請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64233完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉汀峰(Ting-Feng Yeh) | |
| dc.contributor.author | Hsin-Tzu Wang | en |
| dc.contributor.author | 王心慈 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:36:04Z | - |
| dc.date.available | 2017-08-19 | |
| dc.date.copyright | 2012-08-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-14 | |
| dc.identifier.citation | Albersheim, P., A. Darvil, K. Roberts, R. Sederoff and A. Staehelin. 2011. Plant Cell Walls. Garland Science, Taylor & Francis Group, New York, 430 p.
Andersson, S. I., O. Samuelson, M. Ishihara and K. Shimizu. 1983. Structure of the reducing end-groups in spruce xylan. Carbohydrate Research 111:283-288. Appenzeller, L., M. Doblin, R. Barreiro, H. Y. Wang, X. M. Niu, K. Kollipara, L. Carrigan, D. Tomes, M. Chapman and K. S. Dhugga. 2004. Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11:287-299. Arioli, T., L. C. Peng, A. S. Betzner, J. Burn, W. Wittke, W. Herth, C. Camilleri, H. Hofte, J. Plazinski, R. Birch, A. Cork, J. Glover, J. Redmond and R. E. Williamson. 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717-720. Awano, T., K. Takabe, M. Fujita and G. Daniel. 2000. Deposition of glucuronoxylans on the secondary cell wall of Japanese beech as observed by immune-scanning electron microscopy. Protoplasma 212:72-79. Benová-Kákosová, A., C. Digonnet, F. Goubet, P. Ranocha, A. Jauneau, E. Pesquet, O. Barbier, Z. N. Zhang, P. Capek, P. Dupree, D. Liskova and D. Goffner. 2006. Galactoglucomannans increase cell population density and alter the protoxylem/metaxylem tracheary element ratio in xylogenic cultures of Zinnia. Plant Physiology 142:696-709. Blake, A. W., L. McCartney, J. E. Flint, D. N. Bolam, A. B. Boraston, H. J. Gilbert and J. P. Knox. 2006. Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. Journal of Biological Chemistry 281:29321-29329. Blakeney, A. B., P. J. Harris, R. J. Henry and B. A. Stone. 1983. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydrate Research 113:291-299. Boerjan, W., J. Ralph and M. Baucher. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54:519-546. Bolwell, G. P. and D. H. Northcote. 1981. Control of hemicellulose and pectin synthesis during differentiation of vascular tissue in bean (Phaseolus vulgaris) callus and in bean hypocotyl. Planta 152:225-233. Bolwell, G. P. and D. H. Northcote. 1983. Induction by growth-factors of polysaccharide synthases in bean cell suspension cultures. Biochemical Journal 210:509-515. Boraston, A. B., D. N. Bolam, H. J. Gilbert and G. J. Davies. 2004. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochemical Journal 382:769-781. Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248-254. Brown, D. M., F. Goubet, W. W. A. Vicky, R. Goodacre, E. Stephens, P. Dupree and S. R. Turner. 2007. Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant Journal 52:1154-1168. Buckeridge, M. S., H. P. dos Santos and M. A. S. Tine. 2000. Mobilisation of storage cell wall polysaccharides in seeds. Plant Physiology and Biochemistry 38:141-156. Burton, R. A., N. J. Shirley, B. J. King, A. J. Harvey and G. B. Fincher. 2004. The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiology 134:224-236. Burton, R. A., S. M. Wilson, M. Hrmova, A. J. Harvey, N. J. Shirley, B. A. Stone, E. J. Newbigin, A. Bacic and G. B. Fincher. 2006. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science 311:1940-1942. Campbell, J. A., G. J. Davies, V. Bulone and B. Henrissat. 1997. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochemical Journal 326:929-939. Carpita, N. and M. McCann. 2000. The cell wall. In Biochemistry and Molecular Biology of Plants. Ed. R. L. Jones. Rockville, MD, pp 52-108. Chen, W., F. L. Stoddard and T. C. Baldwin. 2006. Developmental regulation of mannan, arabinogalactan-protein, and pectic epitopes in pistils of Vicia faba (faba bean). International Journal of Plant Sciences 167:919-932. Cocuron, J. C., O. Lerouxel, G. Drakakaki, A. P. Alonso, A. H. Liepman, K. Keegstra, N. Raikhel and C. G. Wilkerson. 2007. A gene from the cellulose synthase-like C family encodes a beta-1,4 glucan synthase. Proceedings of the National Academy of Sciences of the United States of America 104:8550-8555. Coleman, H. D., L. Beamish, A. Reid, J. Y. Park and S. D. Mansfield. 2010. Altered sucrose metabolism impacts plant biomass production and flower development. Transgenic Research 19:269-283. Coughlan, M. P. 1985. The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnology and Genetic Engineering Reviews 3:39-109. Coutinho, P. M., E. Deleury, G. J. Davies and B. Henrissat. 2003. An evolving hierarchical family classification for glycosyltransferases. Journal of Molecular Biology 328:307-317. Déjardin, A., F. Laurans, D. Arnaud, C. Breton, G. Pilate and J. C. Leplé. 2010. Wood formation in angiosperms. Comptes Rendus Biologies 333:325-334. Dence, C. W. 1992. The determination of lignin. In Methods in Lignin Chemistry. Eds. S. Y. LinC. W. Dence. Springer-Verlag, Berlin/New York, pp 34-35. Dhugga, K. S. 2001. Building the wall: genes and enzyme complexes for polysaccharide synthases. Current Opinion in Plant Biology 4:488-493. Dhugga, K. S., R. Barreiro, B. Whitten, K. Stecca, J. Hazebroek, G. S. Randhawa, M. Dolan, A. J. Kinney, D. Tomes, S. Nichols and P. Anderson. 2004. Guar seed beta-mannan synthase is a member of the cellulose synthase super gene family. Science 303:363-366. Djerbi, S., M. Lindskog, L. Arvestad, F. Sterky and T. T. Teeri. 2005. The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conserved cellulose synthase (CesA) genes. Planta 221:739-746. Doblin, M. S., F. A. Pettolino, S. M. Wilson, R. Campbell, R. A. Burton, G. B. Fincher, E. Newbigin and A. Bacic. 2009. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-beta-D-glucan synthesis in transgenic Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 106:5996-6001. Doblin, M. S., C. E. Vergara, S. Read, E. Newbigin and A. Bacic. 2003. Plant cell wall biosynthesis: making the bricks. In The Plant Cell Wall. Ed. J. K. C. Rose. Blackwell, Oxford, pp 183-222. Donaldson, L. 2008. Microfibril angle: measurement, variation and relationships. Iawa Journal 29:345-386. Donaldson, L. A. and J. P. Knox. 2012. Localization of cell wall polysaccharides in normal and compression wood of radiata pine: relationships with lignification and microfibril orientation. Plant Physiology 158:642-653. Edwards, M. E., C. A. Dickson, S. Chengappa, C. Sidebottom, M. J. Gidley and J. S. G. Reid. 1999. Molecular characterisation of a membrane-bound galactosyltransferase of plant cell wall matrix polysaccharide biosynthesis. Plant Journal 19:691-697. Edwards, M. E., E. Marshall, M. J. Gidley and J. S. G. Reid. 2002. Transfer specificity of detergent-solubilized fenugreek galactomannan galactosyltransferase. Plant Physiology 129:1391-1397. Fengel, D. and G. Wegener. 1989. Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter, New York, 613 p. Fergus, B. J. and D. A. I. Goring. 1970. The location of guaiacyl and syringyl lignins in birch xylem tissue. Holzforschung 24:113-117. Field, C. B., M. J. Behrenfeld, J. T. Randerson and P. Falkowski. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281:237-240. Fincher, G. B. 2009. Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses. Plant Physiology 149:27-37. Fukuda, H. 1996. Xylogenesis: Initiation, progression, and cell death. Annual Review of Plant Physiology and Plant Molecular Biology 47:299-325. Gardner, K. H. and J. Blackwell. 1974. Structure of native cellulose. Biopolymers 13:1975-2001. Gilbert, H. J. 2010. The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiology 153:444-455. Goubet, F., C. J. Barton, J. C. Mortimer, X. Yu, Z. Zhang, G. P. Miles, J. Richens, A. H. Liepman, K. Seffen and P. Dupree. 2009. Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis. Plant Journal 60:527-538. Goubet, F., A. Misrahi, S. K. Park, Z. N. Zhang, D. Twell and P. Dupree. 2003. AtCSLA7, a cellulose synthase-like putative glycosyltransferase, is important for pollen tube growth and embryogenesis in Arabidopsis. Plant Physiology 131:547-557. Grünwald, C., K. Ruel, Y. S. Kim and U. Schmitt. 2002. On the cytochemistry of cell wall formation in poplar trees. Plant Biology 4:13-21. Gregory, A. C. E., A. P. O'Connell and G. P. Bolwell. 1998. Xylans. Biotechnology and Genetic Engineering Reviews 15:439-455. Hall, J., G. W. Black, L. M. A. Ferreira, S. J. Millwardsadler, B. R. S. Ali, G. P. Hazlewood and H. J. Gilbert. 1995. The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel. Biochemical Journal 309:749-756. Hazen, S. P., J. S. Scott-Craig and J. D. Walton. 2002. Cellulose synthase-like genes of rice. Plant Physiology 128:336-340. Henrissat, B. and G. J. Davies. 2000. Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiology 124:1515-1519. Hervé, C., A. Rogowski, H. J. Gilbert and J. P. Knox. 2009. Enzymatic treatments reveal differential capacities for xylan recognition and degradation in primary and secondary plant cell walls. Plant Journal 58:413-422. Hill, J., E. Nelson, D. Tilman, S. Polasky and D. Tiffany. 2006. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences of the United States of America 103:11206-11210. Hirotani, M., R. Kuroda, H. Suzuki and T. Yoshikawa. 2000. Cloning and expression of UDP-glucose:flavonoid 7-O-glucosyltransferase from hairy root cultures of Scutellaria baicalensis. Planta 210:1006-1013. Ishii, T. and T. Hiroi. 1990. Linkage of phenolic acids to cell-wall polysaccharides of bamboo shoot. Carbohydrate Research 206:297-310. Ishii, T., T. Hiroi and J. R. Thomas. 1990. Feruloylated xyloglucan and p-coumaroyl arabinoxylan oligosaccharides from bamboo shoot cell-walls. Phytochemistry 29:1999-2003. Jarvis, P., P. Dormann, C. A. Peto, J. Lutes, C. Benning and J. Chory. 2000. Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proceedings of the National Academy of Sciences of the United States of America 97:8175-8179. Johansson, M. H. and O. Samuelson. 1977. Reducing end groups in birch xylan and their alkaline degradation. Wood Science and Technology 11:251-263. Jones, L., G. B. Seymour and J. P. Knox. 1997. Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to 1,4-β-D-galactan. Plant Physiology 113:1405-1412. Jones, P. R., B. L. Moller and P. B. Hoj. 1999. The UDP-glucose:p-hydroxymandelonitrile-O-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. Isolation, cloning, heterologous expression, and substrate specificity. Journal of Biological Chemistry 274:35483-35491. Jorasch, P., D. C. Warnecke, B. Lindner, U. Zahringer and E. Heinz. 2000. Novel processive and nonprocessive glycosyltransferases from Staphylococcus aureus and Arabidopsis thaliana synthesize glycoglycerolipids, glycophospholipids, glycosphingolipids and glycosylsterols. European Journal of Biochemistry 267:3770-3783. Kim, J. S., T. Awano, A. Yoshinaga and K. Takabe. 2010. Temporal and spatial immunolocalization of glucomannans in differentiating earlywood tracheid cell walls of Cryptomeria japonica. Planta 232:545-554. Kim, J. S., T. Awano, A. Yoshinaga and K. Takabe. 2011. Occurrence of xylan and mannan polysaccharides and their spatial relationship with other cell wall components in differentiating compression wood tracheids of Cryptomeria japonica. Planta 233:721-735. Kim, J. S. and G. Daniel. 2012. Distribution of glucomannans and xylans in poplar xylem and their changes under tension stress. Planta 236:35-50. Knox, J. P., P. J. Linstead, J. King, C. Cooper and K. Roberts. 1990. Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181:512-521. Koch, K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology 7:235-246. Koshijima, T. and T. Watanabe. 2003. Characterization of hardwood LCCs. In Association Between Lignin and Carbohydrates in Wood and Other Plant Tissues. Ed. T. E. Timell. Springer, Berlin, pp 29-37. Kumar, M., S. Thammannagowda, V. Bulone, V. Chiang, K. H. Han, C. P. Joshi, S. D. Mansfield, E. Mellerowicz, B. Sundberg, T. Teeri and B. E. Ellis. 2009. An update on the nomenclature for the cellulose synthase genes in Populus. Trends in Plant Science 14:248-254. Lawoko, M., G. Henriksson and G. Gellerstedt. 2005. Structural differences between the lignin-carbohydrate complexes present in wood and in chemical pulps. Biomacromolecules 6:3467-3473. Lee, C. H., M. A. O'Neill, Y. Tsumuraya, A. G. Darvill and Z. H. Ye. 2007a. The irregular xylem9 mutant is deficient in xylan xylosyltransferase activity. Plant and Cell Physiology 48:1624-1634. Lee, C. H., Q. Teng, W. L. Huang, R. Q. Zhong and Z. H. Ye. 2009a. Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant and Cell Physiology 50:1075-1089. Lee, C. H., Q. Teng, W. L. Huang, R. Q. Zhong and Z. H. Ye. 2009b. The F8H glycosyltransferase is a functional paralog of FRA8 involved in glucuronoxylan biosynthesis in Arabidopsis. Plant and Cell Physiology 50:812-827. Lee, C. H., R. Q. Zhong, E. A. Richardson, D. S. Himmelsbach, B. T. McPhail and Z. H. Ye. 2007b. The PARVUS gene is expressed in cells undergoing secondary wall thickening and is essential for glucuronoxylan biosynthesis. Plant and Cell Physiology 48:1659-1672. Lee, H. and I. Raskin. 1999. Purification, cloning, and expression of a pathogen inducible UDP-glucose:salicylic acid glucosyltransferase from tobacco. Journal of Biological Chemistry 274:36637-36642. Lerouge, P., M. Cabanes-Macheteau, C. Rayon, A. C. Fischette-Laine, V. Gomord and L. Faye. 1998. N-glycoprotein biosynthesis in plants: Recent developments and future trends. Plant Molecular Biology 38:31-48. Lerouxel, O., D. M. Cavalier, A. H. Liepman and K. Keegstra. 2006. Biosynthesis of plant cell wall polysaccharides - a complex process. Current Opinion in Plant Biology 9:621-630. Liepman, A. H., C. G. Wilkerson and K. Keegstra. 2005. Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proceedings of the National Academy of Sciences of the United States of America 102:2221-2226. Lim, E. K., Y. Li, A. Parr, R. Jackson, D. A. Ashford and D. J. Bowles. 2001. Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. Journal of Biological Chemistry 276:4344-4349. Liu, Z. L., P. J. Slininger, B. S. Dien, M. A. Berhow, C. P. Kurtzman and S. W. Gorsich. 2004. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethlfuran. Journal of Industrial Microbiology and Biotechnology 31:345-352. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402-408. Lunn, J. E. and E. MacRae. 2003. New complexities in the synthesis of sucrose. Current Opinion in Plant Biology 6:208-214. Luo, C. D., D. L. Brink and H. W. Blanch. 2002. Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass and Bioenergy 22:125-138. Mackie, W. and R. D. Preston. 1968. The occurrence of mannan microfibrils in the green algae Codium gragile and Acetabularia crenulata. Planta 79:249-253. Maeda, Y., T. Awano, K. Takabe and M. Fujita. 2000. Immunolocalization of glucomannans in the cell wall of differentiating tracheids in Chamaecyparis obtusa. Protoplasma 213:148-156. Marcus, S. E., A. W. Blake, T. A. S. Benians, K. J. D. Lee, C. Poyser, L. Donaldson, O. Leroux, A. Rogowski, H. L. Petersen, A. Boraston, H. J. Gilbert, W. G. T. Willats and J. P. Knox. 2010. Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant Journal 64:191-203. Marcus, S. E., Y. Verhertbruggen, C. Herve, J. J. Ordaz-Ortiz, V. Farkas, H. L. Pedersen, W. G. T. Willats and J. P. Knox. 2008. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biology 8:60. Matheson, N. K. 1990. Mannose-based polysaccharides. In Methods in Plant Biochemistry. Ed. P. M. Dey. Academic Press, London, pp 371-413. Matsushita, Y., A. Kakehi, S. Miyawaki and S. Yasuda. 2004. Formation and chemical structures of acid-soluble lignin II: reaction of aromatic nuclei model compounds with xylan in the presence of a counterpart for condensation, and behavior of lignin model compounds with guaiacyl and syringyl nuclei in 72% sulfuric acid. Journal of Wood Science 50:136-141. McCartney, L., A. W. Blake, J. Flint, D. N. Bolam, A. B. Boraston, H. J. Gilbert and J. P. Knox. 2006. Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proceedings of the National Academy of Sciences of the United States of America 103:4765-4770. McCartney, L., S. E. Marcus and J. P. Knox. 2005. Monoclonal antibodies to plant cell wall xylans and arabinoxylans. Journal of Histochemistry and Cytochemistry 53:543-546. Meinke, D. and M. Koornneef. 1997. Community standards: A new series of guidelines for plant science - Community standards for Arabidopsis genetics. Plant Journal 12:247-253. Mellerowicz, E. J., M. Baucher, B. Sundberg and W. Boerjan. 2001. Unravelling cell wall formation in the woody dicot stem. Plant Molecular Biology 47:239-274. Meng, M., M. Geisler, H. Johansson, J. Harholt, H. V. Scheller, E. J. Mellerowicz and L. A. Kleczkowski. 2009. UDP-Glucose pyrophosphorylase is not rate limiting, but is essential in Arabidopsis. Plant and Cell Physiology 50:998-1011. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15:473-497. Myers, A. M., M. K. Morell, M. G. James and S. G. Ball. 2000. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiology 122:989-997. Nairn, C. J. and T. Haselkorn. 2005. Three loblolly pine CesA genes expressed in developing xylem are orthologous to secondary cell wall CesA genes of angiosperms. New Phytologist 166:907-915. O'Neill, M. A. and W. S. York. 2003. The composition and structure of plant primary cell walls. In The Plant Cell Wall. Ed. J. K. C. Rose. Blackwell Publishing, Oxford, pp 1-54. Panshin, A. J. and C. de Zeeux. 1980. Textbook of Wood Technology. McGraw-Hill, New York, 722 p. Pear, J. R., Y. Kawagoe, W. E. Schreckengost, D. P. Delmer and D. M. Stalker. 1996. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proceedings of the National Academy of Sciences of the United States of America 93:12637-12642. Pena, M. J., R. Q. Zhong, G. K. Zhou, E. A. Richardson, M. A. O'Neill, A. G. Darvill, W. S. York and Z. H. Ye. 2007. Arabidopsis irregular xylem8 and irregular xylem9: Implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19:549-563. Perrin, R. M., Z. H. Jia, T. A. Wagner, M. A. O'Neill, R. Sarria, W. S. York, N. V. Raikhel and K. Keegstra. 2003. Analysis of xyloglucan fucosylation in Arabidopsis. Plant Physiology 132:768-778. Persson, S., K. H. Caffall, G. Freshour, M. T. Hilley, S. Bauer, P. Poindexter, M. G. Hahn, D. Mohnen and C. Somerville. 2007. The Arabidopsis irregular xylem8 mutant is deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity. Plant Cell 19:237-255. Persson, T., J. L. Ren, E. Joelsson and A.-S. Jonsson. 2009. Fractionation of wheat and barley straw to access high-molecular-mass hemicelluloses prior to ethanol production. Bioresource Technology 100:3906-3913. Pomar, F., F. Merino and A. R. Barcelo. 2002. O-4-linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCl) reaction. Protoplasma 220:17-28. Ragauskas, A. J., C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer and T. Tschaplinski. 2006. The path forward for biofuels and biomaterials. Science 311:484-489. Reid, J. S. G., M. E. Edwards, C. A. Dickson, C. Scott and M. J. Gidley. 2003. Tobacco transgenic lines that express fenugreek galactomannan galactosyltransferase constitutively have structurally altered galactomannans in their seed endosperm cell walls. Plant Physiology 131:1487-1495. Reid, J. S. G., M. E. Edwards, M. J. Gidley and A. H. Clark. 1992. Mechanism and regulation of galactomannan biosynthesis in developing leguminous seeds. Biochemical Society Transactions 20:23-26. Reis, D. and B. Vian. 2004. Helicoidal pattern in secondary cell walls and possible role of xylans in their construction. Comptes Rendus Biologies 327:785-790. Reis, D., B. Vian and J. C. Roland. 1994. Cellulose-glucuronoxylans and plant cell wall structure. Micron 25:171-187. Richmond, T. A. and C. R. Somerville. 2000. The cellulose synthase superfamily. Plant Physiology 124:495-498. Sarko, A. and R. Muggli. 1974. Packing analysis of carbohydrates and polysaccharides III: Valonia cellulose and cellulose II. Macromolecules 7:486-494. Saxena, I. M. and R. M. Brown. 1995. Identification of a second cellulose synthase gene (acsAII) in Acetobacter xylinum. Journal of Bacteriology 177:5276-5283. Scheller, H. V. and P. Ulvskov. 2010. Hemicelluloses. Annual Review of Plant Biology 61:263-289. Schlesinger, W. H. and J. Lichter. 2001. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411:466-469. Selvendran, R. R. and M. A. O'Neill. 1987. Isolation and analysis of cell walls from plant material. In Methods of Biochemical Analysis. Ed. D. Glick. John Wiley & Sons, New York, pp 25-153. Shimizu, K., M. Ishihara and T. Ishihara. 1976. Hemicellulases of brown rotting fungus, Tyromyces palustris. II. The oligosaccharides from the hydrolysate of a hardwood xylan by the intracellular xylanase. Mokuzai Gaikkashi 22:618-625. Shoseyov, O., Z. Shani and I. Levy. 2006. Carbohydrate binding modules: Biochemical properties and novel applications. Microbiology and Molecular Biology Reviews 70:283-295. Sjöström, E. 1993. Wood Chemistry: Fundamentals and Applications. Academic Press, San Diego, 293 p. Somerville, C., S. Bauer, G. Brininstool, M. Facette, T. Hamann, J. Milne, E. Osborne, A. Paredez, S. Persson, T. Raab, S. Vorwerk and H. Youngs. 2004. Toward a systems approach to understanding plant cell walls. Science 306:2206-2211. Song, J. Y., S. F. Lu, Z. Z. Chen, R. Lourenco and V. L. Chiang. 2006. Genetic transformation of Populus trichocarpa genotype Nisqually-1: A functional genomic tool for woody plants. Plant and Cell Physiology 47:1582-1589. Suzuki, K., E. Ingold, M. Sugiyama and A. Komamine. 1991. Xylan synthase activity in isolated mesophyll-cells of Zinnia elegans during differentiation to tracheary elements. Plant and Cell Physiology 32:303-306. Suzuki, S., L. G. Li, Y. H. Sun and V. L. Chiang. 2006. The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiology 142:1233-1245. Szerszen, J. B., K. Szczyglowski and R. S. Bandurski. 1994. iaglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid. Science 265:1699-1701. Taherzadeh, M. J., L. Gustafsson, C. Niklasson and G. Liden. 2000. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 53:701-708. Taherzadeh, M. J. and K. Karimi. 2007. Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: A review. Bioresources 2:707-738. Taherzadeh, M. J. and K. Karimi. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences 9:1621-1651. Takahashi, J., U. J. Rudsander, M. Hedenstrom, A. Banasiak, J. Harholt, N. Amelot, P. Immerzeel, P. Ryden, S. Endo, F. M. Ibatullin, H. Brumer, E. del Campillo, E. R. Master, H. V. Scheller, B. Sundberg, T. T. Teeri and E. J. Mellerowicz. 2009. KORRIGAN1 and its aspen homolog PttCel9A1 decrease cellulose crystallinity in Arabidopsis stems. Plant and Cell Physiology 50:1099-1115. Taylor, N. G. 2008. Cellulose biosynthesis and deposition in higher plants. New Phytologist 178:239-252. Taylor, N. G., W. R. Scheible, S. Cutler, C. R. Somerville and S. R. Turner. 1999. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11:769-779. Teeri, T. T., A. Koivula, M. Linder, G. Wohlfahrt, C. Divne and T. A. Jones. 1998. Trichoderma reesei cellobiohydrolases: Why so efficient on crystalline cellulose? Biochemical Society Transactions 26:173-178. Tokoh, C., K. Takabe, J. Sugiyama and M. Fujita. 2002a. Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9:65-74. Tokoh, C., K. Takabe, J. Sugiyama and M. Fujita. 2002b. CP/MAS 13C NMR and electron diffraction study of bacterial cellulose structure affected by cell wall polysaccharides. Cellulose 9:351-360. Tomlinson, I. M. and L. J. Holt. 2001. Protein profiling comes of age. Genome Biology 2:1004.1001-1004.1003. Tormo, J., R. Lamed, A. J. Chirino, E. Morag, E. A. Bayer, Y. Shoham and T. A. Steitz. 1996. Crystal structure of a bacterial family-III cellulose-binding domain: A general mechanism for attachment to cellulose. EMBO Journal 15:5739-5751. Turner, S. R. and C. R. Somerville. 1997. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689-701. Tuskan, G. A.S. DiFazioS. JanssonJ. BohlmannI. GrigorievU. HellstenN. PutnamS. RalphS. RombautsA. SalamovJ. ScheinL. SterckA. AertsR. R. BhaleraoR. P. BhaleraoD. BlaudezW. BoerjanA. BrunA. BrunnerV. BusovM. CampbellJ. CarlsonM. ChalotJ. ChapmanG. L. ChenD. CooperP. M. CoutinhoJ. CouturierS. CovertQ. CronkR. CunninghamJ. DavisS. DegroeveA. DejardinC. DepamphilisJ. DetterB. DirksI. DubchakS. DuplessisJ. EhltingB. EllisK. GendlerD. GoodsteinM. GribskovJ. GrimwoodA. GrooverL. GunterB. HambergerB. HeinzeY. HelariuttaB. HenrissatD. HolliganR. HoltW. HuangN. Islam-FaridiS. JonesM. Jones-RhoadesR. JorgensenC. JoshiJ. KangasjarviJ. KarlssonC. KelleherR. KirkpatrickM. KirstA. KohlerU. KalluriF. LarimerJ. Leebens-MackJ. C. LepleP. LocascioY. LouS. LucasF. MartinB. MontaniniC. NapoliD. R. NelsonC. NelsonK. NieminenO. NilssonV. PeredaG. PeterR. PhilippeG. PilateA. PoliakovJ. RazumovskayaP. RichardsonC. RinaldiK. RitlandP. RouzeD. RyaboyJ. SchmutzJ. SchraderB. SegermanH. ShinA. SiddiquiF. SterkyA. TerryC. J. TsaiE. UberbacherP. UnnebergJ. VahalaK. WallS. WesslerG. YangT. YinC. DouglasM. MarraG. SandbergY. Van de Peer and D. Rokhsar. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596-1604. Tuskan, G. A., S. P. DiFazio and T. Teichmann. 2004. Poplar genomics is getting popular: The impact of the poplar genome project on tree research. Plant Biology 6:2-4. Vian, B., D. Reis, M. Mosiniak and J. C. Roland. 1986. The glucuronoxylans and the helicoidal shift in cellulose microfibrils in linden wood: cytochemistry in muro and on isolated molecules. Protoplasma 131:185-199. Willats, W. G. T., P. M. Gilmartin, J. D. Mikkelsen and J. P. Knox. 1999. Cell wall antibodies without immunization: Generation and use of de-esterified homogalacturonan block-specific antibodies from a naive phage display library. Plant Journal 18:57-65. Willats, W. G. T. and J. P. Knox. 2003. Molecules in context: Probes for cell wall analysis. In The Plant Cell Wall. Ed. J. K. C. Rose. Blackwell Publishing/CRC Press, Oxford, pp 92-110. Willats, W. G. T., C. G. Steele-King, L. McCartney, C. Orfila, S. E. Marcus and J. P. Knox. 2000. Making and using antibody probes to study plant cell walls. Plant Physiology and Biochemistry 38:27-36. Winter, H. and S. C. Huber. 2000. Regulation of sucrose metabolism in higher plants: Localization and regulation of activity of key enzymes. Critical Reviews in Plant Sciences 19:31-67. Yasuda, S., K. Fukushima and A. Kakehi. 2001. Formation and chemical structures of acid-soluble lignin I: sulfuric acid treatment time and acid-soluble lignin content of hardwood. Journal of Wood Science 47:69-72. Yasuda, S. and N. Murase. 1995. Chemical structures of sulfuric acid lignin. XII. Reaction of lignin models with carbohydrates in 72% H2SO4. Holzforschung 49:418-422. Yasuda, S. and K. Ota. 1987. Chemical structures of sulfuric acid lignin. X. Reaction of syringylglycerol-β-syringyl ether and condensation of syringyl nucleus with guaiacyl lignin model compounds in sulfuric acid. Holzforschung 41:59-65. Yeh, T. F., T. Yamada, E. Capanema, H. M. Chang, V. Chiang and J. F. Kadla. 2005. Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy. Journal of Agricultural and Food Chemistry 53:3328-3332. Yin, L., Y. Verhertbruggen, A. Oikawa, C. Manisseri, B. Knierim, L. Prak, J. K. Jensen, J. P. Knox, M. Auer, W. G. T. Willats and H. V. Scheller. 2011. The cooperative activities of CSLD2, CSLD3, and CSLD5 are required for normal Arabidopsis development. Molecular Plant 4:1024-1037. Zhong, R. Q., M. J. Pena, G. K. Zhou, C. J. Nairn, A. Wood-Jones, E. A. Richardson, W. H. Morrison, A. G. Darvill, W. S. York and Z. H. Ye. 2005. Arabidopsis fragile fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell 17:3390-3408. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64233 | - |
| dc.description.abstract | 由於石油資源日漸枯竭,因此開發再生的替代能源一直是重要的研究課題。生質乙醇(Bioethanol)為目前重要的再生能源之一,可藉由發酵木質纖維中的單糖來製成。唯目前工業發酵的製程尚以利用六碳糖(Hexose)為最有效率的方法,因此利用基因調控來提高木質纖維中六碳糖的含量將有助於能源作物的開發與利用。甘露聚醣(Mannan)為細胞壁多醣之一,是裸子植物細胞壁中含量最多的非纖維素多醣(含量約20%),同時也是被子植物細胞壁非纖維素多醣的次要組成分之一(含量2 - 5%),其單糖的六碳結構非常適合作為生質乙醇生產的材料。本研究首先以Mannan之專一性抗體LM21對野生型灰楊(Populus trichocarpa)不同節間之莖部組織進行免疫標定,以觀察Mannan於植物生長過程中的累積情形。結果顯示Mannan在植物發育初期,最先堆積於初生木質部(Primary xylem),並隨著植株的次級生長而逐漸累積於木質部及韌皮纖維(Phloem fiber)的次級細胞壁中。另一方面,LM21的訊號也會受到果膠質(Pectin)及乙醯基(Acetyl group)的遮蔽,但不受木質化(Lignification)及木聚醣(Xylan)堆積的影響。本研究另以轉基因方式利用35S啟動子(Promoter)正向調控灰楊Mannan生合成基因PtiCSLA1(Cellulose synthase-like A1)表現,並以即時定量聚合酶鏈鎖反應(Quantitative real time polymerase chain reaction, qRT-PCR)分析基因表現量,以酵素連結免疫吸附試驗(Enzyme-linked immunosorbent assay, ELISA)分析酵素活性,再以醣類分析及免疫標定技術觀察野生型及轉基因型植株細胞壁多醣的組成及分布。醣類分析的結果顯示,利用單一35S啟動子正向調控PtiCSLA1基因表現的植株,其Mannan含量最高可達到野生型植株的1.5倍。同時免疫標定的結果顯示轉殖株的Mannan含量確實增加,證實灰楊PtiCSLA1基因參與Mannan的生合成。 | zh_TW |
| dc.description.abstract | Due to fossil fuel reserve will be completely depleted, it has been an important issue to seek any alternative and renewable source for fuels. Bioethanol is regarded as the most potential alternative for fossil fuel substitutes. Bioethanol can obtain from fermentation of sugars in lignocelluloses. For current industrial-based fermentation, hexoses are the preferred substrates for ethanol production. Mannan polysaccharides are the most abundant non-cellulosic cell wall polysaccharides in gymnosperm (~20%), however they are minor non-cellulosic polysaccharides in angiosperm (2 - 5%). Mannose is one of hexose members and suitable for bioethanol production. In this study, mannan specific antibody LM21 was used to investigate mannan deposition in wild-type black cottonwood (Populus trichocarpa) stems from different internodes. Results of immunolabeling reveal that mannan deposits in primary xylem in early developmental stages, and then accumulates in secondary walls of xylem cells and phloem fibers during wood formation. On the other hand, LM21 signals can be masked by pectin and acetyl group, but are less affected by lignification and xylan deposition. To investigate the function of PtiCSLA1 (Cellulose synthase-like A1), 35S promoter was used to overexpress PtiCSLA1 in Populus trichocarpa. Gene expression were analyzed by qRT-PCR (Quantitative real time polymerase chain reaction), and enzyme activities were analyzed by enzyme-linked immunosorbent assay (ELISA), and wood compositions were analyzed through carbohydrate analysis and immunolabeling. Results of carbohydrate analysis revealed that mannan contents of PtiCSLA1 transgenic lines driven by single 35S promoter were higher than wild-type plants, and the highest content to be 1.5 fold of that in wild-type plants. Results of immunolabeling by mannan specific antibody also revealed that LM21 signals in transgenic lines were stronger than that of wild-type plants, which provides a strong evidence to support PtiCSLA1 gene involving in mannan biosynthesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:36:04Z (GMT). No. of bitstreams: 1 ntu-101-R98625008-1.pdf: 4863359 bytes, checksum: ce888656c2ef188fd10331e21bfeffad (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XV 縮寫說明 XVII 第一章、 前言 1 第二章、 文獻回顧 3 2.1 木質纖維多醣之生合成 3 2.2 CSLA基因表現 7 2.3 甘露聚醣在植物體中的功能及可能扮演的角色 10 2.4 木材性質改質之目的 12 2.5 以免疫標定技術分析細胞壁多醣之組成 14 2.5.1 單株抗體 14 2.5.2 醣類結合模組 20 第三章、 材料與方法 23 3.1 植物材料及生長條件 23 3.2 載體(Vector) 23 3.3 菌株 24 3.4 單株抗體及醣類結合模組 24 3.5 水解酵素 24 3.6 PtiCSLA1基因轉殖株之建立 25 3.6.1 灰楊PtiCSLA1基因專一性序列片段之選殖 25 3.6.2 表現質體之建構 26 3.6.3 灰楊及菸草組織之轉殖 26 3.7 灰楊轉基因植株之確立 28 3.8 PtiCSLA1基因表現量分析 28 3.8.1 灰楊木質部組織及菸草葉部組織總量 RNA的萃取 28 3.8.2 即時定量聚合酶鏈鎖反應(Quantitative real time PCR, qRT-PCR) 29 3.8.3 反轉錄聚合酶鏈鎖反應(Reverse transcription PCR, RT-PCR) 29 3.9 PtiCSLA1蛋白質表現 30 3.9.1 木質部PtiCSLA1之萃取與純化 30 3.9.2 PtiCSLA1專一性抗體的製備 31 3.9.3 西方墨點法(Western blot) 31 3.9.4 PtiCSLA1酵素活性分析 32 3.10 免疫螢光標定分析細胞壁醣類分布 32 3.10.1 莖部組織的包埋與切片 32 3.10.2 切片之前處理 33 3.10.3 免疫螢光標定 33 3.11 莖部組織切片之組織化學染色 34 3.11.1 Phloroglucinol-Hydrochloric acid staining 34 3.11.2 Safranin-O and Fast Green double staining 34 3.12 木材組成分分析 35 3.12.1 木粉之醇苯萃取 35 3.12.2 木質素含量分析 35 3.12.3 醣類含量分析 36 3.13 統計分析 36 第四章、 結果與討論 37 4.1 野生型灰楊樹莖部組織之細胞壁醣類分布 37 4.1.1 不同生長時期之莖部組織分析 37 4.1.2 前處理對莖部組織免疫螢光標定之影響 40 4.2 灰楊轉殖株木質部組織之PtiCSLA1基因表現量分析 48 4.2.1 PtiCSLA1轉基因灰楊的確立 48 4.2.2 PtiCSLA1基因表現量 49 4.3 PtiCSLA1抗血清之專一性測試及酵素活性分析 51 4.4 灰楊轉殖株之木質部細胞壁組成分分析 53 4.4.1 細胞壁醣類組成分析 53 4.4.2 木質素含量分析 56 4.4.3 灰楊轉殖株莖部切片之組織化學染色及免疫螢光標定 57 4.5 野生型灰楊及PtiCSLA1轉殖株其木質部細胞壁組成分之相關分析 64 4.6 菸草轉殖株之PtiCSLA1基因表現分析 68 4.7 菸草轉殖株莖部組織之免疫螢光標定及細胞壁組成分分析 69 4.7.1 菸草轉殖株莖部組織免疫螢光標定分析 69 4.7.2 菸草轉殖株木質部細胞壁組成分分析 71 第五章、 結論 73 第六章、 參考文獻 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 灰楊 | zh_TW |
| dc.subject | 細胞壁 | zh_TW |
| dc.subject | 類纖維素合成酶 | zh_TW |
| dc.subject | 甘露聚醣 | zh_TW |
| dc.subject | 免疫標定 | zh_TW |
| dc.subject | 木質部成熟 | zh_TW |
| dc.subject | Immunolabeling | en |
| dc.subject | Populus trichocarpa | en |
| dc.subject | Cell walls | en |
| dc.subject | Mannan | en |
| dc.subject | Xylem maturation | en |
| dc.subject | Cellulose synthase-like (CSL) | en |
| dc.title | 野生型灰楊及PtiCSLA1增量轉殖株之細胞壁特性分析 | zh_TW |
| dc.title | Cell Wall Characteristics of Wild-type Populus trichocarpa and Overexpressed PtiCSLA1 Transgenics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張上鎮(Shang-Tzen Chang),王升陽(Sheng-Yang Wang),張淑華(Shu-Hwa Chang),劉逸軒(I-Hsuan Liu) | |
| dc.subject.keyword | 灰楊,細胞壁,類纖維素合成酶,甘露聚醣,免疫標定,木質部成熟, | zh_TW |
| dc.subject.keyword | Populus trichocarpa,Cell walls,Cellulose synthase-like (CSL),Mannan,Immunolabeling,Xylem maturation, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
