Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64224
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈偉強
dc.contributor.authorWei-Lun Sunen
dc.contributor.author孫偉倫zh_TW
dc.date.accessioned2021-06-16T17:35:38Z-
dc.date.available2017-08-20
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citationAlspaugh, J. A., Cavallo, L. M., Perfect, J. R., Heitman, J., 2000. RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol. Microbiol 36, 352-365.
Alspaugh, J. A., Davidson, R. C., Heitman, J., 2000. Morphogenesis of Cryptococcus neoformans. Contrib. Microbiol. 5, 217-38.
Baladron, V., Ufano, S., Duenas, E., Martin, A. B., Cuadrado, F. D. R. and Carlos, R. V. D. A., 2002. Eng1p, an endo-1,3-β-glucanase localized at the daughter side of the septum, is involved in cell separation in Saccharomyces cerevisiae. Eukaryot. Cell 1, 774-786.
Banuett, F., Quintanilla Jr. R. H., Reynaga-Pena, C. G., 2008. The machinery for cell polarity, cell morphogenesis, and the cytoskeleton in the basidiomycete fungus Ustilago maydis--A survey of the genome sequence. Fungal Genet. Biol. 45, S3-S14.
Bennett, J. E., Kwon-Chung, K. J., Howard, D. H., 1977. Epidemiologic differences among serotypes of Cryptococcus neoformans. Am. J. Epidemiol. 105, 582-586.
Breitkreutz, A., Choi, H., Sharom, J. R., Boucher, L., Neduva, V., Larsen, B., Lin, Z. Y., Breitkreutz, B. J., Stark, C., Liu, G., Ahn, J., Dewar-Darch, D., Reguly, T., Tang, X., Almeida, R., Qin, Z. S., Pawson, T., Gingras, A. C., Nesvizhskii, A. I., Tyers, M., 2010 A global protein kinase and phosphatase interaction network in yeast. Science 328, 1043-1046.
Cabib, E., Duran, A., 2005. Synthase III-dependent chitin is bound to different acceptors depending on location on the cell wall of budding yeast. J. Biol. Chem. 280, 9170-9179.
Cabib, E., Roberts, R., Bowers, B., 1982. Synthesis of the yeast cell wall and its regulation. Annu. Rev. Biochem. 51, 763-793.
Cai, G., Moscatelli, A., Casino, C. D. and Cresti, M., 1996. Cytoplasmic motors and pollen tube growth. Sex. Plant Reprod. 9, 59-64.
Chant, J., 1994. Cell polarity in yeast. Trends in Genetics 10, 328-333.
Chew, E., Aweiss, Y., Lu, C.Y., Banuett, F., 2008. Fuz1, a MYND domain protein, is required for cell morphogenesis in Ustilago maydis. Mycologia 100, 31-46.
Clutterbuck, A. J., 1994. Mutants of Aspergillus nidulans deficient in nuclear migration during hyphal growth and conidiation. Microbiology 140, 1169–1174.
Colman-Lerner, A., Chin, T. E., Brent, R., 2001. Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 107, 739-750.
Cox, G. M., McDade, H. C., Chen, S. C., Tucker, S. C., Gottfredsson, M., Wright, L. C., Sorrell, T. C., Leidich, S. D., Casadevall, A., Ghannoum, M. A., Perfect, J. R., 2001. Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol. Microbiol. 39, 166-175.
Dadachova, E., Bryan, R. A., Howell, R. C., Schweitzer, A. D., Aisen, P., Nosanchuk, J. D., Casadevall, A., 2008. The radioprotective properties of fungal melanin are a function of its chemical composition, stable radical presence and spatial arrangement. Pigment Cell Melanoma Res. 21, 192-199.
Edman, J. C., Kwon-Chung, K. J., 1990. Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation. Mol. Cell. Biol. 10, 4538-4544.
Feinstein, P. G., Kornfeld, K., Hogness, D. S., Mann R. S., 1995. Identification of homeotic target genes in Drosophila melanogaster including nervy, a proto-oncogene homologue. Genetics 140, 573-86.
Feldmesser, M., Kress, Y., Novikoff P., Casadevall, A., 2000. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect. Immun. 68, 4225-4237.
Fischer, R. and Timberlake, W. E., 1995. Aspergillus nidulans apsA (anucleate primary sterigmata) encodes a coiled-coil protein necessary for nuclear positioning and completion of asexual development. J. Cell Biol. 128, 485-498.
Fu, J., Hettler, E., Wickes, B. L., 2006. Split marker transformation increases homologous integration frequency in Cryptococcus neoformans. Fungal Genet. Biol. 43, 200-212.
Granger, D. L., Perfect, J. R., Durack, D. T., 1985. Virulence of Cryptococcus neoformans: regulation of capsule synthesis by carbon dioxide. J. Clin. Invest.76, 508-516.
Gross, C. T., McGinnis, W., 1996. DEAF-1, a novel protein that binds an essential region in a deformed response element. EMBO J. 15, 1961-1970.
Guthrie, C., Fink, G. R., 1991. Guide to yeast genetics and molecular biology.Academic Press, San Diago.
Hull, C. M., Heitman, J., 2002. Genetics of Cryptococcus neoformans. Annu. Rev. Genet. 36, 557-615.
Idnurm, A. and Heitman, J., 2005. Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol. 3, e95..
James, P., Halladay, J., Craig, E. A., 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425-1436.
Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G., Gibson, T. J., 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23, 403-405
Ju, D., Wang, X., Xu, H., Xie, Y., 2008. Genome-wide analysis identifies MYND-domain protein Mub1 as an essential factor for Rpn4 ubiquitylation. Mol. Cell. Biol. 28, 1404-1412.
Kim, M. S., Kim, S. Y., Yoon, J. K., Lee, Y. W., Bahn, Y. S., 2009. An efficient gene-disruption method in Cryptococcus neoformans by double-joint PCR with NAT-split markers. Biochem. Biophys. Res. Commun. 390, 983-988.
Kozubowski, L., Heitman, J., 2010. Septins enforce morphogenetic events during sexual reproduction and contribute to virulence of Cryptococcus neoformans. Mol Microbiol. 75, 658-675.
Kruger, M., Fischer, R., 1998. Integrity of a Zn finger-like domain in SamB is crucial for morphogenesis in ascomycetous fungi. EMBO J. 17, 204-214.
Kwon-Chung, K. J., 1976. Morphogenesis of Filobasidiella neoformans, the Sexual State of Cryptococcus neoformans. Mycologia 68, 821-833.
Kwon-Chung, K. J., Rhodes J. C., 1986. Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect. Immun. 51, 218-223.
Levitz, S. M., 1991. The ecology of Cryptococcus neoformans and the epidemiology of cryptococcosis. Rev. Infect. Dis. 13, 1163-1169.
Lin, X., Hull, C. M. and Heitman, J., 2005. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434, 1017-1021.
Lin, X., Jackson, J. C., Feretzaki, M., Xue, C., Heitman, J., 2010. Transcription factors Mat2 and Znf2 operate cellular circuits orchestrating opposite- and same-sex mating in Cryptococcus neoformans. PLoS Genet. 6, e1000953.
Liu, K. H., Shen, W. C., 2011. Mating differentiation in Cryptococcus neoformans is negatively regulated by the Crk1 protein kinase. Fungal Genet. Biol. 48, 225-240.
Lu, Y. K., Sun, K. H., Shen, W. C., 2005. Blue light negatively regulates the sexual filamentation via the Cwc1 and Cwc2 proteins in Cryptococcus neoformans. Mol. Microbiol. 56, 480-491.
Lutterbach, B., Sun, D. X., Schuetz, J., Hiebert, S. W., 1998. The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein. Mol. Cell. Biol. 18, 3604-3611.
Lutterbach, B., Westendorf, J. J., Linggi, B., Patten, A., Moniwa, M., Davie, J. R., Huynh, K. D., Bardwell, V. J., Lavinsky, R. M., Rosenfeld, M. G., Glass, C., Seto, E., Hiebert, S. W., 1998. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol. Cell. Biol. 18, 7176-7184.
McMurray, M. A., Thorner, J., 2009. Septins: molecular partitioning and the generation of cellular asymmetry. Cell Div. 4, 18.
Moore, T. D., Edman, J. C., 1993. The a-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene. Mol. Biol. Cell. 13, 1962-1970.
Nosanchuk, J. D., Casadevall, A., 2003. The contribution of melanin to microbial pathogenesis. Cell Microbiol. 5, 203-223.
Owens, G. P., Hahn, W. E., Cohen, J. J., 1991. Identification of mRNAs associated with programmed cell death in immature thymocytes. Mol. Cell. Biol. 11, 4177-4188.
Powell, C. D., Quain, D. E., Smart, K. A., 2003. Chitin scar breaks in aged Saccharomyces cerevisiae. Microbiology 149, 3129-3137.
Pukkila-Worley, R., Gerrald, Q. D., Kraus, P. R., Boily, M. J., Davis, M. J., Giles, S. S., Cox, G. M., Heitman, J., Alspaugh, J. A., 2005. Transcriptional network of multiple capsule and melanin genes governed by the Cryptococcus neoformans cyclic AMP cascade. Eukaryot. Cell 4, 190-201.
Rolli, E., Ragni, E., Calderon, J., Porello, S., Fascio, U., Popolo, L., 2009. Immobilization of the glycosylphosphatidylinositol-anchored Gas1 protein into the chitin ring and septum is required for proper morphogenesis in yeast. Mol. Biol. Cell 20, 4856-4870.
Roncero, C., 2002. The genetic complexity of chitin synthesis in fungi. Curr. Genet. 41, 367-378.
Roncero, C. and Yolanda, S., 2010. Cell separation and the maintenance of cell integrity during cytokinesis in yeast: the assembly of a septum. Yeast 27, 521-530.
Rosas, A. L., Casadevall, A., 1997. Melanization affects susceptibility of Cryptococcus neoformans to heat and cold. FEMS Microbiol Lett. 153, 265-272.
Salas, S. D., Bennett, J. E., Kwon-Chung, K. J., Perfect, J. R., Williamson, P. R., 1996. Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. J. Exp. Med. 184, 377-386
Shen, W. C., Davidson, R. C., Cox, G. M. and Heitman, J.,2002. Pheromones stimulate mating and differentiation via paracrine and autocrine signaling in Cryptococcus neoformans. Eukaryot. Cell 1, 366-377.
Teh, E. M., Chai, C. C., Yeong, F. M., 2009. Retention of Chs2p in the ER requires N-terminal CDK1-phosphorylation sites. Cell Cycle 8, 2964-2974.
Tucker, S. C., Casadevall, A., 2002. Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc Natl Acad Sci USA 99, 3165-3170.
Vrabioiu, A. M., Mitchison, T. J., 2006. Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature 443, 466-469.
Wang, L. I., Lin, Y. S., Liu, K.H., Jong, A. Y., Shen, W. C., 2011. Cryptococcus neoformans mediator protein Ssn8 negatively regulates diverse physiological processes and is required for virulence. PLoS ONE 6, e19162.
Weirich, C. S., Erzberger, J. P., Barral, Y., 2008. The septin family of GTPases: architecture and dynamics. Nat. Rev. Mol. Cell Biol. 9, 478-489.
Yamaguchi, M., Ohkusu, M., Biswas, S. K., Kawamoto, S., 2007. Cytological study of cell cycle of the pathogenic yeast Cryptococcus neoformans. Jpn. J. Med. Mycol. 48, 147-152.
Yeh, Y. L., Lin, Y. S., Su, B. J., Shen, W. C., 2009. A screening for suppressor mutants reveals components involved in the blue light-inhibited sexual filamentation in Cryptococcus neoformans. Fungal Genet. Biol. 46, 42-54.
Zaragoza, O., Fries B. C., Casadevall, A., 2003. Induction of capsule growth in Cryptococcus neoformans by mammalian serum and CO2. Infect. Immun. 71, 6155-6164.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64224-
dc.description.abstract隱球菌 (Cryptococcus neoformans),為一伺機性人類病原真菌,在分類地位上屬於擔子菌,具有酵母菌與菌絲兩種形態。隱球菌存在MATa與MATα兩種交配型細胞,在氮素源缺乏的環境下,MATa與MATα 細胞產生接合管進行細胞融合,並產生雙核生殖菌絲,擔子柄及擔孢子完成有性生活史。本實驗室過去的研究發現,隱球菌藉由Cwc1與Cwc2兩蛋白質形成之複合體,在光照環境下,感應藍光抑制雙核生殖菌絲的生長。為了進一步瞭解藍光抑制雙核菌絲生長的機制,我們利用農桿菌轉殖系統 (Agrobacterium-mediated insertional mutagenesis),針對CWC1過度表現株進行逢機突變,並於持續光照環境下,篩選表現型由雙核生殖菌絲完全被抑制回復為可生長雙核生殖菌絲的突變株,藉以找出與藍光調控菌絲生長有關的下游基因。其中一株回復突變株EE24,進一步分析發現T-DNA插入破壞隱球菌MUB1基因啓動子序列。啤酒酵母菌 (Saccharomyces cerevisiae) MUB1基因為隱球菌MUB1之同源基因,在細胞中參與蛋白酶體轉錄因子Rpn4之泛素化,並且突變株呈現多聚體細胞 (multi-budding) 之性狀。本研究嘗試探討MUB1基因在隱球菌中所扮演之角色,結果發現MUB1基因突變,會造成隱球菌37°C生長之缺陷,且酵母細胞亦呈現多聚體之性狀,深入研究發現隱球菌mub1突變株酵母細胞在出芽分裂上發生缺失。此外,突變株亦無法維持有性生殖菌絲之正常形態發育,無法產生子代。有趣的是,本研究發現,隱球菌MUB1基因,亦參與負向調控MATα與MATa隱球菌單性有性生殖 (same sex mating) 之初期發育。除此之外,研究顯示MUB1基因亦和隱球菌致病因子莢膜之形成調控有關。綜合本研究之結果,MUB1基因為隱球菌酵母細胞形態發生及有性生殖發育重要之調控因子。zh_TW
dc.description.abstractCryptococcus neoformans is a heterothallic basidiomycete that grows vegetatively as yeast cells and produces mating filaments in the sexual state. Mating initiates when MATa and MATα cells conjugate and fuse, and then dikaryotic sexual filaments are subsequently produced. Generation of final fruiting structures basidia and meiotic progeny basidiospores leads to completion of the sexual cycle. Prior studies have revealed that C. neoformans Cwc1 and Cwc2 proteins are two central photoregulators which form a complex to inhibit the production of sexual filaments upon blue light irradiation. To reveal the detailed light response networks, a genome wide mutagenesis screen was conducted and components involved in light-mediated filamentation pathway have been identified. In this study, a suppressor mutant EE24 was characterized and T-DNA was found to insert at the upstream regulatory region of C. neoformans MUB1 gene, a homologue of Saccharomyces cerevisiae MUB1 (multi-budding) gene. In S. cerevisiae, Mub1p is a MYND domain-containing protein required for ubiquitination and turnover of Rpn4p, a transcription factor of proteasome genes. Deletion of C. neoformans MUB1 gene caused compromised growth at 37°C. C. neoformans mub1 mutants similarly displayed a multiple-budding phenotype and altered structures of bud scars were observed. Furthermore, morphogenesis of dikaryotic sexual filaments and generation of basidiospores were defective in the mub1 bilateral cross. Interestingly, early stages of same sex mating was negatively regulated by Mub1. Our studies demonstrate that C. neoformans MUB1 is an important gene that regulates yeast cell morphogenesis and mating differentiation.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:35:38Z (GMT). No. of bitstreams: 1
ntu-101-R98633018-1.pdf: 3186965 bytes, checksum: 1f8108eb1efadbc7693e11a738942e21 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
致謝 i
摘要 ii
Abstract iii
第一章 導論 1
1.1 隱球菌Cryptococcus neoformans 2
1.1 隱球菌生活史 2
1.2 隱球菌之光反應研究 3
1.3 CWC1基因過度表現株與農桿菌轉殖突變株篩選 4
1.4 隱球菌MUB1 基因同源基因之研究 6
1.5 酵母菌之出芽分裂 7
第二章 材料與方法 9
2.1 實驗菌株與培養條件 9
2.2 EE24轉殖株之T-DNA 之插入位置確定 9
2.3 隱球菌mub1突變株之建構與篩選 10
2.4 隱球菌mub1+ MUB1之回復突變株建構與篩選 10
2.5 隱球菌MUB1過度表株之構築與篩選 11
2.6 隱球菌之細胞壁抗性與生長測定分析 11
2.7 隱球菌之黑色素生合成分析 12
2.8 隱球菌之莢膜生合成分析 12
2.9 有性生殖細胞融合分析 12
2.10 基因重組子代分析 13
2.11 隱球菌Mub1蛋白之分析與同源蛋白研究 13
2.12 有性生殖階段之基因RNA表現分析 14
2.13 南方墨點雜合分析 14
2.14 隱球菌有性生殖分析 15
2.15 隱球菌單核菌絲分析 15
2.16 穿透式電子顯微鏡 16
2.17 細胞染色與顯微鏡觀察 16
2.18 免疫螢光染色分析 17
第三章 結果 18
3.1 EE24農桿菌轉殖株之確認 18
3.2 隱球菌Mub1蛋白之分析與同源研究 19
3.3 隱球菌mub1突變株之建構與篩選 20
3.4 隱球菌MUB1過度表現突變株之建構 21
3.5 MUB1基因缺失導致隱球菌酵母型態細胞分裂異常 21
3.6 mub1突變株影響隱球菌37°C生長速率 23
3.7 mub1 突變株使隱球菌形成較小之莢膜 23
3.8 mub1突變株不影響隱球菌黑色素生合成 24
3.9 mub1突變株減少有性生殖菌絲生長與融合細胞之生合成 24
3.10 MUB1基因缺失影響隱球菌有性生殖菌絲延長生長與細胞核分布 25
3.11 MUB1基因缺失使隱球菌無法產生子代 26
3.12 MUB1基因調控隱球菌有性生殖相關基因之表現 26
3.13 MUB1基因與隱球菌單核菌絲生長 28
3.14隱球菌MUB1基因受CRK1基因調控 29
第四章 討論 30
圖 38
表 61
參考文獻 64
圖目錄
圖一、EE24之有性生殖菌絲回復生長性狀是由MUB1基因缺失所造成 39
圖二、隱球菌Mub1之同源蛋質白與活性區域之胺基酸序列比對結果 40
圖三、隱球菌mub1突變株之建構與確認圖 42
圖四、隱球菌MUB1過度表現株之MUB1基因表現定量結果 43
圖五、隱球菌mub1突變株酵母形態細胞之形態發生異常 45
圖六、隱球菌mub1突變株酵母細胞之形態發生異常 46
圖七、mub1突變株在37°C下生長有所缺陷 48
圖八、隱球菌mub1 突變株與MUB1過度表現株皆會造成莢膜變小49
圖九、MUB1基因不影響隱球菌黑色素之生合成 50
圖十、mub1突變株影響有性生殖菌絲之正常生長與減少融合細胞之生產生 51
圖十一、MUB1基因缺失影響隱球菌有性生殖菌絲延長生長與細胞核分佈 52
圖十二、MUB1基因缺失使隱球菌無法產生子代 55
圖十三、MUB1基因調控隱球菌有性生殖相關基因之表現 56
圖十四、MUB1基因調控隱球菌單性有性生殖 57
圖十五、隱球菌 Mub1 可能作用於Crk1 訊息途徑之下游 58
圖十六、隱球菌Mub1蛋白之作用模式圖 60
表目錄
表一、本研究使用之菌株 62
表二、本研究使用之PCR引子 63
dc.language.isozh-TW
dc.titleMub1蛋白質調控隱球菌有性生殖與酵母細胞形態發生zh_TW
dc.titleMub1 protein regulates mating differentiation and yeast cell morphogenesis in Cryptococcus neoformansen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee藍忠昱,黃偉邦,曾顯雄
dc.subject.keyword隱球菌,MUB1,單性有性生殖 (same sex mating),multi-budding,zh_TW
dc.subject.keywordCryptococcus neoformans,Multi-budding,Same sex mating,Cell Morphogenesis,mating,Light response,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2012-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
3.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved