請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64131完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林沛群 | |
| dc.contributor.author | Jing-Yi Chen | en |
| dc.contributor.author | 陳敬宜 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:31:20Z | - |
| dc.date.available | 2017-08-27 | |
| dc.date.copyright | 2012-08-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | [1] Wikipedia. Robot. Available: http://en.wikipedia.org/wiki/Robot
[2] I. Asimov. Available: http://en.wikipedia.org/wiki/Isaac_Asimov [3] I. Poulakakis, E. Papadopoulos, and M. Buehler, 'On the stability of the passive dynamics of quadrupedal running with a bounding gait,' International Journal of Robotics Research, vol. 25, pp. 669-685, Jul 2006. [4] M. Buehler, R. Battaglia, A. Cocosco, G. Hawker, J. Sarkis, and K. Yamazaki, 'SCOUT: a simple quadruped that walks, climbs, and runs,' in Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on, 1998, pp. 1707-1712 vol.2. [5] S. Hirose and M. Mori, 'Biologically inspired snake-like robots,' in Robotics and Biomimetics, 2004. ROBIO 2004. IEEE International Conference on, 2004, pp. 1-7. [6] J. Z. Kolter, M. P. Rodgers, and A. Y. Ng, 'A control architecture for quadruped locomotion over rough terrain,' in Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, 2008, pp. 811-818. [7] D. Pongas, M. Mistry, and S. Schaal, 'A robust quadruped walking gait for traversing rough terrain,' in Robotics and Automation, 2007 IEEE International Conference on, 2007, pp. 1474-1479. [8] J. Yan, R. J. Wood, S. Avadhanula, M. Sitti, and R. S. Fearing, 'Towards flapping wing control for a micromechanical flying insect,' in Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 2001, pp. 3901-3908 vol.4. [9] J. R. Rebula, P. D. Neuhaus, B. V. Bonnlander, M. J. Johnson, and J. E. Pratt, 'A Controller for the LittleDog Quadruped Walking on Rough Terrain,' in Robotics and Automation, 2007 IEEE International Conference on, 2007, pp. 1467-1473. [10] Honda. Asimo. Available: http://world.honda.com/ASIMO/ [11] K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, and K. Akachi, 'Humanoid robot HRP-3,' in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, 2008, pp. 2471-2478. [12] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi, and T. Isozumi, 'Humanoid robot HRP-2,' in Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on, 2004, pp. 1083-1090 Vol.2. [13] K. Kaneko, F. Kanehiro, S. Kajita, K. Yokoyama, K. Akachi, T. Kawasaki, S. Ota, and T. Isozumi, 'Design of prototype humanoid robotics platform for HRP,' in Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on, 2002, pp. 2431-2436 vol.3. [14] 産業技術総合研究所. Available: http://www.aist.go.jp/ [15] 韓國KHR人型機器人團隊. Available: http://hubolab.kaist.ac.kr/index.php [16] 波士頓動力公司Boston Dynamics PETMAN. Available: http://www.bostondynamics.com/robot_petman.html [17] 王紹帆, '雙足機器人的設計與實現,' 碩士論文, 機械工程學研究所, 國立台灣大學, 台北, 2010. [18] 陳均聖, '雙足機器人之機電整合與軌跡控制,' 碩士論文, 機械工程學研究所, 國立台灣大學, 台北, 2011. [19] 盧兆慶, '雙足機器人之步態規劃與感測系統建置,' 碩士論文, 機械工程學研究所, 國立台灣大學, 台北, 2011. [20] 早稲田大学ヒューマノイド研究所. Available: http://www.humanoid.waseda.ac.jp/index-j.html [21] ASIMO. Available: http://www.youtube.com/watch?v=zul8ACjZI18 [22] K. Akachi, K. Kaneko, N. Kanehira, S. Ota, G. Miyamori, M. Hirata, S. Kajita, and F. Kanehiro, 'Development of humanoid robot HRP-3P,' in Humanoid Robots, 2005 5th IEEE-RAS International Conference on, 2005, pp. 50-55. [23] P. Ill-Woo, K. Jung-Yup, L. Jungho, and O. Jun-Ho, 'Mechanical design of humanoid robot platform KHR-3 (KAIST Humanoid Robot 3: HUBO),' in Humanoid Robots, 2005 5th IEEE-RAS International Conference on, 2005, pp. 321-326. [24] P. Ill-Woo, K. Jung-Yup, P. Seo-Wook, and O. Jun-Ho, 'Development of humanoid robot platform KHR-2 (KAIST humanoid robot-2),' in Humanoid Robots, 2004 4th IEEE/RAS International Conference on, 2004, pp. 292-310 Vol. 1. [25] K. Jung-Hoon and O. Jun-Ho, 'Walking control of the humanoid platform KHR-1 based on torque feedback control,' in Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on, 2004, pp. 623-628 Vol.1. [26] J. Y. Kim, I. W. Park, and J. H. Oh, 'Experimental realization of dynamic walking of the biped humanoid robot KHR-2 using zero moment point feedback and inertial measurement,' Advanced Robotics, vol. 20, pp. 707-736, 2006. [27] I. W. Park, J. Y. Kim, and J. H. Oh, 'Online walking pattern generation and its application to a biped humanoid robot - KHR-3 (HUBO),' Advanced Robotics, vol. 22, pp. 159-190, 2008. [28] 波士頓動力公司PETMAN人型機器人發表影片. Available: http://www.youtube.com/watch?v=67CUudkjEG4 [29] 波士頓動力公司ATLAS人型機器人發表影片.Available: http://www.youtube.com/watch?v=mclbVTIYG8E&feature=relmfu [30] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, 'Biped walking pattern generation by using preview control of zero-moment point,' in Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, 2003, pp. 1620-1626 vol.2. [31] N. T. Phuong, K. Dae Won, K. Hak Kyeong, and K. Sang Bong, 'An optimal control method for biped robot with stable walking gait,' in Humanoid Robots, 2008. Humanoids 2008. 8th IEEE-RAS International Conference on, 2008, pp. 211-218. [32] P. Jonghoon and Y. Youngil, 'General ZMP preview control for bipedal walking,' in Robotics and Automation, 2007 IEEE International Conference on, 2007, pp. 2682-2687. [33] T. Takubo, T. Tanaka, K. Inoue, and T. Arai, 'Emergent walking stop using 3-D ZMP modification criteria map for humanoid robot,' in Robotics and Automation, 2007 IEEE International Conference on, 2007, pp. 2676-2681. [34] K. Nishiwaki and S. Kagami, 'High frequency walking pattern generation based on preview control of ZMP,' in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, 2006, pp. 2667-2672. [35] H. Seokmin, O. Yonghwan, C. Young-Hwan, and Y. Bum-Jae, 'Walking pattern generation for Humanoid robots with LQR and feedforward control method,' in Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE, 2008, pp. 1698-1703. [36] H. Seokmin, O. Yonghwan, K. Doik, R. Syungkwon, and Y. Bum-Jae, 'Walking pattern generation method with feedforward and feedback control for humanoid robots,' in Robot and Human Interactive Communication, 2009. RO-MAN 2009. The 18th IEEE International Symposium on, 2009, pp. 263-268. [37] S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko, F. Kanehiro, and K. Yokoi, 'Biped walking stabilization based on linear inverted pendulum tracking,' in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, 2010, pp. 4489-4496. [38] K. Miura, M. Morisawa, S. Nakaoka, F. Kanehiro, K. Harada, K. Kaneko, and S. Kajita, 'Robot motion remix based on motion capture data towards human-like locomotion of humanoid robots,' in Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS International Conference on, 2009, pp. 596-603. [39] E. Kim, T. Kim, and J. W. Kim, 'Three-dimensional modelling of a humanoid in three planes and a motion scheme of biped turning in standing,' Iet Control Theory and Applications, vol. 3, pp. 1155-1166, Sep 2009. [40] S. Peng, H. Shui, and H. Ma, 'A simulation and experiment research on turning gait planning of blackmann-II humanoid robot,' in Control and Automation (ICCA), 2010 8th IEEE International Conference on, 2010, pp. 719-724. [41] M. Ikebe and K. Ohnishi, 'A method of deciding force feedback gain against external force for biped robot,' in Advanced Motion Control, 2006. 9th IEEE International Workshop on, 2006, pp. 422-427. [42] N. Motoi, M. Ikebe, and K. Ohnishi, 'Real-time gait planning for pushing motion of humanoid robot,' Industrial Informatics, IEEE Transactions on, vol. 3, pp. 154-163, 2007. [43] E. Ohashi, T. Sato, and K. Ohnishi, 'A walking stabilization method based on environmental modes on each foot for biped robot,' Industrial Electronics, IEEE Transactions on, vol. 56, pp. 3964-3974, 2009. [44] T. Suzuki and K. Ohnishi, 'Foot pressure control based on extraction of environment mode,' in Industrial Technology, 2006. ICIT 2006. IEEE International Conference on, 2006, pp. 1332-1337. [45] K. Nishiwaki and S. Kagami, 'Strategies for adjusting the ZMP reference trajectory for maintaining balance in humanoid walking,' in Robotics and Automation (ICRA), 2010 IEEE International Conference on, 2010, pp. 4230-4236. [46] K. Nishiwaki and S. Kagami, 'Simultaneous planning of CoM and ZMP based on the preview control method for online walking control,' in Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International Conference on, 2011, pp. 745-751. [47] P. B. Wieber, 'Trajectory free linear model predictive control for stable walking in the presence of strong perturbations,' in Humanoid Robots, 2006 6th IEEE-RAS International Conference on, 2006, pp. 137-142. [48] H. Diedam, D. Dimitrov, P. B. Wieber, K. Mombaur, and M. Diehl, 'Online walking gait generation with adaptive foot positioning through Linear Model Predictive control,' in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, 2008, pp. 1121-1126. [49] L. Jian and C. Weidong, 'Modeling and control for a biped robot on uneven surfaces,' in Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, 2009, pp. 2960-2965. [50] M. Morisawa, F. Kanehiro, K. Kaneko, N. Mansard, J. Sola, E. Yoshida, K. Yokoi, and J. Laumond, 'Combining suppression of the disturbance and reactive stepping for recovering balance,' in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, 2010, pp. 3150-3156. [51] M. Abdallah and A. Goswami, 'A biomechanically motivated two-phase strategy for biped upright balance control,' in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, 2005, pp. 1996-2001. [52] Y. Seung-kook and A. Goswami, 'Momentum-based reactive stepping controller on level and non-level ground for humanoid robot push recovery,' in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, 2011, pp. 3943-3950. [53] M. Morisawa, K. Harada, S. Kajita, K. Kaneko, J. Sola, E. Yoshida, N. Mansard, K. Yokoi, and J. P. Laumond, 'Reactive stepping to prevent falling for humanoids,' in Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS International Conference on, 2009, pp. 528-534. [54] R. Caballero and M. A. Armada, 'Dynamic state feedback for zero moment point biped robot stabilization,' in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, 2007, pp. 4041-4046. [55] L. Sung-Hee and A. Goswami, 'Ground reaction force control at each foot: A momentum-based humanoid balance controller for non-level and non-stationary ground,' in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, 2010, pp. 3157-3162. [56] B. J. Stephens and C. G. Atkeson, 'Push recovery by stepping for humanoid robots with force controlled joints,' in Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference on, 2010, pp. 52-59. [57] B. J. Stephens and C. G. Atkeson, 'Dynamic balance force control for compliant humanoid robots,' in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, 2010, pp. 1248-1255. [58] B. Stephens, 'Humanoid push recovery,' in Humanoid Robots, 2007 7th IEEE-RAS International Conference on, 2007, pp. 589-595. [59] M. V. a. B. Borovac, 'Zero-moment point ─ thirty five years of its life,' International Journal of Humanoid Robotics, vol. vol.1, pp. 147-173, 2004. [60] 梶田秀司. 産業技術総合研究所, ヒューマノイドロボット: Ohmsha. [61] T. Katayama, T. Ohki, T. Inoue, and T. Kato, 'Design of an optimal controller for a discrete-time system subject to previewable demand,' International Journal of Control, vol. 41, pp. 677-699, 1985. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64131 | - |
| dc.description.abstract | 本論文內容主要包含兩個部分,一為設計開發機器人轉彎步態,以建構雙足機器人在平面上運動的完整性。一為以機器人腳踝上的六軸力規為感測基礎,開發力回授控制的步行步態,使機器人步行具抗干擾與穩定的特性。轉彎步態開發包含原地定點轉彎與步行轉彎兩個類型,以線性倒單擺為模型,藉由質心軌跡與腳板運動軌跡的規畫,配合運用逆運動學以求得機器人雙腳上各個驅動關節的運動軌跡,同時,以零力矩點(Zero-Moment Point,ZMP)理論為基礎,在模擬環境中驗證所開發步態的可行性,並以機器人實體進行實驗驗證,確立轉彎步態的可行性。力回授步行步態是以預觀控制(Preview Control)軌跡即時生成法為基礎,藉由給定零力矩點參考軌跡,由控制器自動生成對應出預設的質心運動軌跡。同時,藉由倒單擺模型所建構零力矩點和質心加速度間關連性,以創新具物理意義的質心加速度回授調控方式,來調整機器人步行時零力矩點的位置,以確保機器人運動時的穩定性。為突顯出回授機制的性能,除了一般步行實驗外,也進行外力干擾的步行實驗,而在模擬和實體實驗中均明顯顯示出,具有回授控制機制的機器人在步行時,能將機器人機身劇烈晃動現象快速收斂至穩態以保持機器人原本的步行運動。最後,以模仿生物在遭受大干擾時會自動變換步態以求穩定運動的特性,開發出即時調控零力矩點參考軌跡與腳板運動軌跡的功能,讓機器人在必要時得以即時改變腳板踩點位置。同時,並配合前述的力回授機制,使機器人在受大外力干擾時,同步調整質心運動軌跡與變換跨步距離,建構出具更強韌抗干擾特性的步行步態,並經由實體實驗驗證其可行性。 | zh_TW |
| dc.description.abstract | The thesis contains two parts. One is to develop the turning gait of biped robot to construct the comprehensiveness of planar motion. The other one is to develop the walking gait of force-feedback control on the basis of six-axis force sensors installed on the ankle of each leg, so that the robot is equipped with the features of disturbance rejection and stability. The development of turning gait includes making a turn at a fixed point and making a turn while walking. Based on the Linear Inverted Pendulum Model (LIPM), the trajectories of each foot and the center of mass (COG) could be planned well. Then, the Inverse Kinematics is applied to calculate the trajectories of each actuated joints on both legs of biped robot. Meanwhile, based on the theory of ZMP (Zero-Moment Point), verify the validity of the turning gait in simulation and further in the robot experiments.
The force-feedback walking gait is based on real-time trajectory generation of preview control method. Form the planned ZMP tracking reference, the controller automatically generates the corresponding trajectory of center of mass. Moreover, from the correlation of ZMP and COG state grounded the Linear Inverted Pendulum Model, the COG acceleration feedback control method, which is innovative and with physical significance, is used to adjust the position of ZMP while the robot is walking. Therefore, the stability of robot motion is ensured. In order to highlight the functions of force-feedback control, in addition to ordinary walking experiments, the experiments with interference of external force are also conducted. Both simulations and experiments reveal that while the robot with feedback control is walking, the violent vibrations of robot’s body converge rapidly to the stable extent that the robot is able to maintain the earlier walking motion. Last, the function of real-time ZMP tracking reference and foot trajectory adjustment is developed by imitating the characteristic of creatures that they are able to maintain stable motion by changing gaits automatically when encountering strong external force. Therefore, the robot is able to instantly change the stepping position of swing leg if necessary. Besides, considering the feedback control method as mentioned above together, the robot, when disturbed with strong external force, adjusts the COG trajectory and changes the stepping length simultaneously. Thus the force-feedback walking gait with a more robust characteristic of disturbance rejection is constructed. And the validity is verified by the robot experiments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:31:20Z (GMT). No. of bitstreams: 1 ntu-101-R99522812-1.pdf: 6589839 bytes, checksum: ed86224242dd62c80a0dd2cb41fbd17c (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目錄 V 圖目錄 IX 表目錄 XVIII 附錄一 符號對照表 XIX 第一章 緒論 1 1.1前言 1 1.2研究動機 3 1.3文獻回顧 4 1.4貢獻 10 1.5論文架構 12 第二章 雙足機器人動力學 14 2.1機器人真實尺寸與機構自由度 14 2.2零力矩點(Zero Moment Point)理論與量測 16 2.2.1零力矩點(ZMP)理論 16 2.2.2零力矩點(ZMP)量測 17 2.3雙足機器人簡化運動模型 19 2.3.1線性倒單擺運動模型 19 2.3.2臺車桌子運動模型 21 2.4本章結論 23 第三章 定點轉彎運動軌跡規畫 24 3.1前言 24 3.2轉彎軌跡規畫流程 24 3.3定點轉彎軌跡:身體先轉模式 25 3.3.1運動階段流程 25 3.3.2質心軌跡規畫 26 3.3.3腳板軌跡規畫 38 3.3.4馬達軌跡 45 3.3.5 ZMP軌跡確認 47 3.3.6 Matlab運動模擬 48 3.4定點轉彎軌跡:腳部先轉模式 51 3.4.1運動階段流程 51 3.4.2質心軌跡規畫 52 3.4.3腳板軌跡規畫 61 3.4.4馬達軌跡 67 3.4.5 ZMP軌跡確認 69 3.4.6 Matlab運動模擬 69 3.5定點轉彎軌跡:身體腳部同時轉動模式 72 3.5.1運動階段流程 72 3.5.2質心軌跡規畫 73 3.5.3腳板軌跡規畫 81 3.5.4馬達軌跡 85 3.5.5 ZMP軌跡確認 87 3.5.6 Matlab運動模擬 87 3.6定點轉彎軌跡修正、討論與比較 91 3.6.1質心與腳板軌跡修正 91 3.6.2三種定點轉彎模式討論與比較 94 3.7實驗結果 97 3.7.1身體先轉模式 97 3.7.2腳部先轉模式 98 3.7.3身體腳部同時轉動模式 99 3.8本章結論 99 第四章 步行轉彎運動軌跡規畫 100 4.1前言 100 4.2運動階段流程 100 4.3質心軌跡規畫 101 4.3.1轉彎第一階段單足支撐 102 4.3.2轉彎雙足支撐身體轉動階段 106 4.3.3轉彎第二階段單足支撐 107 4.3.4步行轉彎完整質心軌跡 109 4.4腳板軌跡規畫 110 4.4.1轉彎第一階段單足支撐 110 4.4.2轉彎第二階段單足支撐 111 4.4.3步行轉彎完整腳板軌跡 112 4.5馬達軌跡 113 4.6 ZMP軌跡 114 4.8 Matlab運動模擬 115 4.9實驗結果 120 4.10本章結論 122 第五章 力回授步行步態規劃與控制 123 5.1前言 123 5.2雙足機器人預觀控制(Preview Control)系統 125 5.2.1雙足機器人系統模型 125 5.2.2雙足機器人預觀控制應用:運動軌跡即時生成 127 5.3機器人運動軌跡即時調整 131 5.3.1 ZMP軌跡即時調整與質心軌跡柔順化 132 5.3.2腳板軌跡與抬放腳高度即時調整 139 5.4預觀控制系統質心加速度修補回授控制 141 5.5質心加速度修補回授控制同時步距調整 147 5.6模擬與實驗結果 150 5.6.1 Adams動態模擬 151 5.6.2實驗結果 155 5.7本章結論 173 第六章 結論與未來展望 175 6.1結論 175 6.2未來展望 175 參考文獻 177 附錄:多媒體附件 182 | |
| dc.language.iso | zh-TW | |
| dc.subject | 轉彎步態 | zh_TW |
| dc.subject | 雙足機器人 | zh_TW |
| dc.subject | 力回授控制 | zh_TW |
| dc.subject | 預觀控制 | zh_TW |
| dc.subject | 零力矩點 | zh_TW |
| dc.subject | biped robot | en |
| dc.subject | turning gait | en |
| dc.subject | ZMP | en |
| dc.subject | preview control | en |
| dc.subject | force-feedback control | en |
| dc.title | 雙足機器人轉彎步態與力回授步行步態開發 | zh_TW |
| dc.title | Development of turning gait and force-feedback walking gait for a biped robot | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃漢邦,黃光裕 | |
| dc.subject.keyword | 雙足機器人,轉彎步態,零力矩點,預觀控制,力回授控制, | zh_TW |
| dc.subject.keyword | biped robot,turning gait,ZMP,preview control,force-feedback control, | en |
| dc.relation.page | 182 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 6.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
