Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64118
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王愛玉(Ai-Yu Wang)
dc.contributor.authorYa-Chu Changen
dc.contributor.author張雅筑zh_TW
dc.date.accessioned2021-06-16T17:30:47Z-
dc.date.available2017-08-28
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citationAhuatzi, D., Herrero, P., de la Cera, T., and Moreno, F. (2004). The Glucose-regulated Nuclear Localization of Hexokinase 2 in Saccharomyces cerevisiae Is Mig1-dependent. Journal of Biological Chemistry 279, 14440-14446.
Amor, Y., Haigler, C.H., Johnson, S., Wainscott, M., and Delmer, D.P. (1995). A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proceedings of the National Academy of Sciences 92, 9353-9357.
Angeles-Nunez, J.G., and Tiessen, A. (2010). Arabidopsis sucrose synthase 2 and 3 modulate metabolic homeostasis and direct carbon towards starch synthesis in developing seeds. Planta 232, 701-718.
Azam, S., Jouvet, N., Jilani, A., Vongsamphanh, R., Yang, X., Yang, S., and Ramotar, D. (2008). Human Glyceraldehyde-3-phosphate Dehydrogenase Plays a Direct Role in Reactivating Oxidized Forms of the DNA Repair Enzyme APE1. Journal of Biological Chemistry 283, 30632-30641.
Barrero-Sicilia, C., Hernando-Amado, S., Gonzalez-Melendi, P., and Carbonero, P. (2011). Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley. Planta 234, 391-403.
Baud, S., Vaultier, M.N., and Rochat, C. (2004). Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. Journal of Experimental Botany 55, 397-409.
Bedford, E., Tabor, S., and Richardson, C.C. (1997). The thioredoxin binding domain of bacteriophage T7 DNA polymerase confers processivity on Escherichia coli DNA polymerase I. Proceedings of the National Academy of Sciences 94, 479-484.
Bieniawska, Z., Paul Barratt, D.H., Garlick, A.P., Thole, V., Kruger, N.J., Martin, C., Zrenner, R., and Smith, A.M. (2007). Analysis of the sucrose synthase gene family in Arabidopsis. The Plant Journal 49, 810-828.
Bimboim, H.C., and Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7, 1513-1523.
Bolouri-Moghaddam, M.R., Le Roy, K., Xiang, L., Rolland, F., and Van den Ende, W. (2010). Sugar signalling and antioxidant network connections in plant cells. The FEBS Journal 277, 2022-2037.
Bonafe, N., Gilmore-Hebert, M., Folk, N.L., Azodi, M., Zhou, Y., and Chambers, S.K. (2005). Glyceraldehyde-3-Phosphate Dehydrogenase Binds to the AU-Rich 3′ Untranslated Region of Colony-Stimulating Factor–1 (CSF-1) Messenger RNA in Human Ovarian Cancer Cells: Possible Role in CSF-1 Posttranscriptional Regulation and Tumor Phenotype. Cancer Research 65, 3762-3771.
Buckeridge, M.S., Vergara, C.E., and Carpita, N.C. (1999). The Mechanism of Synthesis of a Mixed-Linkage (1→3),(1→4)β-d-Glucan in Maize. Evidence for Multiple Sites of Glucosyl Transfer in the Synthase Complex. Plant Physiology 120, 1105-1116.
Burnette, W.N. (1981). 'Western blotting': electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical Biochemistry 112, 195-203.
Cattaneo, A., Biocca, S., Corvaja, N., and Calissano, P. (1985). Nuclear localization of a lactic dehydrogenase with single-stranded DNA-binding properties. Experimental Cell Research 161, 130-140.
Chalivendra, S., Huber, S.C., Sachs, M.M., and Rhoads, D. (2007). Sucrose Synthase: Expanding Protein Function. Plant Signaling & Behavior 2, 28-29.
Chang, J.C., Liao, Y.C., Yang, C.C., and Wang, A.Y. (2011). The purine-rich DNA-binding protein OsPuralpha participates in the regulation of the rice sucrose synthase 1 gene expression. Physiologia Plantarum 143, 219-234.
Cho, J.I., Kim, H.B., Kim, C.Y., Hahn, T.R., and Jeon, J.S. (2011). Identification and characterization of the duplicate rice sucrose synthase genes OsSUS5 and OsSUS7 which are associated with the plasma membrane. Molecules and Cells 31, 553-561.
Cho, Y.H., Yoo, S.D., and Sheen, J. (2006). Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127, 579-589.
Commichau, F.M., and Stulke, J. (2008). Trigger enzymes: bifunctional proteins active in metabolism and in controlling gene expression. Molecular Microbiology 67, 692-702.
Demarse, N.A., Ponnusamy, S., Spicer, E.K., Apohan, E., Baatz, J.E., Ogretmen, B., and Davies, C. (2009). Direct Binding of Glyceraldehyde 3-Phosphate Dehydrogenase to Telomeric DNA Protects Telomeres against Chemotherapy-Induced Rapid Degradation. Journal of Molecular Biology 394, 789-803.
Duncan, K.A., and Huber, S.C. (2007). Sucrose Synthase Oligomerization and F-actin Association are Regulated by Sucrose Concentration and Phosphorylation. Plant and Cell Physiology 48, 1612-1623.
Duncan, K.A., Hardin, S.C., and Huber, S.C. (2006). The Three Maize Sucrose Synthase Isoforms Differ in Distribution, Localization, and Phosphorylation. Plant and Cell Physiology 47, 959-971.
Dupuy, J., Volbeda, A., Carpentier, P., Darnault, C., Moulis, J.-M., and Fontecilla-Camps, J.C. (2006). Crystal Structure of Human Iron Regulatory Protein 1 as Cytosolic Aconitase. Structure 14, 129-139.
Entian, K.D. (1980). Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Molecular and General Genetics 178, 633-637.
Etxeberria, E., and Gonzalez, P. (2003). Evidence for a tonoplast‐associated form of sucrose synthase and its potential involvement in sucrose mobilization from the vacuole. Journal of Experimental Botany 54, 1407-1414.
Gendrel, A.-V., Lippman, Z., Martienssen, R., and Colot, V. (2005). Profiling histone modification patterns in plants using genomic tiling microarrays. Nature Methods 2, 213-218.
Gu, D., Zhou, Y., Kallhoff, V., Baban, B., Tanner, J.J., and Becker, D.F. (2004). Identification and Characterization of the DNA-binding Domain of the Multifunctional PutA Flavoenzyme. Journal of Biological Chemistry 279, 31171-31176.
Hall, D.A., Zhu, H., Zhu, X., Royce, T., Gerstein, M., and Snyder, M. (2004). Regulation of Gene Expression by a Metabolic Enzyme. Science 306, 482-484.
Hanahan, D. (1985) Techniques for transformation of E.coli. In DNA Cloning, Vol. I, D.M. Glover ed, IRL Press, Oxford, pp109-135.
Harada, T., Satoh, S., Yoshioka, T., and Ishizawa, K. (2005). Expression of Sucrose Synthase Genes Involved in Enhanced Elongation of Pondweed (Potamogeton distinctus) Turions under Anoxia. Annals of Botany 96, 683-692.
Haring, M., Offermann, S., Danker, T., Horst, I., Peterhansel, C., and Stam, M. (2007). Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3, 11.
Hirose, T., Scofield, G.N., and Terao, T. (2008). An expression analysis profile for the entire sucrose synthase gene family in rice. Plant Science 174, 534-543.
Huang, J.-W., Chen, J.-T., Yu, W.-P., Shyur, L.-F., Wang, A.-Y., Sung, H.-Y., Lee, P.-D., and Su, J.-C. (1996). Complete Structures of Three Rice Sucrose Synthase Isogenes and Differential Regulation of Their Expressions. Bioscience, Biotechnology, and Biochemistry 60, 233-239.
Huberts, D.H.E.W., and van der Klei, I.J. (2010). Moonlighting proteins: An intriguing mode of multitasking. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1803, 520-525.
Impey, S., McCorkle, S.R., Cha-Molstad, H., Dwyer, J.M., Yochum, G.S., Boss, J.M., McWeeney, S., Dunn, J.J., Mandel, G., and Goodman, R.H. (2004). Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119, 1041-1054.
Jeffery, C.J. (1999). Moonlighting proteins. Trends in Biochemical Sciences 24, 8-11.
Jeffery, C.J. (2009). Moonlighting proteins--an update. Molecular BioSystems 5, 345-350.
Kim, J.W., and Dang, C.V. (2005). Multifaceted roles of glycolytic enzymes. Trends in Biochemical Sciences 30, 142-150.
Koch, K. (2004). Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology 7, 235-246.
Kohzaki, H., and Murakami, Y. (2007). Faster and easier chromatin immunoprecipitation assay with high sensitivity. Proteomics 7, 10-14.
LaCount, D.J., Vignali, M., Chettier, R., Phansalkar, A., Bell, R., Hesselberth, J.R., Schoenfeld, L.W., Ota, I., Sahasrabudhe, S., Kurschner, C., Fields, S., and Hughes, R.E. (2005). A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438, 103-107.
Lee, H., Guo, Y., Ohta, M., Xiong, L., Stevenson, B., and Zhu, J.-K. (2002). LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21, 2692-2702.
Liao, Y.-C., and Wang, A.-Y. (2003). Sugar-modulated gene expression of sucrose synthase in suspension-cultured cells of rice. Physiologia Plantarum 118, 319-327.
Lu, C., Chen, J., Zhang, Y., Hu, Q., Su, W., and Kuang, H. (2012). Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Molecular Biology and Evolution 29, 1005-1017.
Mark, D.F., and Richardson, C.C. (1976). Escherichia coli thioredoxin: a subunit of bacteriophage T7 DNA polymerase. Proceedings of the National Academy of Sciences 73, 780-784.
Markova, N.G., Pinkas-Sarafova, A., and Simon, M. (2006). A Metabolic Enzyme of the Short-Chain Dehydrogenase//Reductase Superfamily May Moonlight in the Nucleus as a Repressor of Promoter Activity. J Invest Dermatol 126, 2019-2031.
Meyer-Siegler, K., Mauro, D.J., Seal, G., Wurzer, J., deRiel, J.K., and Sirover, M.A. (1991). A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proceedings of the National Academy of Sciences 88, 8460-8464.
Nunez, J.G., Kronenberger, J., Wuilleme, S., Lepiniec, L., and Rochat, C. (2008). Study of AtSUS2 localization in seeds reveals a strong association with plastids. Plant & Cell Physiology 49, 1621-1626.
Ostrovsky de Spicer, P., and Maloy, S. (1993). PutA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator. Proceedings of the National Academy of Sciences 90, 4295-4298.
Pal-Bhowmick, I., Vora, H., and Jarori, G. (2007). Sub-cellular localization and post-translational modifications of the Plasmodium yoelii enolase suggest moonlighting functions. Malaria Journal 6, 45.
Persia, D., Cai, G., Del Casino, C., Faleri, C., Willemse, M.T.M., and Cresti, M. (2008). Sucrose Synthase Is Associated with the Cell Wall of Tobacco Pollen Tubes. Plant Physiology 147, 1603-1618.
Pozueta-Romero, J., Pozueta-Romero, D., Gonzalez, P., and Etxeberria, E. (2004). Activity of membrane-associated sucrose synthase is regulated by its phosphorylation status in cultured cells of sycamore (Acer pseudoplatanus). Physiologia Plantarum 122, 275-280.
Qazi, H.A., Paranjpe, S., and Bhargava, S. (2012). Stem sugar accumulation in sweet sorghum - Activity and expression of sucrose metabolizing enzymes and sucrose transporters. Journal of Plant Physiology 169, 605-613.
Rolland, F., Baena-Gonzalez, E., and Sheen, J. (2006). SUGAR SENSING AND SIGNALING IN PLANTS: Conserved and Novel Mechanisms. Annual Review of Plant Biology 57, 675-709.
Sequencing ProjectInternational Rice, G. (2005). The map-based sequence of the rice genome. Nature 436, 793-800.
Sirover, M.A. (2011). On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: Biochemical mechanisms and regulatory control. Biochimica et Biophysica Acta (BBA) - General Subjects 1810, 741-751.
Soker, S., Takashima, S., Miao, H.Q., Neufeld, G., and Klagsbrun, M. (1998). Neuropilin-1 Is Expressed by Endothelial and Tumor Cells as an Isoform-Specific Receptor for Vascular Endothelial Growth Factor. Cell 92, 735-745.
Subbaiah, C.C., and Sachs, M.M. (2001). Altered Patterns of Sucrose Synthase Phosphorylation and Localization Precede Callose Induction and Root Tip Death in Anoxic Maize Seedlings. Plant Physiology 125, 585-594.
Subbaiah, C.C., Palaniappan, A., Duncan, K., Rhoads, D.M., Huber, S.C., and Sachs, M.M. (2006). Mitochondrial localization and putative signaling function of sucrose synthase in maize. The Journal of Biological Chemistry 281, 15625-15635.
Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences 76, 4350-4354.
Vargas, W.A., and Salerno, G.L. (2010). The Cinderella story of sucrose hydrolysis: Alkaline/neutral invertases, from cyanobacteria to unforeseen roles in plant cytosol and organelles. Plant Science 178, 1-8.
Walden, W.E., Selezneva, A.I., Dupuy, J., Volbeda, A., Fontecilla-Camps, J.C., Theil, E.C., and Volz, K. (2006). Structure of Dual Function Iron Regulatory Protein 1 Complexed with Ferritin IRE-RNA. Science 314, 1903-1908.
Wang, A.-Y., Yu, W.-P., Juang, R.-H., Huang, J.-W., Sung, H.-Y., and Su, J.-C. (1992). Presence of three rice sucrose synthase genes as revealed by cloning and sequencing of cDNA. Plant Molecular Biology 18, 1191-1194.
Wang, A.-Y., Kao, M.-H., Yang, W.-H., Sayion, Y., Liu, L.-F., Lee, P.-D., and Su, J.-C. (1999). Differentially and Developmentally Regulated Expression of Three Rice Sucrose Synthase Genes. Plant and Cell Physiology 40, 800-807.
Wang, Y., Shirogane, T., Liu, D., Harper, J.W., and Elledge, S.J. (2003). Exit from Exit: Resetting the Cell Cycle through Amn1 Inhibition of G Protein Signaling. Cell 112, 697-709.
Weinmann, A.S., and Farnham, P.J. (2002). Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 26, 37-47.
Williams, K.R., Reddigari, S., and Patel, G.L. (1985). Identification of a nucleic acid helix-destabilizing protein from rat liver as lactate dehydrogenase-5. Proceedings of the National Academy of Sciences 82, 5260-5264.
Winter, H., and Huber, S.C. (2000). Regulation of Sucrose Metabolism in Higher Plants: Localization and regulation of Activity of Key Enzymes. Critical Reviews in Plant Sciences 19, 31-67.
Winter, H., L. Huber, J., and Huber, S.C. (1998). Identification of sucrose synthase as an actin-binding protein. FEBS letters 430, 205-208.
Wray Jr, L.V., Zalieckas, J.M., and Fisher, S.H. (2001). Bacillus subtilis Glutamine Synthetase Controls Gene Expression through a Protein-Protein Interaction with Transcription Factor TnrA. Cell 107, 427-435.
Yanagisawa, S., Yoo, S.-D., and Sheen, J. (2003). Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425, 521-525.
Zheng, Y., Anderson, S., Zhang, Y., and Garavito, R.M. (2011). The structure of sucrose synthase-1 from Arabidopsis thaliana and its functional implications. The Journal of Biological Chemistry 286, 36108-36118.
Zhou, Y., Yi, X., Stoffer, J.N.B., Bonafe, N., Gilmore-Hebert, M., McAlpine, J., and Chambers, S.K. (2008). The Multifunctional Protein Glyceraldehyde-3-Phosphate Dehydrogenase Is Both Regulated and Controls Colony-Stimulating Factor-1 Messenger RNA Stability in Ovarian Cancer. Molecular Cancer Research 6, 1375-1384.
Zhu, W., and Becker, D.F. (2005). Exploring the Proline-Dependent Conformational Change in the Multifunctional PutA Flavoprotein by Tryptophan Fluorescence Spectroscopy†. Biochemistry 44, 12297-12306.
王增興 (1995) 水稻蔗糖合成酶異構基因調控序列之結構與功能分析,博士論文,國立臺灣大學農業化學研究所。
廖憶純 (2002) 水稻懸浮培養細胞中蔗糖合成酶基因表現受糖調控之研究,博士論文,國立臺灣大學農業化學研究所。
張睿哲 (2004) 水稻蔗糖合成酶 RSus1 基因調控區域中 cis-elements 之探討,碩士論文,國立臺灣大學微生物與生化學研究所。
張睿哲 (2011) 水稻蔗糖合成酶 RSuS1 之研究:受糖調控之基因表現與細胞內定位,博士論文,國立臺灣大學生化科技學系。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64118-
dc.description.abstract蔗糖合成酶在植物中可催化蔗糖與 UDP 形成果糖及 UDP-glucose 的可逆反應。SuS 主要存在於細胞質中,然而也曾被發現位於細胞膜及其它胞器中。在先前研究中指出,水稻的 SuS (RSuS) 也存在於細胞核中,因此推測 SuS可能為「兼職蛋白質」。本篇研究的目的即是以染色質免疫沈澱 (ChIP) 探討 RSuS 在細胞核中的功能是否藉由與 DNA 之交互作用來完成。自經甲醛處理之水稻白化苗 (Oryza sativa L. cv. Tainung 67) 分離出細胞核,並以 anti-RSuS 多株抗體將與 RSuS 結合之 DNA-蛋白質複合體沈澱下來,接著將沈澱所得之 DNA選殖入質體後,隨機挑選數個重組質體進行定序。截至目前為止,已得到六個候選序列,並以 ChIP-PCR 針對其中四個進一步確認。其中有一位於水稻基因 Os04g0503500 之 3’-非轉譯區的序列,應為 RSuS 的目標序列。根據本篇論文研究結果推測,除了原本所具有的酵素功能之外,RSuS 可能也參與了基因表現之調控。zh_TW
dc.description.abstractSucrose synthase (SuS) catalyzes the reversible conversion of sucrose and UDP into fructose and UDP-glucose in plants. The enzyme is mainly present in the cytoplasm; however, it has also been localized in the plasma membrane and organelles. In the previous study, rice SuS (RSuS) was found to be present in nuclei, suggesting that SuS may be a moonlighting protein. The aim of this study was to gain insights into the roles of RSuS in the nucleus. Chromatin immunoprecipitation (ChIP) was performed to investigate whether RSuS performs its functions through protein-DNA interactions. The nuclei were isolated from formaldehyde fixed rice etiolated seedlings (Oryza sativa L. cv. Tainung 67) and the protein-DNA complexes were immunoprecipitated with anti-RSuS polyclonal antibody, after which the precipitated DNAs were cloned into vector, and randomly selected for sequencing. Six candidates were identified so far and four of them were further validated by ChIP-PCR. Among them, the one that was located in the 3’-untranslated region of rice gene Os04g0503500 was confirmed to be the target for RSuS. The results of this study suggested that RSuS may be involved in the modulation of gene expression besides it catalytic function.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:30:47Z (GMT). No. of bitstreams: 1
ntu-101-R99b22016-1.pdf: 2344324 bytes, checksum: 1404084a8ce71c29ee490d356848b853 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄 I
縮寫表 V
中文摘要 VII
Abstract VIII
第一章 研究背景 1
1. 本論文之研究基礎 1
1.1. 蔗糖合成酶及異構酶 1
1.2. 蔗糖合成酶之細胞內定位 2
1.2.1. 細胞膜 (Cell membrane) 2
1.2.2. 細胞骨架 (Cytoskeleton) 3
1.2.3. 液泡 (Vacuole) 3
1.2.4. 高基氏體 (Golgi apparatus) 4
1.2.5. 質體 (plastids) 4
1.2.6. 粒線體 (Mitochondria) 4
1.3. 本研究室在水稻蔗糖合成酶之研究成果 5
1.3.1. 水稻蔗糖合成酶之基因表現調控 5
1.3.2. 水稻蔗糖合成酶之細胞內定位 6
1.4. 兼職蛋白質 (moonlighting proteins) 7
1.4.1. 兼職蛋白質其功能轉換的可能機制 7
1.4.2. 兼職蛋白質參與基因表現調控的功能 9
1.4.3. 糖解酵素中的兼職蛋白質 11
2. 本論文之研究目的與主題 14
2.1. 建構與 RSuS 具交互作用之 ChIPed DNA library 14
2.2. 以 ChIP-PCR 探討與 RSuS 具交互作用之基因 14
第二章 材料與方法 15
1. 實驗材料 15
1.1. 水稻種子 15
1.2. 菌種 15
1.3. 質體 15
1.4. 藥品 15
2. 實驗儀器設備 16
2.1. 核酸電泳 16
2.2. 蛋白質電泳 16
2.3. 離心機 16
2.4. 其它儀器 16
3. 實驗方法 17
3.1. 水稻白化苗之栽種 17
3.2. 染色質免疫沈澱 (Chromatin immunoprecipitation, ChIP) 17
3.2.1. 以甲醛進行 DNA 與核蛋白質之聯結 17
3.2.2. 染色質萃取與超音波震盪 18
3.2.3. DNA-蛋白質複合體之免疫沈澱 19
3.2.4. 去除 DNA-蛋白質之聯結 20
3.2.5. DNA 純化 20
3.2.5.1. Phenol/chloroform/isoamyl alcohol (PCI) 法 20
3.2.5.2. Spin column 21
3.3. 染色質免疫沈澱 DNA 庫 (ChIPed DNA library) 之建構 21
3.3.1. ChIPed DNA 末端之修飾 21
3.3.2. 聯結子 (adaptor) 與 ChIPed DNA 之接合 22
3.3.3. 以聚合酶連鎖反應 (polymerase chain reaction, PCR) 增殖 ChIPed DNA 片段 (Ligation mediated PCR, LM-PCR) 22
3.3.4. DNA 瓊脂糖膠體電泳法 23
3.3.5. 以 TA cloning 法建立重組質體 23
3.3.6. 重組質體之轉形與篩選 (Hanahan, 1985) 23
3.3.6.1. 勝任細胞之製備(氯化鈣法) 23
3.3.6.2. 對勝任細胞之轉形 24
3.3.6.3. 轉形株之質體快速篩選 24
3.3.6.4. 質體 DNA 之小量分離 (Bimboim and Doly, 1979) 25
3.3.6.5. 以限制酶切分析質體 DNA 26
3.4. 定序結果分析 26
3.5. ChIP-PCR 26
3.5.1. Rapid ChIP-PCR (Kohzaki and Murakami, 2007) 27
3.5.2. Standard ChIP-PCR 27
3.6. 蛋白質分析 27
3.6.1. 蛋白質膠體電泳 27
3.6.2. 蛋白質染色 27
3.6.3. 西方點墨法 (Western blotting) 28
3.6.3.1. 蛋白質轉印 (Towbin et al., 1979) 28
3.6.3.2. 免疫呈色法 (Burnette, 1981) 28
第三章 結果與討論 30
1. ChIP 實驗條件探討 30
1.1. 最適 DNA fragmentation 條件探討 30
1.2. 免疫沈澱反應之最適條件 31
1.2.1. RSuS 抗體於免疫沈澱中之有效效價 31
1.2.2. ChIP 實驗的正負控制組 32
1.3. 建構 ChIPed library 32
1.3.1. 篩選帶有重組質體之轉形株 33
1.3.2. 比較以不同方法來降低 ChIP 背景值干擾之有效程度 33
2. 與 RSuS 具交互作用之基因序列 34
2.1. 候選序列 #1 35
2.2. 候選序列 #2 36
2.3. 候選序列 #3 36
2.4. 候選序列 #4 37
2.5. 討論 37
第四章 結論與未來研究方向 42
1. 結論 42
2. 未來研究方向 42
2.1. ChIP 實驗之最佳化 42
2.2. RSuS 與目標基因之交互作用 42
2.3. RSuS 作為兼職蛋白質的可能轉換機制 43
第五章 參考文獻 45
dc.language.isozh-TW
dc.subject蔗糖合成&#37238zh_TW
dc.subject染色質免疫沈澱zh_TW
dc.subject兼職蛋白質zh_TW
dc.subject細胞內定位zh_TW
dc.subject水稻白化苗zh_TW
dc.subjectsubcellular localizationen
dc.subjectsucrose synthaseen
dc.subjectchromatin immunoprecipitationen
dc.subjectrice etiolated seedlingsen
dc.subjectmoonlighting proteinen
dc.title水稻蔗糖合成酶於細胞核中的功能探討zh_TW
dc.titleStudies on the Functions of Rice Sucrose Synthase in the Nucleusen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee宋賢一(Hsien-Yi Sung),常怡雍(Yee-yung Charng),張麗冠(Li-Kwan Chang),廖憶純(Yi-Chun Liao)
dc.subject.keyword蔗糖合成&#37238,染色質免疫沈澱,兼職蛋白質,細胞內定位,水稻白化苗,zh_TW
dc.subject.keywordsucrose synthase,chromatin immunoprecipitation,moonlighting protein,subcellular localization,rice etiolated seedlings,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved