請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64107完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張崇毅(Chung-I Chang) | |
| dc.contributor.author | Jhen-Kai Li | en |
| dc.contributor.author | 黎振凱 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:30:18Z | - |
| dc.date.available | 2017-08-27 | |
| dc.date.copyright | 2012-08-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | 1.Wickner, S., Maurizi, M. R., & Gottesman, S. (1999). Posttranslational quality control: folding, refolding, and degrading proteins. Science, 286(5446), 1888-1893.
2.Bukau, B., & Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell, 92(3), 351-366. 3.Gassler, C. S., Buchberger, A., Laufen, T., Mayer, M. P., Schroder, H., Valencia, A., & Bukau, B. (1998). Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone. Proc Natl Acad Sci USA, 95(26), 15229-15234. 4.Goloubinoff, P., Mogk, A., Zvi, A. P., Tomoyasu, T., & Bukau, B. (1999). Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci USA, 96(24), 13732-13737. 5.Marchenko, N., Marchenkov, V. V., Kaisheva, A. L., Kashparov, I. A., Kotova, N. V., Kaliman, P. A., & Semisotnov, G. V. (2006). Affinity chromatography of GroEL chaperonin based on denatured proteins: role of electrostatic interactions in regulation of GroEL affinity for protein substrates. 71(12), 1357-1364. 6.Jones, H., Preuss, M., Wright, M., & Miller, A. D. (2006). The mechanism of GroEL/GroES folding/refolding of protein substrates revisited. Org Biomol Chem, 4(7), 1223-1235. 7.Vineyard, D., Zhang, X., & Lee, I. (2006). Transient kinetic experiments demonstrate the existence of a unique catalytic enzyme form in the peptide-stimulated ATPase mechanism of Escherichia coli Lon protease. Biochemistry, 45(38), 11432-11443. 8.Goldberg, A. L. (1990). ATP-dependent proteases in prokaryotic and eukaryotic cells. Semin Cell Biol, 1(6), 423-432. 9.Goldberg, A. L. (1992). The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur J Biochem, 203(1-2), 9-23. 10.Gottesman, S., & Maurizi, M. R. (1992). Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev, 56(4), 592-621. 11.Jubete, Y., Maurizi, M. R., & Gottesman, S. (1996). Role of the heat shock protein DnaJ in the lon-dependent degradation of naturally unstable proteins. J Biol Chem, 271(48), 30798-30803. 12.Wickner, S., & Maurizi, M. R. (1999). Here's the hook: similar substrate binding sites in the chaperone domains of Clp and Lon. Proc Natl Acad Sci USA, 96(15), 8318-8320. 13.Li, D. H., Chung, Y. S., Gloyd, M., Joseph, E., Ghirlando, R., Wright, G. D., . . . Ortega, J. (2010). Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: A model for the ClpX/ClpA-bound state of ClpP. Chem Biol, 17(9), 959-969. 14.Neuwald, A. F., Aravind, L., Spouge, J. L., & Koonin, E. V. (1999). AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res, 9(1), 27-43. 15.Ogura, T., & Akiyama, Y. (1997). Control of cellular functions by ATP-dependent proteases in prokaryote. 42(14 Suppl), 2205-2211. 16.Rotanova, T. V., Melnikov, E. E., Khalatova, A. G., Makhovskaya, O. V., Botos, I., Wlodawer, A., & Gustchina, A. (2004). Classification of ATP-dependent proteases Lon and comparison of the active sites of their proteolytic domains. Eur J Biochem, 271(23-24), 4865-4871. 17.Ogura, T., & Wilkinson, A. J. (2001). AAA+ superfamily ATPases: common structure--diverse function. Genes Cells, 6(7), 575-597. 18.Goldberg, A. L., Moerschell, R. P., Chung, C. H., & Maurizi, M. R. (1994). ATP-dependent protease La (lon) from Escherichia coli. Methods Enzymol, 244, 350-375. 19.Hesterkamp, T., & Bukau, B. (1998). Role of the DnaK and HscA homologs of Hsp70 chaperones in protein folding in E.coli. [Research Support, Non-U.S. Gov't]. EMBO J, 17(16), 4818-4828. 20.Rotanova, T. V., Botos, I., Melnikov, E. E., Rasulova, F., Gustchina, A., Maurizi, M. R., & Wlodawer, A. (2006). Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Protein Sci, 15(8), 1815-1828. 21.Botos, I., Melnikov, E. E., Cherry, S., Khalatova, A. G., Rasulova, F. S., Tropea, J. E., . . . Wlodawer, A. (2004). Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution. J Struct Biol, 146(1-2), 113-122. 22.Botos, I., Melnikov, E. E., Cherry, S., Tropea, J. E., Khalatova, A. G., Rasulova, F., . . . Gustchina, A. (2004). The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site. J Biol Chem, 279(9), 8140-8148. 23.Van Melderen, L., Thi, M. H., Lecchi, P., Gottesman, S., Couturier, M., & Maurizi, M. R. (1996). ATP-dependent degradation of CcdA by Lon protease. Effects of secondary structure and heterologous subunit interactions. J Biol Chem, 271(44), 27730-27738. 24.Wright, R., Stephens, C., Zweiger, G., Shapiro, L., & Alley, M. R. (1996). Caulobacter Lon protease has a critical role in cell-cycle control of DNA methylation. Genes Dev, 10(12), 1532-1542. 25.Ngo, J. K., & Davies, K. J. (2007). Importance of the lon protease in mitochondrial maintenance and the significance of declining lon in aging. Ann N Y Acad Sci, 1119, 78-87. 26.Levine, R. L. (2005). Commentary on 'Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death' by D.A. Bota, J.K. Ngo, and K.J.A. Davies. Free Radic Biol Med, 38(11), 1445-1446. 27.Maehara, T., Hoshino, T., & Nakamura, A. (2008). Characterization of three putative Lon proteases of Thermus thermophilus HB27 and use of their defective mutants as hosts for production of heterologous proteins. Extremophiles, 12(2), 285-296. 28.Iyer, L. M., Leipe, D. D., Koonin, E. V., & Aravind, L. (2004). Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol, 146(1-2), 11-31. 29.Li, M., F. Rasulova, et al. (2005). Crystal structure of the N-terminal domain of E. coli Lon protease. Protein Sci 14(11): 2895-2900. 30.Walton, T. A., and Sousa, M. C. (2004) Crystal structure of skp, a prefoldin -like chaperone that protects soluble and membrane proteins from aggregation. Mol. Cell 15, 367−374. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64107 | - |
| dc.description.abstract | Lon 蛋白脢是一種需要ATP來進行其活性的酵素,Lon 蛋白脢屬於AAA+
超級家族的成員之一,這些Lon 蛋白脢主要分成兩種群體, Lon A 以及 Lon B,然而在最近的研究中指出,一種新的Lon 蛋白脢被鑑定出來,被稱為Lon C蛋白脢,這是一種不需要ATP就可以執行其活性的蛋白脢酵素,我們的實驗團隊從一 種中度嗜熱菌分離出LonC蛋白脢,稱為MtaLonC, 並且將分離出的MtaLonC 以基因工程的方法重新純化出重組蛋白,並且將MtaLonC的結構所解出來, MtaLonC形成一種類似桶狀的結構,並且開口與出口相通形成中空相連的結構, 由此結構可以指出MtaLonC的N-端區域與一種類似AAA+的結構相連接,而 MtaLonC的N-端區域的序列與其它種Lon蛋白脢分析過後發現無相似之處,而 在此全長結構的N-端區域缺少一部分的電子密度圖,並推測結構可能具有可變 性•為了將缺少電子密度圖的N-端結構解出以及了解其功能,MtaLonC的N-端 區域的重組蛋白被建構出來並且將其蛋白進行結晶,以進行X光散射實驗, MtaLonC的N-端區域晶體的散射數據達到2.4 A,並且成功的利用多波長散射來 解出結構,此解出的結構呈現一個巨大的ɑ-螺旋髮夾結構(HHE)從AAA+相似結 構所突出•研究結果顯示這種可變性的HHE結構與不完整結構蛋白的結合以及辨 識有關,並且防止不完整結構蛋白互相聚集,因此MtaLonC不只是一種降解機器 也扮演著蛋白質監控者的角色• | zh_TW |
| dc.description.abstract | Lon protease is an ATP-dependent protease belonging to the AAA+ (ATPases associated with diverse cellular activities) superfamily of enzymes. These Lon proteases have been classified into two groups, Lon-A and Lon-B. Recently, Lon-C, a novel family of Lon-like proteases with no ATPase activity has been identified and the crystal structure of MtaLonC from a thermophilic bacterium determined by our lab. MtaLonC forms a barrel-like structure with open axial pores. The structure showed that the N-terminal domain of MtaLonC adopts an AAA-like fold, which was not detected by previous sequence analysis. A significant portion of the N-terminal domain is disordered in the structure of the full-length MtaLonC. To obtain insights into the structure and function of the N-terminal domain, an N-terminal construct of MtaLonC was crystallized, and X-ray diffraction data was collected to 2.4 A. The crystal structure was successful determined by multiple anomalous dispersions (MAD). The crystal structure showed that a large ɑ-helical hairpin extension (HHE) protrudes from the AAA-like domain. We also showed that the flexible HHE may be involved in recognition/binding of unfolded protein substrates prior to their entry through the pore. These results suggest that MtaLonC is a degradation machine with chaperone activity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:30:18Z (GMT). No. of bitstreams: 1 ntu-101-R99b46026-1.pdf: 2511000 bytes, checksum: 0cc55c3a7eee75ab13855e6163295291 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Table of contents
口試委員審定書……………………………………………...…………...I 中文摘要……………………………………………………………….....II Abstract……………………………………………………...……...…...III Table of contents…………………………………………………………IV List of Figures……………..…………………………….……………….VI List of Tables ……………………………………………………….....VIII List of Appendices…………………………………………...…………..IX Abbreviations…………………………………………………………......X Chapter 1 Introduction 1-1 Protein folding and degradation………………………………..……1 1-2 Lon protease……………………………………………………..……3 1-3 Physiological functions of Lon protease……………………...……..5 1-4 A novel ATP-independent Lon-like protease……………....….…....6 Chapter 2 Materials and Methods 2-1 Plasmid construction and protein purification of MtaLonC-N……7 2-2 Expression and purification of selenomethionine-labeled MtaLonC -N………………………………………………………………10 2-3 Expression and purification of MtaLonC NΔ………..……….…...12 2-4 Crystallization………………………………………………….……14 2-5 Data collection and structure determination……….…………...…15 2-6 Enzymatic assay and reverse-phase HPLC analysis…………...….16 2-7 Lysozyme aggregation Assay………………………..…………...….17 Chapter 3 Results and Discussions 3-1 Crystallization of MtaLonC-N…………………..………………….18 3-2 Crystal improvement…………..…………..…………………...…...20 3-3 Selenomethionine-labeled MtaLonC-N for solving the initial phasing..……………..…………......…………....…………....………….21 3-4 Resolution improvement………………………………………...…..22 3-5 Crystal structure of MtaLonC-N…………………....………...……24 3-6 The HHE regions with chaperone activity of MtaLonC-N...……..25 3-7 The HHE may be involved in substrate binding ………...….…….27 Discussions ………………..…………...............................................28 Figures..…………....…………....………………..…....…………...........30 Tables ..…………....…………....………………..…....…………......…..49 Appendices..…………....…………....…………..…....…………......…..50 References..…………....…………....…………….…....…………..........54 | |
| dc.language.iso | en | |
| dc.subject | HHE | zh_TW |
| dc.subject | 晶體結構 | zh_TW |
| dc.subject | MtaLonC | zh_TW |
| dc.subject | MtaLonC | en |
| dc.subject | crystal structure | en |
| dc.subject | HHE | en |
| dc.title | 臺灣中度嗜熱菌MtaLonC蛋白酶N端區域之晶體結構分析 | zh_TW |
| dc.title | Structural analysis of the N-terminal domain of MtaLonC from Meiothermus taiwanensis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐尚德(Shang-Te Danny Hsu),陳佩燁(Rita P.-Y. Chen) | |
| dc.subject.keyword | MtaLonC,晶體結構,HHE, | zh_TW |
| dc.subject.keyword | MtaLonC,crystal structure,HHE, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
