請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64199
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林沛群 | |
dc.contributor.author | Ya-Cheng Chou | en |
dc.contributor.author | 鄒亞成 | zh_TW |
dc.date.accessioned | 2021-06-16T17:34:30Z | - |
dc.date.available | 2017-08-27 | |
dc.date.copyright | 2012-08-27 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-15 | |
dc.identifier.citation | [1] K. Sangbae, et al., 'Smooth Vertical Surface Climbing With Directional Adhesion,' Robotics, IEEE Transactions on, vol. 24, pp. 65-74, 2008.
[2] MIT, 'MIT Leg Lab's Quadruped Robot..' [3] M. H. Raibert, 'TROTTING, PACING AND BOUNDING BY A QUADRUPED ROBOT,' Journal of Biomechanics, vol. 23, pp. 79-98, 1990. [4] C. Ferrell, 'Robust and adaptive locomotion of an autonomous hexapod,' in From Perception to Action Conference, 1994., Proceedings, 1994, pp. 66-77. [5] MIT, 'Retired Robots - Hannibal and Attila,' ed. [6] U. Saranli, et al., 'Model-based dynamic self-righting maneuvers for a hexapedal robot,' International Journal of Robotics Research, vol. 23, pp. 903-918, Sep 2004. [7] BostonDynamics. RHex - Devours Rough Terrain Available: http://www.bostondynamics.com/robot_rhex.html [8] G. Dudek, et al., 'AQUA: An amphibious autonomous robot,' Computer, vol. 40, pp. 46-+, Jan 2007. [9] Summary of the RHex robot platform. Available: http://www.rhex.web.tr/ [10] R. D. Quinn, et al., 'Parallel complementary strategies for implementing biological principles into mobile robots,' International Journal of Robotics Research, vol. 22, pp. 169-186, Mar-Apr 2003. [11] W. A. Lewinger, et al., 'Insect-like Antennal Sensing for Climbing and Tunneling Behavior in a Biologically-inspired Mobile Robot,' in IEEE International Conference on Robotics and Automation (ICRA), 2005, pp. 4176-4181. [12] SPRAWL ROBOT. Available: http://www-cdr.stanford.edu/biomimetics/documents/sprawl/ [13] J. G. Cham, et al., 'Fast and robust: Hexapedal robots via shape deposition manufacturing,' International Journal of Robotics Research, vol. 21, pp. 869-882, Oct-Nov 2002. [14] J. G. Cham, et al., 'Stride period adaptation of a biomimetic running hexapod,' International Journal of Robotics Research, vol. 23, pp. 141-153, Feb 2004. [15] S. Kim, et al., 'iSprawl: Design and tuning for high-speed autonomous open-loop running,' International Journal of Robotics Research, vol. 25, pp. 903-912, Sep 2006. [16] M. J. Boggess, et al., 'Mechanized cockroach footpaths enable cockroach-like mobility,' in IEEE International Conference on Robotics and Automation (ICRA), 2004, pp. 2871-2876 Vol.3. [17] A. S. Boxerbaum, et al., 'The latest generation Whegs™ robot features a passive-compliant body joint,' in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, 2008, pp. 1636-1641. [18] U. Saranli, et al., 'RHex: A simple and highly mobile hexapod robot,' International Journal of Robotics Research, vol. 20, pp. 616-631, Jul 2001. [19] J. C. Spagna, et al., 'Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain,' Bioinspiration and Biomimetics, vol. 2, pp. 9-18, 2007. [20] J. D. Weingarten, et al., 'A Framework for the Coordination of Legged Robot Gaits,' in IEEE International Conference on Robotics, Automation and Mechatronics (RAM), 2004, pp. 679-686. [21] E. Z. Moore and M. Buehler, 'Stable Stair Climbing in a Simple Hexapod Robot ' presented at the 4th Int. Conf. on Climbing and Walking Robots (CLAWAR), 2001. [22] E. Z. Moore, et al., 'Reliable Stair Climbing in the Simple Hexapod ‘RHex’,' in IEEE International Conference on Robotics and Automation (ICRA), 2002, pp. 2222-2227. [23] G. Clark Haynes and A. A. Rizzi, 'Gaits and gait transitions for legged robots,' in IEEE International Conference on Robotics and Automation (ICRA), 2006, pp. 1117-1122. [24] M. Zucker, et al., 'Optimization and learning for rough terrain legged locomotion,' International Journal of Robotics Research, vol. 30, pp. 175-191, Feb 2011. [25] M. Kalakrishnan, et al., 'Learning, planning, and control for quadruped locomotion over challenging terrain,' International Journal of Robotics Research, vol. 30, pp. 236-258, Feb 2011. [26] BostonDynamics. LittleDog - The Legged Locomotion Learning Robot. Available: http://www.bostondynamics.com/robot_littledog.html [27] D. McMordie and M. Buehler, 'Towards Pronking with a Hexapod Robot,' presented at the 4th Int. Conf. on Climbing and Walking Robots, Karlsruhe,Germany, 2001. [28] P. Birkmeyer, et al., 'DASH: A dynamic 16g hexapedal robot,' in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, 2009, pp. 2683-2689. [29] Wikipedia. Jumping (horse). Available: http://en.wikipedia.org/wiki/Jumping_(horse) [30] Jump in the Horse. Available: http://bowlingsite.mcf.com/Movement/HJump.html [31] BostonDynamics. BigDog - The Most Advanced Rough-Terrain Robot on Earth Available: http://www.bostondynamics.com/robot_bigdog.html [32] J. A. Smith, et al., 'Bounding Gait in a Hybrid Wheeled-Leg Robot,' in Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, 2006, pp. 5750-5755. [33] T. Tanaka and S. Hirose, 'Development of leg-wheel hybrid quadruped “AirHopper” design of powerful light-weight leg with wheel,' in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, 2008, pp. 3890-3895. [34] K. Hosoda, et al., 'Biped robot design powered by antagonistic pneumatic actuators for multi-modal locomotion,' Robotics and Autonomous Systems, vol. 56, pp. 46-53, Jan 2008. [35] C. Zhu and A. Kawamura, 'Development of Biped Robot MARI-3 for Jumping,' Advanced Robotics, vol. 24, pp. 1661-1675, 2010. [36] U. Scarfogliero, et al., 'The use of compliant joints and elastic energy storage in bio-inspired legged robots,' Mechanism and Machine Theory, vol. 44, pp. 580-590, Mar 2009. [37] R. Niiyama, et al., 'Mowgli: A Bipedal Jumping and Landing Robot with an Artificial Musculoskeletal System,' in Robotics and Automation, 2007 IEEE International Conference on, 2007, pp. 2546-2551. [38] M. Kovac, et al., 'A miniature 7g jumping robot,' in Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, 2008, pp. 373-378. [39] J. M. Morrey, et al., 'Highly mobile and robust small quadruped robots,' in Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on, 2003, pp. 82-87 vol.1. [40] R. Armour, et al., 'Jumping robots: a biomimetic solution to locomotion across rough terrain,' Bioinspiration & Biomimetics, vol. 2, pp. S65-S82, Sep 2007. [41] S. A. Stoeter and N. Papanikolopoulos, 'Autonomous stair-climbing with miniature jumping robots,' Ieee Transactions on Systems Man and Cybernetics Part B-Cybernetics, vol. 35, pp. 313-325, Apr 2005. [42] Y. Sugiyama and S. Hirai, 'Crawling and jumping by a deformable robot,' International Journal of Robotics Research, vol. 25, pp. 603-620, May-Jun 2006. [43] BostonDynamics. SandFlea - Leaps Small Buildings in a Single Bound. Available: http://www.bostondynamics.com/robot_sandflea.html [44] ASUS. WL-330gE. Available: http://tw.asus.com/Networks/Wireless_Routers/WL330gE/ [45] NI. sbRIO-9602. Available: http://sine.ni.com/nips/cds/view/p/lang/zht/nid/205892 [46] 游崴舜, '可傾式雙輪機器人之運動控制與其內部機器人泛用機電系統架構,' 碩士論文, 機械工程學系, 國立台灣大學, 台北, 2012. [47] D. M. Wilson, 'INSECT WALKING,' Annual Review of Entomology, vol. 11, pp. 103-&, 1966. [48] G. Gabrielli and T. von Kármán, 'What price speed? Specific power required for propulsion of vehicles,' Mechanical Engineering, ASME,, vol. 72, pp. 775-781, 1950. [49] J. T. Watson, et al., 'Control of climbing behavior in the cockroach, Blaberus discoidalis. II. Motor activities associated with joint movement,' Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology, vol. 188, pp. 55-69, Feb 2002. [50] J. T. Watson, et al., 'Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics,' Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology, vol. 188, pp. 39-53, Feb 2002. [51] B. Shaoping, et al., 'Kinematographic experiments on leg movements and body trajectories of cockroach walking on different terrain,' in Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE International Conference on, 2000, pp. 2605-2610 vol.3. [52] S. Sponberg and R. J. Full, 'Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain,' Journal of Experimental Biology, vol. 211, pp. 433-446, Feb 2008. [53] M. H. Dickinson, et al., 'How animals move: An integrative view,' Science, vol. 288, pp. 100-106, Apr 2000. [54] N. J. Cowan, et al., 'Task-level control of rapid wall following in the American cockroach,' Journal of Experimental Biology, vol. 209, pp. 1617-1629, May 2006. [55] J. M. Camhi and E. N. Johnson, 'High-frequency steering maneuvers mediated by tactile cues: Antennal wall-following by the cockroach,' Journal of Experimental Biology, vol. 202, pp. 631-643, Mar 1999. [56] J. Okada and Y. Toh, 'The role of antennal hair plates in object-guided tactile orientation of the cockroach (Periplaneta americana),' Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology, vol. 186, pp. 849-857, Sep 2000. [57] Y. Baba, et al., 'Collision avoidance by running insects: antennal guidance in cockroaches,' Journal of Experimental Biology, vol. 213, pp. 2294-2302, Jul 2010. [58] C. M. Harley, et al., 'Characterization of obstacle negotiation behaviors in the cockroach, Blaberus discoidalis,' Journal of Experimental Biology, vol. 212, pp. 1463-1476, May 2009. [59] R. E. Ritzmann, et al., 'Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots,' Arthropod Structure & Development, vol. 33, pp. 361-379, Jul 2004. [60] P. Chatzakos and E. Papadopoulos, 'Bio-inspired design of electrically-driven bounding quadrupeds via parametric analysis,' Mechanism and Machine Theory, vol. 44, pp. 559-579, Mar 2009. [61] M. M. Ankarali and U. Saranli, 'Control of underactuated planar pronking through an embedded spring-mass Hopper template,' Autonomous Robots, vol. 30, pp. 217-231, Feb 2011. [62] 黃科融, '具滾動介面之新式彈性倒擺模型與其應用於六足機器人動態跑步步態開發,' 碩士論文, 機械工程學系, 國立台灣大學, 台北, 2012. [63] Herbivores of the Pilanesberg National Park I. Available: http://www.sa-lodges.com/articles/Herbivores-of-Pilanesberg.html [64] Wikipedia. Stotting. Available: http://en.wikipedia.org/wiki/Stotting [65] Wikipedia. Springbok. Available: http://en.wikipedia.org/wiki/Springbok [66] J. Jae Yun and J. E. Clark, 'Effect of rolling on running performance,' in Robotics and Automation (ICRA), 2011 IEEE International Conference on, 2011, pp. 2009-2014. [67] Wikipedia. Long jump. Available: http://en.wikipedia.org/wiki/Long_jump [68] A. Seyfarth, et al., 'Dynamics of the long jump,' Journal of Biomechanics, vol. 32, pp. 1259-1267, Dec 1999. [69] A. M. Carroll, et al., 'Differential muscle function between muscle synergists: long and lateral heads of the triceps in jumping and landing goats (Capra hircus),' Journal of Applied Physiology, vol. 105, pp. 1262-1273, Oct 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64199 | - |
dc.description.abstract | 本文介紹RHex型式的六足機器人整體架構、感測器及機電系統,並分析不同步態的行走狀況及利用此步態調整達轉彎效果,此論文可分為兩大部分,第一部分是以蟑螂變換步態跨越較高障礙為靈感,設計執行全自動越障操作,讓機器人可靠地爬越230%腳長高度的障礙,兩個紅外線距離感測器和傾斜儀的使用來偵測障礙出現、障礙與機器人位置關係、計算障礙高度和辨認障礙種類,讓此機器人自動調態。第二部分是開發跳躍行為讓機器人跳躍過狹窄障礙和溝渠,經由簡化腳模型建立三組腳的跳躍模型分析跳躍表現並找出理想跳躍方式,更進一步加裝紅外線偵測障礙距離自動變換步距達適當位置做跳躍動作。最後經由實驗評估模型和演算法的表現及可行性。 | zh_TW |
dc.description.abstract | This thesis introduces the composition, sensor, mechatronics system for a RHex-style hexapod robot, and then analyzes walking condition in different gait design, moreover, it uses this gait adjustment to achieve the goal of turning. Besides, This thesis develops two kinds of gait to fulfill particular missions. Firstly, inspired by the observation that the cockroach changes from a tripod gait to a different gait for climbing high steps, this thesis reports on the design and implementation of a novel, fully autonomous step-climbing maneuver, which enables robot to reliably climb a step up to 230% higher than the length of its leg. Two infrared range sensors and an inclinometer are installed on robot to detect the presence of obstacle, its orientation relative to the robot’s heading, compute obstacle height and recognize different kinds of obstacle, thus enabling the robot to adjust its gait automatically, in real time. Secondly, a jumping gait development makes robot jump over a narrow obstacle and a ditch. A jumping model is established by a simplified legged model to analysis jumping performance to find the ideal jumping method, and further, it uses infrared range sensor to detect the distance between robot and obstacle then changes its gait to achieve ideal position accomplishing jumping performance. Finally, the behavior of the algorithm and model are evaluated experimentally. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:34:30Z (GMT). No. of bitstreams: 1 ntu-101-R99522805-1.pdf: 7060442 bytes, checksum: 05bdc8104647d14f9e19a83af7d65967 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 1.4 貢獻 9 1.5 論文架構 9 第二章 六足機器人設計與行走測試 10 2.1 平台架構 10 2.2 感測器模組 15 2.3 機電系統與電路配置 18 2.4 行走步態規劃與結果 21 2.5 轉彎設計與結果 27 第三章 仿生之自動越障設計 29 3.1 蟑螂越障行為 29 3.2 越障操作設計 30 3.3 實驗結果與評估 58 3.4 本章結論 75 第四章 跳躍行為開發 76 4.1 跳躍模型建立 76 4.2 跳躍操作規畫 84 4.3 實驗結果與評估 94 4.4 本章結論 103 第五章 結論與未來展望 105 5.1 結論 105 5.2 未來展望 105 參考文獻 107 | |
dc.language.iso | zh-TW | |
dc.title | 仿生六足機器人越障步態與跳躍步態開發 | zh_TW |
dc.title | Development of climbing gait and jumping gait for a hexapod robot | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃光裕,王富正 | |
dc.subject.keyword | 仿生,六足機器人,步態,越障,跳躍,動態模型, | zh_TW |
dc.subject.keyword | bio-inspire,hexapod robot,gait,over obstacle,jumping,dynamic model, | en |
dc.relation.page | 111 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 6.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。