Review B, vol. 72, no. 19, p. 195335, 2005. [81] L. Guan and R. K. Ward, 'Restoration of randomly blurred images by the Wiener filter,' IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 4, pp. 589-592, 1989. [82] X. Cai et al., 'Atomic-scale identification of crystalline GaON nanophase for enhanced GaN MIS-FET channel,' Applied Physics Letters, vol. 114, no. 5, p. 053109, 2019. [83] M. Hua et al., 'Enhanced Gate Reliability in GaN MIS-FETs by Converting the GaN Channel into Crystalline Gallium Oxynitride,' ACS Applied Electronic Materials, vol. 1, no. 5, pp. 642-648, 2019. [84] D. M. Fleetwood, ''Border traps' in MOS devices,' IEEE transactions on nuclear science, vol. 39, no. 2, pp. 269-271, 1992. [85] L. Lin and P. Lai, 'Effects of NO Annealing and GaO x N y Interlayer on GaN Metal-Insulator-Semiconductor Capacitor with SiO2 Gate Dielectric,' Journal of The Electrochemical Society, vol. 154, no. 3, pp. G58-G62, 2007. [86] S. Liu et al., 'Interface/border trap characterization of Al2O3/AlN/GaN metal-oxide-semiconductor structures with an AlN interfacial layer,' Applied Physics Letters, vol. 106, no. 5, p. 051605, 2015. [87] B. Van Daele, G. Van Tendeloo, W. Ruythooren, J. Derluyn, M. Leys, and M. Germain, 'The role of Al on Ohmic contact formation on n-type GaN and AlGaN∕ GaN,' Applied Physics Letters, vol. 87, no. 6, p. 061905, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64238 | - |
| dc.description.abstract | 飛秒聲學的應用主要分為結構成像以及熱聲子頻譜分析兩種。為了提升量測的空間解析度、得到更多高頻聲子的資訊以及有效的增強高頻聲子的訊雜比,如何產生超短音波脈衝至今仍然是非常重要的議題。根據彈性理論,影響音波脈衝寬度主要分為音波產生的範圍以及音波產生的機制。而我們認為介面是最薄的二維結構,因此在此論文中,我們想藉由累積在介面上的二維電子氣體來產生超短音波脈衝。
為了研究超快的光激發二維電子氣體產生音波脈衝的機制,我們建立了一個簡單的音波產生的模型。根據模擬的結果,音波脈衝寬度變化主要是被熱電子形成的膨脹壓力在空間中的分佈所影響。從模型模擬出來的音波脈衝寬度來看,二維電子氣體是有潛力去產生約100飛秒的超短音波脈衝的超音波產生源。為了證明理論模型的結果,實驗上我們成功的利用氮化鎵以及非晶氧化鎵的介面所生成的二維電子氣體去產生時間寬度為266飛秒、頻寬為2.1兆赫茲的超短音波脈衝。 因此本篇的研究不僅推導出新穎的光激發二維電子氣體產生音波的機制,實驗上我們更成功的利用二維電子氣體產生至今最短的超音波脈衝。 | zh_TW |
| dc.description.abstract | The applications of Femtosecond Acoustics are mainly divided into structure imaging and thermal phonon spectroscopy. For increasing spatial resolution, obtaining higher frequency information, and enhancing the signal to noise ratio (SNR) of higher frequencies, finding the approaches to generate an ultra-short acoustic pulse is a very critical issue. According to the continuum elastic theory, the acoustic pulsewidth is influenced by the thickness of acoustic generation region and acoustic generation mechanisms, respectively. In this thesis, we utilized 2-dimensional electron gas (2DEG) accumulated at the interface to generate the ultra-short photoacoustic pulse since we consider that the interface is the thinnest 2D structure.
To study the ultrafast photoacoustic mechanism of 2DEG under impulsive photo-excitation, we develop a simple theoretical model in this thesis. According to our numerical studies, the acoustic pulsewidth is dominated by the contribution of hot electron pressure and 2DEG is a potential source to generate a ~100-fs super-short acoustic pulse. Experimentally, to prove our theoretical study finding, we created the 2DEG at the a-Ga2O3/GaN interface. Through photo-exciting 2DEG, we successfully measured an ultra-short acoustic pulse with a pulsewidth of 266 fs after deconvolution with a bandwidth up to 2.1 THz. Our study not only demonstrated a novel photoacoustic pulse generation mechanism in 2DEG, but also experimentally generated a record-short acoustic pulse which has never been achieved before. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:36:18Z (GMT). No. of bitstreams: 1 ntu-109-R06941052-1.pdf: 3793431 bytes, checksum: dd4ad376938e05e72776dbbc4c260575 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi Chapter 1 Introduction 1 Chapter 2 Picosecond and Femtosecond Acoustics 3 2.1 Literature Review 3 2.2 Optical Pump-Probe Technique 5 2.3 Ultrafast Acoustic Pulse Generation 6 2.3.1 Continuum Elastic Theory 7 2.3.2 Loaded-String Model 10 2.4 Femtosecond Acoustic Detection Mechanism 11 2.5 Acoustic Reflection and Transmission 12 Chapter 3 The Theoretical Generation of the Ultra-Short Acoustic Pulse Using 2-Dimensional Electron Gas 14 3.1 The Acoustic Generation Mechanism of 2DEG 15 3.2 The Simulation Model of Photoacoustic Pulse Generation 17 3.3 The Simulation Results and Discussions 19 Chapter 4 Experimentally Probing the Ultra-Short Photoacoustic Pulse Generated by 2DEG 25 4.1 Experimental Setup 25 4.2 Amorphous Ga2O3 Grown on GaN Cap Layer (Sample 1) 27 4.2.1 Sample Structure and Conductance 27 4.2.2 Experimental Results and Analysis 28 4.3 GaON Grown on GaN Cap Layer (Sample 2) 31 4.3.1 Sample Structure and Conductance 31 4.3.2 Experimental Results and Analysis 32 4.4 Comparison of Theory and Experiment 34 Chapter 5 Sample Characterizations 36 5.1 The Variety of the Acoustic Pulse in Different Photoexcited Time 36 5.2 Power Dependence 39 5.3 Annealing of the Sample 41 5.4 Photoexcitation with the 808-nm Pump Pulse 42 5.5 Summary 43 Chapter 6 Conclusion 44 Appendix A The Structure of the Electrodes 45 Reference 46 | |
| dc.language.iso | en | |
| dc.subject | 二維電子氣體 | zh_TW |
| dc.subject | 介面 | zh_TW |
| dc.subject | 音波脈衝產生機制 | zh_TW |
| dc.subject | 熱電子膨脹壓力 | zh_TW |
| dc.subject | 超短音波脈衝 | zh_TW |
| dc.subject | hot electron pressure | en |
| dc.subject | interface | en |
| dc.subject | photoacoustic pulse generation mechanism | en |
| dc.subject | record-short acoustic pulse | en |
| dc.subject | 2-dimensional electron gas | en |
| dc.title | 利用光激發二維電漿產生超短音波脈衝 | zh_TW |
| dc.title | The Ultra-Short Photoacoustic Pulse Generation Using 2-Dimensional Electron Gas | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張玉明,彭隆瀚 | |
| dc.subject.keyword | 二維電子氣體,介面,音波脈衝產生機制,熱電子膨脹壓力,超短音波脈衝, | zh_TW |
| dc.subject.keyword | 2-dimensional electron gas,interface,photoacoustic pulse generation mechanism,hot electron pressure,record-short acoustic pulse, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU202000655 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-03-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 3.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
