請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64220
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 董成淵 | |
dc.contributor.author | Pei-Chia Liu | en |
dc.contributor.author | 劉佩佳 | zh_TW |
dc.date.accessioned | 2021-06-16T17:35:26Z | - |
dc.date.available | 2012-08-16 | |
dc.date.copyright | 2012-08-16 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-15 | |
dc.identifier.citation | [1]http://www.wormatlas.org/.
[2]Caenorhabditis Genetics Center , http://www.cbs.umn.edu/CGC/. [3]Alan F. Bird , The Structure of Nematodes. [4]Mark F.Bear, Barry W.Connors, Michael A. Paradiso, Neuroscience-exploring the brain 2nd. [5]Physiol Rev84:1097–1153,2004;10.1152/physrev.00043, 2003. [6]Samuel X Guo, Frederic Bourgeois, Trushal Chokshi, Nicholas J Durr, Massimo A Hilliard, Nikos Chronis&AdelaBen-Yakar, Femtosecond laser nanoaxotomy lab-on-achip for in vivo nerve regeneration studies, Nature Methods, 2008. [7]http://www.csghs.tp.edu.tw/~captain/biocaptain/3-1.pdf. [8]http://www.csghs.tp.edu.tw/~captain/biocaptain/3-1.pdf. [9]http://www.cryst.bbk.ac.uk/PPS2/course/section11/assembli.html. [10]Allen Ehrlicher, Timo Betz, Bjorn Stuhrmann, Michael Go gler,Daniel Koch, Kristian Franze, Yunbi Lu, and Josef Kas, Methods in Cell Biology, Vol. 83, 2007 [11]http://www.olympusmicro.com [12]JeffW Lichtman and Jose-Anlel Comchello,Fluorecence microscopy,Nature methods, 2005. [13]G. G. Stokes, On the Change of Refrangibility of Light, Phil. Trans. R. Soc. Lond, 1852 [14]Irene Georgakoudi, Brian C. Jacobson, Markus G. Muller, et al. , NAD(P)H and Collagen as in Vivo Quantitative Fluorescent Biomarkers of Epithelial Precancerous Changes,Cancer Res,2002. [15]Martin Chalfie, Yuan Tu, Ghia Euskirchen, William W. Ward,Douglas C. Prasherf, Green Fluorescent Protein as a Marker for Gene Expression,Science,Vol.263,1994 [16]Peter t.C.So, Chen Y. Dong, Barry R.Masters and Keith M.Berland, Two-Photon Excitation Fluorescence Microscopy, Annu.Rev.Biomed.Eng, 2000 [17]Max Born and Emil Wolf, Principles of Optics 7th, 2003 [18]C.Y.Dong, K. Koening, P.So, Characterizing point spread functions of two-photon fluorescence microscopy in turbid, Journal of Biomedical Optics, 2003 [19]Markolf H. Niemz , Laser-Tissue Interactions Fundamentals and Applications [20]A. Vogel, J. Noack,G. Huttman,G. Paltauf, Mechanisms of femtosecond laser nanosurgery of cells and tissues,Appl. Phys. B 81, 1015–1047,2005 [21]Perry S. Binder, MD; George O. Waring III, MD; Peter N. Arrowsmith, MD; Charlie Wang, MD, Histopathology of Traumatic Corneal Rupture After Radial Keratotomy, Arch Ophthalmol,Vol.106, 1988 [22]Alberto Diaspro, Confocal and Two-photon Microscopy, 2001 [23]Susana I. C. O. Santos, Manoj Mathew, and Pablo Loza-Alvarez, Real time imaging of femtosecond laser induced nano-neurosurgery dynamics in C. elegans, Optics Express, 2010 [24]Iva Maxwell, Application of femtosecond lasers for subcellular nanosurgery, 2006 [25]K. Kuetemeyer, R. Rezgui, H. Lubatschowski, and A. Heisterkamp,Influence of laser parameters and staining on femtosecond laser-based intracellular nanosurgery, Biomedical Optics Express,2010 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64220 | - |
dc.description.abstract | 雷射在這些年來已經被用在多種醫療手術上。譬如近視及遠視雷射手術、軟組織的去除,甚至用在癌症的治療。選擇不同的功率、重複率、波長的雷射,在不同的生物材料上會產生不同的化學及物理作用。我們的實驗中選用了780nm 的飛秒雷射光切割PC12神經細胞及線蟲的觸覺神經並觀察術後現象及行為。
飛秒脈衝雷射應用在手術上有許多優點。我們是利用80MHz,功率為20mW對樣品做切割。鈦藍寶石雷射每個脈衝有較大的能量強度,平均一個脈衝有0.25nJ,也不會對樣品有其他的傷害。另外,我們使用的光源為近遠紅外光,不易散射而可深入生物材料內聚焦。因此可成功並準確地在微米尺度上對不同樣品切割,譬如膠原蛋白、細胞或是神經的樹突及軸突。 結合了兩套光學系統,我們需要藉由GFP確認線蟲神經位置並同時使用鈦藍寶石雷射光切割欲要切除神經。當聚焦處的神經被切割後,使用挑蟲器刺激線蟲運動並了解他的術後行為。因此應用飛秒雷射及此套光學系統這種非侵入式的手術會在臨床手術上有更進一步的發展。 | zh_TW |
dc.description.abstract | After years of development, laser has been applied in numerous medical treatment procedures. Surgeries such as correcting near and far sightedness, dissection on soft tissue and even cancer-relate therapies are gradually being implemented. Choosing different power, repetition, wavelength of the laser, we can create multifarious chemical or physical reactions with different bio-materials. In our experiment, we use 780nm, femtosecond laser to dissect neuron cell (PC12) and the touch neuron of Caenorhabditis elegans, in order to observe the following behaviors after excising distinct cellular componentss.
Femtosecond pulse laser embraces plenty of advantages in surgical purposes. The repetition rate of our laser pulse is 80-MHz, and the maximum cutting power is 20mW. Since Ti-sapphire laser provides high energy in each laser pulse, we can cut neurons by tuning pulse energy around 0.25nJ, without extensive tissue damage. In addition, we use near infrared light as source (780nm wavelength), pushing the focus deeper into biological specimens. Therefore, we can successfully execute precise surgery on the micron-sized sample such as collagen, cells or even the specific parts of neuron. Combining two optical systems, we confirm the position of C.elegans neuron by GFP, and meanwhile, use Ti-Sapphire laser to dissect the targeted neuron section . After witnessing the damage on neuron, we use a picker to motivate the exercise of C.elegans and to study its post-surgery behaviors. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:35:26Z (GMT). No. of bitstreams: 1 ntu-101-R98222034-1.pdf: 2223543 bytes, checksum: fc3ab863dda0c55ce09d856473946963 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES x Chapter 1 研究動機與目的 1 Chapter 2 實驗樣品介紹 2 2.1 秀麗隱桿線蟲(學名Caenorhabditis elegans) 2 2.2 神經系統 4 2.1.1 神經元 4 2.1.2 C.elegans 的觸覺神經系統(touch neurons) 6 2.3 PC12 神經細胞 11 Chapter 3 實驗原理 13 3.1 螢光原理 13 3.1.1 自體螢光(Endogenous fluorescence) 16 3.1.2 外加螢光(Exogenous fluorescence) 17 3.2 單光子及雙光子原理 18 3.3 雷射光與生物材料常見的光破壞(photodamage) 25 3.3.1 光熱反應(thermal interaction) 27 3.3.2 光化學反應(photonchemical interaction) 28 3.3.3 電漿誘發剝離(plasma induced ablation) 28 3.3.4 光蝕除(photoablation) 29 Chapter 4 實驗光路系統架設 30 4.1 雷射光源介紹 30 4.1.1 Ti-Sapphier Laser 30 4.1.2 DPSS473nm藍光雷射 30 4.2 光路系統架設 32 4.2.1 兩套光路的統合 32 4.2.2 解析度及視野大小 33 Chapter 5 實驗方法與結果討論 35 5.1 實驗方法 35 5.1.1 色相差問題 35 5.1.2 切割實驗 37 5.2 實驗結果 39 5.2.1 PC12 39 5.2.2 線蟲 39 5.3 實驗討論 44 5.3.1 實驗結果與文獻比較 44 5.3.2 切割的時間與文獻比較 44 5.3.3 切割成功率改進 45 5.3.4 光切割神經的破壞機制 45 Chapter 6 未來與展望 46 REFERENCES 47 | |
dc.language.iso | zh-TW | |
dc.title | 發展飛秒雷射顯微手術系統於線蟲觸覺神經之切割與神經再生之應用 | zh_TW |
dc.title | Developing a Femtosecond Laser Microsurgery System to
Dissect Caenorhabditis Elegans Touch Neuron for Studying Neural Regeneration | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 石明豐,楊鴻昌,陳永芳 | |
dc.subject.keyword | PC12,線蟲,飛秒雷射, | zh_TW |
dc.subject.keyword | PC12,C.elegans,femtosecond laser, | en |
dc.relation.page | 48 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-15 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 2.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。