Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64135
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李清勝(Cheng-Shang Lee)
dc.contributor.authorChu-Chun Huangen
dc.contributor.author黃竹君zh_TW
dc.date.accessioned2021-06-16T17:31:30Z-
dc.date.available2012-08-19
dc.date.copyright2012-08-19
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citationAlbrecht, B. A., 1989:Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science, 245, 1227-1230.
Amitai, E., 2000:Systematic Variation of Observed Radar Reflectivity–Rainfall Rate Relations in the Tropics. J. of Appl. Meteor., 39, 2198-2208.
Biggerstaff, M. I., and R. A. Houze, 1993:Kinematics and Microphysics of the Transition Zone of the 10–11 June 1985 Squall Line. J. Atmos. Sci., 50, 3091-3110.
Carrio, G. G., and W. R. Cotton, 2011:Investigations of aerosol impacts on hurricanes: virtual seeding flights. Atmos. Chem. Phys., 11, 2557-2567.
Chang, W.-Y., T.-C. C. Wang, and P.-L. Lin, 2009:Characteristics of the Raindrop Size Distribution and Drop Shape Relation in Typhoon Systems in the Western Pacific from the 2D Video Disdrometer and NCU C-Band Polarimetric Radar. J.Atmos.Oceanic Technol., 26, 1973-1993.
Chen, J.-P., and S.-T. Liu, 2004:Physically based two-moment bulkwater parametrization for warm-cloud microphysics. Q. J. Royal Meteor. Soc., 130, 51-78.
Cheng, C.-T., W.-C. Wang, and J.-P. Chen, 2007:A modelling study of aerosol impacts on cloud microphysics and radiative properties. Q. J. R. Meteorol. Soc., 133, 283-297.
──, 2010:Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system. Atmos. Res., 96, 461-476.
Cooper, W.A., 1986:Ice initiation in natural clouds. AMS Meteor. Monograph, 21, [R.G. Braham,. Jr., Ed.], Amer. Meteor. Soc., Boston, 29-32.
DeMott, P. J., and D. C. Rogers, 1990:Freezing Nucleation Rates of Dilute Solution Droplets Measured between −30° and −40°C in Laboratory Simulations of Natural Clouds. J.Atmos. Sci., 47, 1056-1064.

 
Dudhia, J., 1989:Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J.Atmos.Sci., 46, 3077-3107.
Dunion, J. P., and C. S. Velden, 2004:The Impact of the Saharan Air Layer on Atlantic Tropical Cyclone Activity. Bull. Am. Meteorol. Soc., 85, 353-365.
Hence, D. A., and R. A. Houze, Jr., 2008:Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006:A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Wea.Rev., 134, 2318-2341.
Houze, R. A., Jr., 2004:Mesoscale convective systems. Rev. Geophys., 42, RG4003.
Kain, J. S., 2004:The Kain–Fritsch Convective Parameterization:An Update. Journal of Applied Meteorology, 43, 170-181.
Khain, A., N. Cohen, B. Lynn, and A. Pokrovsky, 2008:Possible Aerosol Effects on Lightning Activity and Structure of Hurricanes. J. Atmos. Sci., 65, 3652-3677.
Khain, A., B. Lynn, and J. Dudhia, 2010:Aerosol Effects on Intensity of Landfalling Hurricanes as Seen from Simulations with the WRF Model with Spectral Bin Microphysics. J. Atmos. Sci., 67, 365-384.
Krall, G. M., and W. R. Cotton, 2012:Potential indirect effects of aerosol on tropical cyclone intensity: convective fluxes and cold-pool activity. Atmos. Chem. Phys. Discuss., 12, 351-385.
Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984:Role of a Parameterized Ice-Phase Microphysics in an Axisymmetric, Nonhydrostatic Tropical Cyclone Model. J. Atmos. Sci., 41, 2836-2848.
Marshall, J. S., and W. M. K. Palmer, 1948:The distribution of raindrops with size. J. Meteor., 5, 165-166.
 
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663-16682.
Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998:Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Q. J. R. Meteorol. Soc., 124, 1071-1107.
Ryan, B. F., 2000:A Bulk Parameterization of the Ice Particle Size Distribution and the Optical Properties in Ice Clouds. J. Atmos. Sci., 57, 1436-1451.
Schumacher, C., R. A. Houze, and I. Kraucunas, 2004:The Tropical Dynamical Response to Latent Heating Estimates Derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 1341-1358.
Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012:Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001.
Tokay, A., and D. A. Short, 1996:Evidence from Tropical Raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds. J. Appl. Meteor., 35, 355-371.
van den Heever, S. C., G. G. Carrio, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of Nucleating Aerosol on Florida Storms. Part I: Mesoscale Simulations. J. Atmos. Sci., 63, 1752-1775.
Wang, Y., 2002:An Explicit Simulation of Tropical Cyclones with a Triply Nested Movable Mesh Primitive Equation Model:TCM3. Part I: Model Description and Control Experiment. Mon. Wea. Rev., 129, 1370-1394.
Whitby, K. T., 1978:The physical characteristics of sulfur aerosols. Atmospheric Environment (1967), 12, 135-159.
Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982:Concentric Eye Walls, Secondary Wind Maxima, and The Evolution of the Hurricane vortex. J. Atmos. Sci., 39, 395-411.
 
Willoughby, H. E., H.-L. Jin, S. J. Lord, and J. M. Piotrowicz, 1984:Hurricane Structure and Evolution as Simulated by an Axisymmetric, Nonhydrostatic Numerical Model. J. Atmos. Sci., 41, 1169-1186.
Willoughby, H. E., D. P. Jorgensen, R. A. Black, and S. L. Rosenthal, 1985:Project STORMFURY:A scientific chronicle, 1962-1983. Bull. Amer. Meteor. Soc., 66, 505-514.
Yang, M.-J., S. A. Braun, and D.-S. Chen, 2011:Water Budget of Typhoon Nari (2001). Monthly Weather Review, 139, 3809-3828.
Zhang, H., G. M. McFarquhar, S. M. Saleeby, and W. R. Cotton, 2007:Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone. Geophys. Res. Lett., 34, L14812.
Zhang, H., G. M. McFarquhar, W. R. Cotton, and Y. Deng, 2009:Direct and indirect impacts of Saharan dust acting as cloud condensation nuclei on tropical cyclone eyewall development. Geophys. Res. Lett., 36, L06802.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64135-
dc.description.abstract過去研究顯示,雲微物理過程對颱風路徑、結構及降水有顯著影響;然而針對雲凝結核(CCN)濃度影響颱風結構變化則相對較少。由於氣膠濃度變化能有效改變雲微物理過程,進而可能反饋影響颱風中對流之發展,因此了解氣膠於颱風發展階段的角色有一定程度的重要性。本研究針對2001年納莉颱風,探討不同氣膠濃度對颱風模擬之影響。為適切模擬雲與氣膠在混態雲內之交互作用,因此選用能夠妥善處理雲滴活化過程與冷暖雲機制的CLR雲微物理參數法,將其植入WRF中以模擬納莉颱風。
模擬結果顯示氣膠初始設定與雲微物理法的差異皆會影響納莉颱風路徑、強度、對流及微物理結構。當氣膠濃度較高時,颱風外圍雨帶會有近似較成熟颮線的結構,由於小冰晶的成長較緩,故有較多冰晶存在於高層外流區,使層狀區域水平延伸較廣。層狀雲區亮帶之上的冰晶成長釋放潛熱,其下的蒸發融化作用導致的冷卻,將能加強近地面的冷池及尾端入流,有利對流雲系持續發展。配合環境場的分析顯示,氣膠數量較多時,層狀區域較廣,更有利於上述機制的作用。另一方面,層狀雲區高層因冰相過程的加熱、中低層因融化蒸發作用的冷卻,將改變颱風整體加熱剖面,有可能影響颱風之發展。
此研究結果顯示,納莉颱風的雨帶發展受雲微物理過程影響甚鉅,且氣膠的變化亦對納莉颱風的降水過程與加熱情形有明顯差異,凸顯適切完備的雲微物理過程對於颱風模擬的重要性。
zh_TW
dc.description.abstractMany numerical studies have shown that cloud microphysical processes can have significant impact on the track, structure and precipitation of typhoon. However, few studies have investigated the effect of varying cloud condensation nuclei (CCN) concentration on typhoon’s evolution. It is therefore important to understand the role of aerosol during typhoon’s developing phase. To address this issue, Typhoon Nari (2001) is selected for investigation because of its slow translation speed and special track which stays close to the land and aerosol sources for an extended period of time. The WRF model incorporated with a semi-two-moment mixed-phase cloud microphysical scheme which can properly resolve aerosol-cloud microphysical interaction is used to study such effects.
The simulations show that different CCN conditions lead to significant changes in the track, intensity and axisymmetric structure of Nari. Under more polluted aerosol situation, the main rainband becomes more convective and produces wider stratiform region as a result of weakened warm-rain processes and enhanced ice-phase processes. Furthermore, the squall-line-like structure of the rainband becomes more prominent, including a stronger upper-level latent heat release and below cloud evaporation which lead to enhanced rear inflow that brings in mid-level dry air. This leads to a stronger level-cold pool and the invigoration of convective inflow. The differential high-level heating and lower level cooling in the stratiform region of the rainband caused by aerosols may also alter the overall thermal structure and development of this typhoon.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:31:30Z (GMT). No. of bitstreams: 1
ntu-101-R99229025-1.pdf: 11709663 bytes, checksum: 0d5867ce167ec28cb6cda1c53fb152de (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 動機與目的 6
第二章 數值模式與實驗設計 8
2.1 數值模式簡介 8
2.2 模式設定 10
2.3 雲微物理參數化法 11
2.4 Chen-Liu-Reisner (CLR) scheme 13
2.4.1 Chen-Liu (CL) scheme與Reisner 2 scheme 13
2.4.2 氣膠核化與雲凝結核活化過程 15
2.4.3 雲冰核化過程 17
2.4.4 WDM6 scheme 與CLR scheme之主要差別 18
2.5 實驗設計 20
第三章 模式模擬結果驗證 21
3.1 納莉颱風概述 21
3.2 模擬結果驗證 23
3.2.1 路徑與強度 24
3.2.2 雷達回波結構 24
3.2.3 累積降雨量 25
3.2.4 微物理特徵 25
第四章 對流結構分析與討論 27
4.1 水象粒子時空分布 28
4.2 環境與動力場分析 30
4.2.1 相當位溫水平分布 31
4.2.2 空氣逆軌跡分析 31
4.3 對流垂直剖面分析 32
4.4 相變化之潛熱釋放 35
第五章 討論與總結 38
參考文獻 42
dc.language.isozh-TW
dc.subject對流結構zh_TW
dc.subject雲凝結核zh_TW
dc.subject雲微物理參數法zh_TW
dc.subject納莉颱風zh_TW
dc.subjectCloud microphysical schemeen
dc.subjectCloud condensation nucleien
dc.subjectTyphoon Narien
dc.subjectConvection structureen
dc.title氣膠衝擊颱風之模擬 ─ 納莉颱風(2001)zh_TW
dc.titleSimulation of Aerosol Impact on Typhoon Nari (2001)en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor陳正平(Jen-Ping Chen)
dc.contributor.oralexamcommittee郭鴻基(Hung-Chi Kuo),楊明仁(Ming-Jen Yang)
dc.subject.keyword雲凝結核,納莉颱風,對流結構,雲微物理參數法,zh_TW
dc.subject.keywordCloud condensation nuclei,Typhoon Nari,Convection structure,Cloud microphysical scheme,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2012-08-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
11.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved