請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6417完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳學禮(Hsuen-Li Chen) | |
| dc.contributor.author | Ting-Wei Chu | en |
| dc.contributor.author | 朱廷偉 | zh_TW |
| dc.date.accessioned | 2021-05-16T16:28:51Z | - |
| dc.date.available | 2016-08-29 | |
| dc.date.available | 2021-05-16T16:28:51Z | - |
| dc.date.copyright | 2013-08-29 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-19 | |
| dc.identifier.citation | [1] R. Ritchie, 'Plasma Losses by Fast Electrons in Thin Films,' Physical Review, vol. 106, pp. 874-881, 1957.
[2] R. W. Wood, 'On a remarkable case of uneven distribution of light in a diffraction grating spectrum,' Philosophical Magazine, vol. 4, pp. 396-402, Jul-Dec 1902. [3] U. Fano, 'The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves),' Journal of the Optical Society of America, vol. 31, pp. 213-222, Mar 1941. [4] H. Raether, 'Surface-Plasmons on Smooth and Rough Surfaces and on Gratings,' Springer Tracts in Modern Physics, vol. 111, pp. 1-133, 1988. [5] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, 'Extraordinary optical transmission through sub-wavelength hole arrays,' Nature, vol. 391, pp. 667-669, Feb 12 1998. [6] J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, 'Transmission resonances on metallic gratings with very narrow slits,' Physical Review Letters, vol. 83, pp. 2845-2848, Oct 4 1999. [7] W. C. Tan, T. W. Preist, and R. J. Sambles, 'Resonant tunneling of light through thin metal films via strongly localized surface plasmons,' Physical Review B, vol. 62, pp. 11134-11138, Oct 15 2000. [8] L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, et al., 'Theory of extraordinary optical transmission through subwavelength hole arrays,' Physical Review Letters, vol. 86, pp. 1114-1117, Feb 5 2001. [9] W. C. Liu and D. P. Tsai, 'Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance,' Physical Review B, vol. 65, Apr 15 2002. [10] 紀益民, '次波長金屬孔洞陣列結構應用於太陽能電池電極之研究,' 台灣大學碩士論文, 2011. [11] C. Genet and T. W. Ebbesen, 'Light in tiny holes,' Nature, vol. 445, pp. 39-46, Jan 4 2007. [12] W. L. Barnes, A. Dereux, and T. W. Ebbesen, 'Surface plasmon subwavelength optics,' Nature, vol. 424, pp. 824-30, Aug 14 2003. [13] H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, 'Surface plasmons enhance optical transmission through subwavelength holes,' Physical Review B, vol. 58, pp. 6779-6782, Sep 15 1998. [14] G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, 'Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,' Nano Lett, vol. 9, pp. 1-6, Jan 2009. [15] G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, 'Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,' Nano Letters, vol. 7, pp. 2926-2930, Sep 2007. [16] A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, et al., 'Evanescently coupled resonance in surface plasmon enhanced transmission,' Optics Communications, vol. 200, pp. 1-7, Dec 15 2001. [17] H. Im, N. C. Lindquist, A. Lesuffleur, and S. H. Oh, 'Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes,' ACS Nano, vol. 4, pp. 947-54, Feb 23 2010. [18] T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, 'Control of optical transmission through metals perforated with subwavelength hole arrays,' Optics Letters, vol. 24, pp. 256-258, Feb 15 1999. [19] 'Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays.' [20] J. H. Kim and P. J. Moyer, 'Thickness effects on the optical transmission characteristics of small hole arrays on thin gold films,' Opt Express, vol. 14, pp. 6595-603, Jul 24 2006. [21] X. F. Ren, P. Zhang, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, 'Polarization properties of subwavelength hole arrays consisting of rectangular holes,' Applied Physics B-Lasers and Optics, vol. 91, pp. 601-604, Jun 2008. [22] H. Iu, J. Li, H. C. Ong, and J. T. Wan, 'Surface plasmon resonance in two-dimensional nanobottle arrays,' Opt Express, vol. 16, pp. 10294-302, Jul 7 2008. [23] B. Sepulveda, Y. Alaverdyan, J. Alegret, M. Kall, and P. Johansson, 'Shape effects in the localized surface plasmon resonance of single nanoholes in thin metal films,' Opt Express, vol. 16, pp. 5609-16, Apr 14 2008. [24] F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, et al., 'Efficiency and finite size effects in enhanced transmission through subwavelength apertures,' Optics Express, vol. 16, pp. 9571-9579, Jun 23 2008. [25] R. L. Chern, 'Surface plasmon modes for periodic lattices of plasmonic hole waveguides,' Physical Review B, vol. 77, Jan 2008. [26] CIE. Available: http://www.cie.co.at/ [27] Wikipedia. CIE 1931 color space. Available: http://en.wikipedia.org/wiki/CIE_1931_color_space [28] Wikipedia. LMS color space. Available: http://en.wikipedia.org/wiki/LMS_color_space [29] T.-M. Lee, Y.-J. Choi, S.-Y. Nam, C.-W. You, D.-Y. Na, H.-C. Choi, et al., 'Color filter patterned by screen printing,' Thin Solid Films, vol. 516, pp. 7875-7880, 2008. [30] Q. H. Wang, D. H. Li, B. J. Peng, Y. H. Tao, and W. X. Zhao, 'Multilayer dielectric color filters for optically written display using up-conversion of near infrared light,' Journal of Display Technology, vol. 4, pp. 250-253, Jun 2008. [31] X. Yan, F. W. Mont, D. J. Poxson, J. Cho, E. F. Schubert, M.-H. Kim, et al., 'Electrically conductive thin-film color filters made of single-material indium-tin-oxide,' Journal of Applied Physics, vol. 109, p. 103113, 2011. [32] Y. T. Yoon and S. S. Lee, 'Transmission type color filter incorporating a silver film based etalon,' Opt Express, vol. 18, pp. 5344-9, Mar 1 2010. [33] E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, 'Plasmonic photon sorters for spectral and polarimetric imaging,' Nature Photonics, vol. 2, pp. 161-164, 2008. [34] D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, et al., 'Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,' Applied Physics Letters, vol. 98, p. 093113, 2011. [35] K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, 'Tunable color filters based on metal-insulator-metal resonators,' Nano Lett, vol. 9, pp. 2579-83, Jul 2009. [36] T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, 'Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,' Nat Commun, vol. 1, p. 59, 2010. [37] T. Ellenbogen, K. Seo, and K. B. Crozier, 'Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry,' Nano Letters, vol. 12, pp. 1026-1031, 2012. [38] Toshiba. CMOS Image Sensors. Available: http://www.toshiba.com/taec/adinfo/cmos/ [39] Wikipedia. Color filter array. Available: http://en.wikipedia.org/wiki/Color_filter_array [40] B. Linke, 'Understanding Flip-Chip and Chip-Scale Package Technologies and Their Applications,' 2007. [41] V. Bockaert. Chromatic Aberration. Available: http://www.dpreview.com/glossary/optical/chromatic-aberration [42] G. Agranov, V. Berezin, and R. H. Tsai, 'Crosstalk and microlens study in a color CMOS image sensor,' Ieee Transactions on Electron Devices, vol. 50, pp. 4-11, Jan 2003. [43] Wikipedia. CMOS. Available: http://en.wikipedia.org/wiki/CMOS [44] T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, 'Si Nano-Photodiode with a Surface Plasmon Antenna,' Japanese Journal of Applied Physics, vol. 44, pp. L364-L366, 2005. [45] Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, 'CMOS Photodetectors Integrated With Plasmonic Color Filters,' Ieee Photonics Technology Letters, vol. 24, pp. 197-199, Feb 1 2012. [46] D. Grieshaber, R. MacKenzie, J. Voros, and E. Reimhult, 'Electrochemical biosensors - Sensor principles and architectures,' Sensors, vol. 8, pp. 1400-1458, Mar 2008. [47] Wikipedia. DNA. Available: http://en.wikipedia.org/wiki/DNA [48] F. H. Westheimer, 'Why nature chose phosphates,' Science, vol. 235, pp. 1173-8, Mar 6 1987. [49] gaussling, 'Phosphate the Wonder Anion.' [50] J. Homola, 'Present and future of surface plasmon resonance biosensors,' Anal Bioanal Chem, vol. 377, pp. 528-39, Oct 2003. [51] C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, 'A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,' Nat Biotechnol, vol. 23, pp. 741-5, Jun 2005. [52] J. Fritz, 'Translating Biomolecular Recognition into Nanomechanics,' Science, vol. 288, pp. 316-318, 2000. [53] B. Ilic, Y. Yang, K. Aubin, R. Reichenbach, S. Krylov, and H. G. Craighead, 'Enumeration of DNA molecules bound to a nanomechanical oscillator,' Nano Lett, vol. 5, pp. 925-9, May 2005. [54] T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, et al., 'Weighing of biomolecules, single cells and single nanoparticles in fluid,' Nature, vol. 446, pp. 1066-9, Apr 26 2007. [55] Y. Lu, S. Peng, D. Luo, and A. Lal, 'Low-concentration mechanical biosensor based on a photonic crystal nanowire array,' Nat Commun, vol. 2, p. 578, 2011. [56] J. Hahm and C. M. Lieber, 'Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors,' Nano Letters, vol. 4, pp. 51-54, Jan 2004. [57] D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, 'Direct measurement of electrical transport through DNA molecules,' Nature, vol. 403, pp. 635-638, Feb 10 2000. [58] Y. L. Bunimovich, Y. S. Shin, W.-S. Yeo, and M. Amori, 'Quantitative real-time measurement of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution,' American Chemical Society, vol. 128, pp. 16323 - 16331, 2006. [59] Y. Han, A. Offenhäusser, and S. Ingebrandt, 'Detection of DNA hybridization by a field-effect transistor with covalently attached catcher molecules,' Surface and Interface Analysis, vol. 38, pp. 176-181, 2006. [60] M. J. TURNERS and E. H. RHODBRICK, 'metal silicon Schottky barriers,' Solid-State Electronics vol. 11, pp. 291-300, 1967. [61] L. van Schalkwyk, W. E. Meyer, F. D. Auret, J. M. Nel, P. N. M. Ngoepe, and M. Diale, 'Characterization of AlGaN-based metal–semiconductor solar-blind UV photodiodes with IrO2 Schottky contacts,' Physica B: Condensed Matter, vol. 407, pp. 1529-1532, 2012. [62] F. Hossein-Babaei and S. Rahbarpour, 'Separate assessment of chemoresistivity and Schottky-type gas sensitivity in M–metal oxide–M′ structures,' Sensors and Actuators B: Chemical, vol. 160, pp. 174-180, 2011. [63] N. L. Dmitruk, O. I. Mayeva, S. V. Mamykin, O. B. Yastrubchak, and M. Klopfleisch, 'Characterization and application of multilayer diffraction gratings as optochemical sensors,' Sensors and Actuators a-Physical, vol. 88, pp. 52-57, Jan 20 2001. [64] T. Campbell, R. K. Kalia, A. Nakano, P. Vashishta, S. Ogata, and S. Rodgers, 'Dynamics of oxidation of aluminum nanoclusters using variable charge molecular-dynamics simulations on parallel computers,' Physical Review Letters, vol. 82, pp. 4866-4869, Jun 14 1999. [65] M. S. Luchansky and R. C. Bailey, 'Silicon photonic microring resonators for quantitative cytokine detection and T-cell secretion analysis,' Anal Chem, vol. 82, pp. 1975-81, Mar 1 2010. [66] R. L. Rich and D. G. Myszka, 'Advances in surface plasmon resonance biosensor analysis,' Curr Opin Biotechnol, vol. 11, pp. 54-61, Feb 2000. [67] X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Momand, et al., 'Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification,' Anal Biochem, vol. 354, pp. 220-8, Jul 15 2006. [68] R. Lipsitz, 'Diagnostics at home: Pregnancy tests,' pp. 110–111 2000. [69] R. Fan, O. Vermesh, A. Srivastava, B. K. Yen, L. Qin, H. Ahmad, et al., 'Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood,' Nat Biotechnol, vol. 26, pp. 1373-8, Dec 2008. [70] S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurman, H. Kropshofer, B. Michel, et al., 'High-sensitivity miniaturized immunoassays for tumor necrosis factor alpha using microfluidic systems,' Lab Chip, vol. 4, pp. 563-9, Dec 2004. [71] A. H. Diercks, A. Ozinsky, C. L. Hansen, J. M. Spotts, D. J. Rodriguez, and A. Aderem, 'A microfluidic device for multiplexed protein detection in nano-liter volumes,' Anal Biochem, vol. 386, pp. 30-5, Mar 1 2009. [72] E. D. Goluch, J. M. Nam, D. G. Georganopoulou, T. N. Chiesl, K. A. Shaikh, K. S. Ryu, et al., 'A bio-barcode assay for on-chip attomolar-sensitivity protein detection,' Lab Chip, vol. 6, pp. 1293-9, Oct 2006. [73] N. Backmann, C. Zahnd, F. Huber, A. Bietsch, A. Pluckthun, H. P. Lang, et al., 'A label-free immunosensor array using single-chain antibody fragments,' Proc Natl Acad Sci U S A, vol. 102, pp. 14587-92, Oct 11 2005. [74] K. W. Wee, G. Y. Kang, J. Park, J. Y. Kang, D. S. Yoon, J. H. Park, et al., 'Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers,' Biosens Bioelectron, vol. 20, pp. 1932-8, Apr 15 2005. [75] G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, 'Bioassay of prostate-specific antigen (PSA) using microcantilevers,' Nat Biotechnol, vol. 19, pp. 856-60, Sep 2001. [76] K. S. Hwang, J. H. Lee, J. Park, D. S. Yoon, J. H. Park, and T. S. Kim, 'In-situ quantitative analysis of a prostate-specific antigen (PSA) using a nanomechanical PZT cantilever,' Lab Chip, vol. 4, pp. 547-52, Dec 2004. [77] M. G. von Muhlen, N. D. Brault, S. M. Knudsen, S. Jiang, and S. R. Manalis, 'Label-free biomarker sensing in undiluted serum with suspended microchannel resonators,' Anal Chem, vol. 82, pp. 1905-10, Mar 1 2010. [78] N. Kim, D.-K. Kim, and Y.-J. Cho, 'Development of indirect-competitive quartz crystal microbalance immunosensor for C-reactive protein,' Sensors and Actuators B: Chemical, vol. 143, pp. 444-448, 2009. [79] S. Kurosawa, M. Nakamura, J. W. Park, H. Aizawa, K. Yamada, and M. Hirata, 'Evaluation of a high-affinity QCM immunosensor using antibody fragmentation and 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer,' Biosens Bioelectron, vol. 20, pp. 1134-9, Dec 15 2004. [80] Y. Weizmann, F. Patolsky, and I. Willner, 'Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles,' The Analyst, vol. 126, pp. 1502-1504, 2001. [81] G. Zheng, X. P. Gao, and C. M. Lieber, 'Frequency domain detection of biomolecules using silicon nanowire biosensors,' Nano Lett, vol. 10, pp. 3179-83, Aug 11 2010. [82] E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, et al., 'Label-free biomarker detection from whole blood,' Nat Nanotechnol, vol. 5, pp. 138-42, Feb 2010. [83] J. L. Arlett, E. B. Myers, and M. L. Roukes, 'Comparative advantages of mechanical biosensors,' Nat Nanotechnol, vol. 6, pp. 203-15, Apr 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6417 | - |
| dc.description.abstract | 本論文主要分為兩個部分,第一部分探討表面電漿共振現象應用於全彩式光偵測器,第二部分探討表面電漿共振現象應用於高靈敏度DNA生物感測器。
現今全彩式光偵測器,每一個像素最上層為微透鏡,光線從微透鏡進入以染料製作的彩色濾波片進行分光,最後才進入元件底層光偵測器,其整體元件製程繁複。在此研究中,結合金屬材料和矽基材,作為蕭特基二極體光電元件,且在金屬層設計次波長之最密堆積的週期孔洞陣列,製作出能快速反應、零伏操作、且在有限元件面積可達到高像素的全彩式光偵測器。 當光進入偵測器後,因金屬之次波長週期性結構,引發表面電漿共振現象,致使在所設計之波段有異常穿透現象,且下方之蕭特基二極體,可直接將光能轉換成電訊號,以此單一元件即可取代既有的彩色濾波片和光偵測器,作為全彩式光偵測器。實際元件設計,利用三維有限時域差分法,找出最佳的參數,並製作元件並量測其外部量子效應,發現在可見光之不同波段,皆有良好分光效果,且以單一晶圓所製作出的紅藍綠三種光偵測器,可符合CIE 1931色彩空間所定義的RGB三原色,此為一製程簡易又有良好分光效果之全彩式光偵測器。 現今各類型DNA生物感測器中,受限於其理論機制和元件製作,在實際應用仍有許多問題,如:需長分析時間、易受環境干擾,元件製程複雜等,在本論文中,利用金屬孔洞週期陣列所產生的表面電漿共振現象於局部地區介電常數及電荷分佈極為敏感,而蕭特基二極體對接面處之環境亦特別敏感,製作出能快速感測、高靈敏度、低偏壓操作,可感測抗藥性金黃色葡萄球菌基因之片段DNA的DNA生物感測器。 實際元件設計,利用三維有限時域差分法,設計元件在太陽光頻譜照射下,即有良好的光電流產生,且此元件可在極低偏壓下操作。以此DNA生物感測器,量測單股和雙股抗藥性金黃色葡萄球菌基因片段之DNA分子,當 DNA分子靠近感測元件表面時,因表面電荷密度改變,在極短時間內,即會產生光電流增益,而由此增益值可作為DNA濃度之鑑別,此為靈敏且便利之DNA生物感測器。且實驗結果顯示,其最低量測值,可量測到10-16M之極低濃度DNA。另一方面,分別量測單股和雙股金黃色葡萄球菌抗藥性基因片段之DNA,對元件所產生之光電流增益,發現會所產生之光電流有所差異,因此元件可在極低濃度時,仍可對單股DNA和雙股DNA,有所鑑別。此DNA生物感測元件,在重複多次的實驗下,仍能維持其靈敏度,而不受干擾,其具有極佳的穩定度,可作靈敏、快速、而穩定的DNA生物感測器。 關鍵字:表面電漿共振現象、彩色濾波片、蕭特基二極體、全彩式光偵測器、DNA生物感測器、抗藥性金黃色葡萄球菌 | zh_TW |
| dc.description.abstract | In this thesis, surface plasmon resnonance (SPR) phenomenon was applied to develop color image sensors and highly sensitive DNA biosensors.
In the commercial color image sensors, each pixel of the device usually consist three major parts:microlens, color filter and photodiode. The fabrication processes for the device are complicated. In this study, we combined the metal and silicon to form the Schottky diode and to develop color image sensors. We designed the sub-wavelength metallic hole arrays with different periods to filter the RGB colors in the visible regime. The color image sensors possessing metallic hole arrays and Schottky junction have many advantages of easy fabrication, rapid response, zero bias voltage requirement, and high pixels in a device area. When light incident into the devices, the SPR phenomenon will be induced by the structures of periodic metallic holes arrays. Due to the SPR phenomenon, there is extraordinary optical transmission in the spectral regimes of RGB colors. The Schottky junction (Metal/Si) of the devices can transform the energy of incident light into electrical signals. Therefore, we can replace the color filter and the photodiode by one device reported in this study. We used the three dimensional finite-difference time domain (3D-FDTD) method to find out the optimal parameters of the metallic hole array based color filters. After the simulation, we used the obtained parameters to fabricate the device and measure the external quantum efficiency of the devices. The results displayed the spectra of the RGB color image devices fabricated on the same wafer can fit to the color spectra defined by the CIE1931 color space. The second part of this thesis is DNA biosensors. Based on various detection principles of biosensors, there are many issues in determining the efficiency of sensors, such as long analysis time, environmental interactions, complicated device fabrication processes. In this study, we applied the SPR phenomenon which is sensitive to the local environment. The Schottky junction (metal/Si) are also sensitive to the area near junction to prepare SPR based biosensors with fast detection, highly sensitive, and low working voltage to detect the DNA sequence of Methicillin-resistant Staphylococcus aureus (MRSA). We also used 3D-FDTD methods to design the structure of the DNA sensors. The devices performed large photocurrent under low bias voltage and AM 1.5 light source. We used this biosensor to measure different DNA molecules. When the DNA molecules are closed to the surface of metallic hole arrays, DNA molecules can induce excess photo current in a short time, and the increased photo current can be used to detect ultralow concentration of DNA. The results in this study displayed that the limit of detection (LOD) of the DNA sensors can down to 10-16M. On the other hand, we used this device to measure single strand and double strands of DNA molecules, and found the DNA sensors possess the ability to distinct single strand and double strands DNA in very low concentrations. Keywords : surface plasmon resonance , color filter, Schottky diode, color image sensor, DNA biosensor, Methicillin-resistant Staphylococcus aureus (MRSA) | en |
| dc.description.provenance | Made available in DSpace on 2021-05-16T16:28:51Z (GMT). No. of bitstreams: 1 ntu-102-R00527062-1.pdf: 5569675 bytes, checksum: 281ef9ca6804b1c2c19d7442e025de76 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 ii 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xvi Chapter 1 序論 1 1.1 前言 1 1.2 實驗動機 1 1.3 論文架構 2 Chapter 2 文獻回顧 3 2.1 表面電漿理論 3 2.1.1 表面電漿現象 3 2.2 彩色濾波片與光偵測器 8 2.2.1 CIE1931系統介紹 8 2.2.2 三原色RGB彩色濾波片原理及常見製程方式 12 2.2.3 特殊金屬結構在三原色 (RGB) 彩色濾波片上的應用 16 2.2.4 三原色RGB彩色光偵測器介紹 28 2.2.5 表面電漿在三原色RGB光偵測器上的應用 31 2.3 生物感測器 33 2.3.1 生物感測器介紹 33 2.3.2 DNA 34 2.3.3 常見生物感測器 36 2.4 蕭特基二極體光電元件 45 2.4.1 蕭特基二極體工作原理與結構 45 2.4.2 蕭特基二極體特性及應用 46 Chapter 3 週期性結構金屬表面電漿現象在全彩式光偵測器上的應用 47 3.1 實驗動機 47 3.2 全彩式光偵測器元件設計模擬 49 3.2.1 表面電漿共振現象 50 3.2.2 藉由調控金屬孔洞週期以控制彩色濾波片穿透波段 57 3.2.3 藉由調控鋁膜厚度控制彩色濾波片穿透半高波寬 58 3.2.4 金屬鋁矽銅和金屬孔洞形狀對表面電漿共振之影響 62 3.2.5 有限孔洞數目對於表面電漿共振現象之影響 64 3.3 實驗設備與藥品 73 3.4 實驗步驟與流程簡介 74 3.5 全彩式光偵測器實際元件簡介 76 3.6 實驗結果與分析討論 78 3.6.1 週期孔洞陣列之彩色光偵測器電性量測 78 3.6.2 元件量測結果分析 79 3.6.3 極小尺寸之光偵測器元件量測結果 83 3.7 應用表面電漿現象於全彩式光偵測器之結論 88 Chapter 4 週期性結構金屬表面電漿現象在生物感測器上的應用 90 4.1 研究動機 90 4.2 生物感測光電元件 92 4.2.1 光電元件 92 4.2.2 DNA生物分子 93 4.3 生物感測器之光學模擬 97 4.4 使用之實驗設備、用品及軟體 101 4.5 元件製作流程與步驟 101 4.6 光電元件簡介 103 4.7 元件特性與實驗量測結果與討論 104 4.7.1 光電元件電性量測與分析 104 4.7.2 DNA分子量測 106 4.7.3 螢光DNA分子影像 117 4.8 各類型生物偵測器之比較 120 4.9 應用表面電漿現象於DNA生物偵測器之結論 122 Chapter 5 論文總結與未來展望 124 REFERENCE 126 | |
| dc.language.iso | zh-TW | |
| dc.title | 表面電漿現象應用於全彩式光偵測器及高靈敏度DNA生物感測器 | zh_TW |
| dc.title | Applications of Surface Plasmon Phenomenon in Color Image Sensors and Highly Sensitive DNA Biosensors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林明瑜(Min-Yu Lin),賴宇紳(Yu-Shen Lai),陳仕鴻(Shih-Hong Chen) | |
| dc.subject.keyword | 表面電漿共振現象,彩色濾波片,蕭特基二極體,全彩式光偵測器,DNA生物感測器,抗藥性金黃色葡萄球菌, | zh_TW |
| dc.subject.keyword | surface plasmon resonance,color filter,Schottky diode,color image sensor,DNA biosensor,Methicillin-resistant Staphylococcus aureus (MRSA), | en |
| dc.relation.page | 126 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 5.44 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
