Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64144
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏溪成
dc.contributor.authorChun-Ming Suen
dc.contributor.author蘇俊銘zh_TW
dc.date.accessioned2021-06-16T17:31:56Z-
dc.date.available2015-08-17
dc.date.copyright2012-08-17
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citation[1] MacAndrew, T.P., Trends Polym. Sci., 5: P. 7. (1997)
[2] 陳嘉崙,'導電性聚苯胺高分子材料製造氯離子感測器之研究',成功大學化工碩士論文。(1996)
[3] Patil, A. O., Ikenoue, Y., Would F. and Heeger, A. J., J. Am. Chem. Soc., 109, 1858. (1987)
[4] Stejskal, J. and Kratochvil, P., Polymer, 37 (2), 367-369. (1996)
[5] Seymour, R. B., Conductive polymers, New York, 171-180. (1981)
[6] Tlarke, T.C., Krounbi, M. T. and Lee, V. Y., J. Chem. Soc. 384. (1981)
[7] Sevil, U. A., Guven, O., Birer, O. and Suzer, S., Synth. Met., 110, 175-179. (2000)
[8] Seymour, R. B., Plenum Press, Conductive Polymers, New York, 227-233. (1981)
[9] Stejskal, J. and Kratochvil, P., Polymer, 37 (2), 367-369.(1996)
[10] Venancio, E. C., Costa, C. A. R., Machado, S.A.S. and Motheo, A.J., Electrochemistry Communications, 3, 229-233. (2001)
[11] Uemura, S., and Teshima, K., Synth. Met., 101, 701-702. (1999)
[12] Miroslava Trchova, Ivana Šeděnkova, Eva Tobolkova and Jaroslav Stejskal, J. Polym. Degrad. Stab. 86, 179. (2004)
[13] Manju Gerard, Asha Chaubey and Malhotra, B.D., Biosensors and Bioelectronics, 17, 5, 345–359. (2002)
[14] Kirchmeyer, S. and Reuter, K., J. Mater. Chem.,15, 2077. (2005)
[15] Aleshin, A.N., Williams, S.R. and Heeger, A.J., Synth. Met. 94, 173, (1998)
[16] Simpson, J., Kirchmeyer, S. and Reuter, K., AIMCAL Fall Technical Conference and 19th International Vacuum Web Coating Confererence. (2005)
[17] de Leeuw, D.M., Kraakman, P.A., Bongaerts, P.F.G., Mutsaers, C.M.J. and Klaassen, D.B.M., Synth. Met., 66, 3, 263. (1994)
[18] http://www.clevios.com
[19] Ouyang, J., Chu, C.-W., Chen, F.-C., Xu, Q., and Yang, Y., Adv. Funct. Mater., 15, 203. (2005)
[20] Louwet, F., Groenendaal, L., Dhaen, J., Manca, J., Van Luppen, J., Verdonck, E., and Leenders, L., Synth. Met., 135, 115. (2003)
[21] Kim, W. H., Makinen, A. J., Nikolov, N., Shashidhar, R., Kim, H., and Kafafi, Z. H., Appl. Phys. Lett., 80, 3844. (2002)
[22] Soumyadeb Ghosh and Olle Inganas, Synth. Met., 121,1321. (2001)
[23] Kim, W. H., Kushto, G. P., Kim, H., and Kafafi, Z. H., J. Poly. Sci. Part B, 41,2522. (2003)
[24] Lai, S.L., Chan, M.Y., Fung, M.K., Lee, C.S., and Lee, S.T., Mater. Sci. Eng. B,104, 26. (2003)
[25] Jonsson, S.K.M., Birgerson, J., Crispin, X., Greczynski, G., Osikowicz, W., Denier van der Gon, A.W., Salaneck, W.R., and Fahlman, M., Synth. Met., 139,1. (2003)
[26] Timpanaro, S., Kemerink, M., Touwslager, F.J., De Kok, M.M. and Schrader, S., Chem. Phys. Lett., 394, 339. (2004)
[27] Kim, J.Y., Jung, J.H., Lee, D.E., and Joo, J., Synth. Met., 126, 311. (2002)
[28] Udo Lang, Elisabeth Muller, Nicola Naujoks and Jurg Dual, Adv. Funct. Mater., 19,1215. (2009)
[29] US Patent 4959430
[30] US Patent 7105620
[31] US Patent 4987024
[32] Leon, C. A. and Drew, R. A. L., J. Mater. Sci., 35, 4763. (2000)
[33] Mordechay, S. and Milan, P., Modern Electroplating, John Wiley& Sons, INC., New York, (2000)
[34] 陳偉亮,”異方向性導電膠覆晶接合之研究”,成功大學碩士論文。(2000)
[35] Bolger, J. C. and Moraro, S. L., Adhesives Age, 27, 17. (1984)
[36] Wu, H.P., Liu, J.F., Wu, X.J., Ge, M.Y., Wang, Y.W., Zhang, G.Q. and Jiang, J.Z., International Journal of Adhesion & Adhesives, 26, 617–621. (2006)
[37] Ye, L., Lai, Z. and Liu, J.,” Effect of Ag Particle Size on Electrical Conductivity of Isotropically Conductive Adhesives”, IEEE Transactions on Electronics Packaging Manufacturing, 22. (1999)
[38] Lu, D. and Wong, C. P., International Journal of Adhesion & Adhesives, 20, 189.(2000)
[39] Lee, H. H., Chou, K. S. and Shih, Z. W., International Journal of Adhesion & Adhesives, 25, 437. (2005)
[40] Kang, S. K. and Thomas, J., “Thermocompression Bonding of Aluminum Bumps in TAB Application”, Electronic Components & Technology Conference, 48th IEEE, New York, 1305-1310. (1998)
[41] Loos, A. C. and Springer, G. S., Journal of Composite Materials, 17, 135. (1983)
[42] Novak, I., Krupa, I., Chodak, I., Synth. Met., 31, 93. (2002)
[43] Lovinger, A. J., Journal of Adhesion, 10, 1.(1979)
[44] McLachlan, D. S., M. Blaszkiewics and R. E. Newnham, Journal of American Ceramic Society, 73, 8, 2187.(1990)
[45] Kim, H.K. and Shi, F.G., Microelectronics Journal , 32, 315 . (2001)
[46] Schimid, G.,“ Clusters and Colloids, Theory to Application”, New York . (1994)
[47] Kevin, B., Four-Point Probe Operation. (2004)
[48] Bettina Friedel, Panagiotis E. Keivanidis, Thomas J. K. Brenner, Agnese Abrusci, Christopher R. McNeill, Richard H. Friend and Neil C. Greenham, Macromolecules, 42, 6741. (2009)
[49] 郭志浩,”無電鍍銀為粒應用於導電膠及烷基硫醇對導電度效應之研究”,台灣大學碩士論文。(2006)
[50] 闕帝強,”石墨鍍銀/奈米銀複合導電膠製備與導電特性之研究” ,台灣大學碩士論文。(2008)
[51] 藍英正,”聚苯胺對無電鍍銀微粒導電膠電阻效應之研究”,台灣大學高分子所碩士論文。(2007)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64144-
dc.description.abstract本實驗共分成三大部分:第一部分為製備聚二氧乙基噻吩:聚苯乙烯磺酸複合物(PEDOT:PSS)懸浮水溶液的研究;第二部分為製備導電粒子的研究;第三部份為製備導電膠的研究及對導電顆粒組成進行改良。最終希望維持良好導電度下,降低元素銀的填充率。
  藉由TGA及導電度的分析,可得知氮氣充泡處理及透析袋過濾有助合成PEDOT:PSS產物之品質。SEM分析可看出DMSO可以改變PEDOT:PSS分子構型,提高導電度。最後藉由調高PEDOT:PSS重量比例至1:1.5及加入7.5wt% DMSO得到最好的導電度314.55 S/cm。
  於製備導電粒子前,先以SEM及粒徑分析得知原始的石墨粉GS-75平均粒徑為2.379μm且構型是扁平雪片狀,皆是最適合做為導電粒子的條件。將導電顆粒分為經過敏、活化及未經過敏、活化鍍銀程序後,以SEM、XRD、EDX及ICP觀察得知經過敏、活化的樣品無論鍍銀量、銀的包覆情形皆較另外一組樣品好。再經粒徑分析後得到平均粒徑為3.028μm,仍在適合作為導電粒子的範圍中。
  製備導電膠實驗方面,發現使用較高的硬化溫度以及低壓環境下使導電膠硬化,可得較良好的導電度;且經過敏、活化的鍍銀導電顆粒的確較未經過敏、活化的樣品佳。實驗中也發現,於低填充率時添加PEDOT:PSS能有效增高導電度;以40wt%填充率為例,當PEDOT:PSS與EPOXY重量比為3:4時的導電度為444.87 S/cm,此值已是未添加PEDOT:PSS樣品的二倍多。
  最後添加奈米銀粒子企圖於銀披覆石墨顆粒中形成二級結構,發現未加入丁基硫醇作為分散劑時,奈米銀的添加只會造成導電度下降。以丁基硫醇作為分散劑修飾粒子表面後,發現奈米銀與銀披覆石墨顆粒重量比達2:8時可使導電度最佳化。實驗中以70wt%填充率(實際元素銀填充率為35.21wt%)、環氧樹脂與PEDOT:PSS重量比4:3、以丁基硫醇修飾過後的奈米銀與銀披覆石墨導電粒子重量比2:8時達到最佳導電度9.66 x 103 (S/cm)。
zh_TW
dc.description.abstractThis thesis presents the study of the Electrically Conductive Adhesives (ECAs) which includes preparation and analysis, and is presented in three parts. First part presents the synthesis of Poly(3,4-ethylenedioxythiophene):Poly- (StyreneSulfonate) (PEDOT:PSS). The second part illustrates the preparation of Silver-plated graphite conductive particles. In the last part, these two conductive materials are combined into ECAs for optimizing the conductivity with less Silver filling ratio.
  TGA and conductivity measurements show that Nitrogen-bubbling and dialysis help the polymerization and purification of PEDOT:PSS, thus increasing the conductivity. Adding DMSO transforms the morphology of PEDOT:PSS, which have huge influence on conductivity. Increasing the weight ratio of PEDOT in PEDOT:PSS significantly enhances conductivity, but the solution will become less homogeneous. In this study, the highest conductivity of PEDOT:PSS film is 314.55 S/cm, which is reached as PEDOT:PSS weight ratio is 1:1.5 and with 7.5wt% DMSO.
  In the study of conductive particles’ preparation, SEM images, EDX and XRD analysis show that sample with sensitization and activation has more silver exposure. ICP analysis evidences that sensitization and activation effectively raises the weight ratio of silver adsorbed, up to 40.1wt%. Sample is further investigated by Particle Size Analyzer and SEM to ensure the suitable size and morphology for conductive particles in ECAs.
  In the study of ECAs, higher curing temperature and lower pressure guarantee better conductivity. Adding PEDOT:PSS does enhance the conductivity, but it is not so effective at high filling ratio. Silver nano-particles without butanethiol as dispersant will dramatically lower the conductivity. After surface modification with butanethiol, Silver nano-particle turns to be beneficial for conductivity at low weight ratio.
  The highest conductivity measured in this study is 9.66 x 103 (S/cm). It’s obtained when total filling ratio is 70 wt% in which 20 wt% of conductive particles are butanethiol-treated silver nano-particles.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:31:56Z (GMT). No. of bitstreams: 1
ntu-101-R99549021-1.pdf: 4861531 bytes, checksum: 4da942f5904a97d54c5895089d97da72 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents摘要 I
ABSTRACT II
目錄 IV
圖表目錄 VI
第一章 緒論 1
1-1 研究動機與目標 2
第二章 文獻回顧與導電機制 3
2-1 導電性高分子 3
2-1-1 簡介 3
2-1-2 導電性高分子的導電機構與摻雜 5
2-1-3 導電性高分子的聚合方式 7
2-1-4 常見導電性高分子種類 8
2-2 聚二氧乙基噻吩:聚苯乙烯磺酸複合物(PEDOT:PSS) 10
2-2-1 IN-SITU PEDOT FILMS 介紹 10
2-2-2 PEDOT:PSS 介紹 13
2-2-3 PEDOT:PSS之合成專利整理 16
2-3 無電電鍍銀介紹 17
2-3-1 無電電鍍法簡介 17
2-3-2 無電電鍍銀簡介 18
2-4 導電膠 19
2-4-1 導電膠的導電形式 20
2-4-2 導電膠的組成 22
2-4-3 導電膠的導電機構 28
2-4-4 影響導電膠導電度的因素 31
第三章 實驗內容 34
3-1 實驗藥品與材料 34
3-2 實驗設備與儀器 35
3-3 實驗流程圖 36
3-4 實驗方法 39
3-4-1 PEDOT:PSS懸浮液及薄膜製備 39
3-4-2 銀披覆石墨導電顆粒製備 42
3-4-3 導電膠的製備 44
3-4-4 四點探針導電度量測方法 45
第四章 結果與討論 47
4-1 PEDOT:PSS導電度測試 47
4-1-1 PEDOT:PSS 合成條件測試 47
4-1-2 PEDOT:PSS 重量比與導電度分析 55
4-1-3 DMSO助導能力測試 57
4-1-4 PEDOT:PSS薄膜厚度總覽 59
4-2 導電粒子分析 62
4-2-1 粒徑分析 62
4-2-2 SEM與EDX分析 65
4-2-3 XRD分析 70
4-2-4 ICP分析 72
4-3導電膠測試 74
4-3-1 環氧樹脂硬化壓力對導電度之影響 74
4-3-2 環氧樹脂硬化溫度對導電度之影響 76
4-3-3 石墨無電鍍銀條件對導電度之影響 78
4-3-4 PEDOT:PSS添加對導電度之影響 80
4-3-5 硫醇分散劑及奈米銀粒子添加對導電度之影響 83
4-3-6 導電顆粒組成與填充率對導電度之影響 86
第五章 結論 88
參考文獻 91
dc.language.isozh-TW
dc.subject導電高分子zh_TW
dc.subject銀/石墨複合粒子zh_TW
dc.subject無電鍍銀zh_TW
dc.subject導電膠zh_TW
dc.subjectPEDOT:PSSen
dc.subjectECAen
dc.subjectElectroless Platingen
dc.subjectAg/C Composite.en
dc.title聚二氧乙基噻吩�聚苯乙烯磺酸(PEDOT:PSS)之製備與其含無電鍍銀微粒之導電膠的導電度研究zh_TW
dc.titlePreparation of PEDOT:PSS and Its Effect on Conductivity of Silver/Graphite Composite Conductive Adhesivesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王勝仕,周偉龍
dc.subject.keyword導電高分子,導電膠,無電鍍銀,銀/石墨複合粒子,zh_TW
dc.subject.keywordPEDOT:PSS,ECA,Electroless Plating,Ag/C Composite.,en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2012-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
4.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved