請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64102完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭錦龍(Chin-Lung Kuo) | |
| dc.contributor.author | Tzu-Ying Chen | en |
| dc.contributor.author | 陳資穎 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:30:06Z | - |
| dc.date.available | 2015-08-28 | |
| dc.date.copyright | 2012-08-28 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | 1 A. Fujishima and K. Honda, Nature 238, 37 (1972).
2 I. Justicia, P. Ordejon, G. Canto, J. L. Mozos, J. Fraxedas, G. A. Battiston, R. Gerbasi, and A. Figueras, Adv Mater 14, 1399 (2002). 3 U. Diebold, N. Ruzycki, G. S. Herman, and A. Selloni, Catal Today 85, 93 (2003). 4 T. Ohno, K. Sarukawa, and M. Matsumura, J Phys Chem B 105, 2417 (2001). 5 R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2001). 6 X. Chen and S. S. Mao, Chem Rev 107, 2891 (2007). 7 A. Lotnyk, Universitats-und Landesbibliothek Sachsen-Anhalt, 2007. 8 C. H. Chen and T. L. J. Shieh, edited by 陶瓷材料實驗-能隙值之量測, 2011). 9 C. Burda, Y. B. Lou, X. B. Chen, A. C. S. Samia, J. Stout, and J. L. Gole, Nano Lett 3, 1049 (2003). 10 Y. S. Yin, W. W. Zhang, S. G. Chen, and S. Q. Yu, Mater Chem Phys 113, 982 (2009). 11 H. Irie, Y. Watanabe, and K. Hashimoto, J Phys Chem B 107, 5483 (2003). 12 C. Di Valentin, G. Pacchioni, and A. Selloni, Phys Rev B 70 (2004). 13 R. Nakamura, T. Tanaka, and Y. Nakato, J Phys Chem B 108, 10617 (2004). 14 Z. S. Lin, A. Orlov, R. M. Lambert, and M. C. Payne, J Phys Chem B 109, 20948 (2005). 15 T. Okumura, Y. Kinoshita, H. Uchiyama, and H. Imai, Mater Chem Phys 111, 486 (2008). 16 H. Irie, S. Washizuka, Y. Watanabe, T. Kako, and K. Hashimoto, J Electrochem Soc 152, E351 (2005). 17 K. S. Yang, Y. Dai, and B. B. Huang, J Phys Chem C 111, 12086 (2007). 18 P. Hohenberg and W. Kohn, Phys Rev B 136, B864 (1964). 19 W. Kohn and L. J. Sham, Phys Rev 140, 1133 (1965). 20 R. Car and M. Parrinello, Phys Rev Lett 55, 2471 (1985). 21 M. J. Gillan, J Chem Soc Farad T 2 85, 521 (1989). 22 S. R. White, J. W. Wilkins, and M. P. Teter, Phys Rev B 39, 5819 (1989). 23 M. Born and R. Oppenheimer, Annalen der Physik 389, 457 (1927). 24 P. E. Blochl, Phys Rev B 50, 17953 (1994). 25 P. Dantonio and J. H. Konnert, Phys Rev Lett 43, 1161 (1979). 26 M. Batzill, E. H. Morales, and U. Diebold, Phys Rev Lett 96 (2006). 27 A. K. Rumaiz, J. C. Woicik, E. Cockayne, H. Y. Lin, G. H. Jaffari, and S. I. Shah, Appl Phys Lett 95 (2009). 28 A. Nambu, J. Graciani, J. A. Rodriguez, Q. Wu, E. Fujita, and J. F. Sanz, J Chem Phys 125 (2006). 29 Y. Nakano, T. Morikawa, T. Ohwaki, and Y. Taga, Appl Phys Lett 86 (2005). 30 M. Harb, P. Sautet, and P. Raybaud, J Phys Chem C 115, 19394 (2011). 31 C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M. C. Paganini, and E. Giamello, Chem Phys 339, 44 (2007). 32 L. Mi, P. Xu, H. Shen, P. N. Wang, and W. D. Shen, Appl Phys Lett 90 (2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64102 | - |
| dc.description.abstract | 摻氮之銳鈦礦二氧化鈦是否會造成能隙值的縮減以及光吸收曲線的紅移是目前研究上的一大爭議。本研究運用第一原理計算,探討銳鈦礦二氧化鈦中摻入氮原子後之特性。我們利用生成能、電子態密度、電荷密度分佈以及光吸收係數等計算,來了解銳鈦礦二氧化鈦摻入氮原子後之相對穩定度、電子性質以及光學性質之變化。
研究結果顯示,隨著系統中的摻氮濃度愈高,氮原子所需的生成能愈大,摻雜愈不易。此外,製備摻氮二氧化鈦的過程中,氮原子傾向於在已摻入二氧化鈦中之氮原子的同一個八面體上生成,其可能會造成氮原子之群聚現象。 當系統中之摻氮濃度較低時,能隙值幾乎沒有變化。隨著摻氮濃度的增加,能隙值之變化量會增加,隨著氮原子排列方式之不同,能隙值可能會增大也可能會減小,並沒有明顯之趨勢。 從光吸收係數曲線之分析可以發現,隨著摻雜濃度的增加,光吸收係數曲線會逐漸出現類似紅移之現象。但是,即便在能隙值沒有縮減之情形下也可能出現紅移之現象。我們認為,紅移現象的發生與能隙值是否變小並無絕對之關係。缺陷能態以及價帶上緣之電子態密度的重新分布(Redistribution)才是造成摻氮二氧化鈦之光吸收曲線有類似紅移現象的主要因素。因此,我們也認為實驗文獻中以Tauc plot決定能隙值之作法並不適用於含有缺陷能態之結構中。 在高摻氮和高氧空缺濃度(N:Vo = 2:1)的系統中,我們也可觀察到光吸收曲線有紅移的現象發生,不過其主要是由高局域態電荷密度所造成。氧空缺的存在相對於純摻氮之二氧化鈦結構的光吸收的行為並沒有顯著增強的效果。 含有N:H之二氧化鈦結構的特性與含有氧空缺的系統類似。當TiO2-x(NH)x中的N:H濃度上升至x = 0.250時,高局域態電荷密度導致光吸收係數曲線有類似紅移之現象。不過,其光吸收量相較於純摻氮系統而言,依舊沒有顯著增強的效果。 | zh_TW |
| dc.description.abstract | Band gap narrowing and red-shift of optical absorption spectra were fiercely debated for N-doped anatase in the past ten years. In this study, the properties of N-doped anatase were discussed using first principle calculation. In order to realize the variations of stability, electronic and optical properties of N-doped anatase, I apply formation energy, charge density of state, charge density distribution, and optical absorption coefficient to this research.
According to my calculation, the formation energy of N-doped anatase was increased as the system concentration of nitrogen was elevated. This result was lead to difficult doping of nitrogen atoms into the lattice of anatase. Besides, the doped nitrogen atoms preferred to grouped or clustered with the pre-doped nitrogen atoms in the same tetrahedral site under the nitrogen doping process. The band gap was unchanged when the doping concentration of nitrogen atoms was low. When the doping concentration was increased, the band gap variation was also getting obvious. Under the analysis of optical absorption spectra, the red-shift-like behavior of optical absorption spectra became apparent as the doping concentration was elevated, even though without the band gap variation. Our results show that the red-shift-like behaviors do not seem to have clear correlation with the change in the electronic band gaps. I proposed that defect state and redistribution of charge density of the valence band top were the main factors to the red-shift properties of N-doped anatase. On the other hand, I supposed that the band gap defined by tauc plot was inappropriate for defected structure of anatase. In the system under high concentration of doped-nitrogen atoms and oxygen vacancies(N:Vo = 2:1), the red shift of optical absorption spectra was observed due to high charge density of the localized states. The optical absorption efficiency does not obviously enhanced by oxygen vacancies in N-doped anatase. Properties of the TiO2 involved N:H is similar to the N-doped anatase contain vacancies. When the concentration of x in the TiO2-x(NH)x raise to 0.250, the red shift of optical absorption spectra was observed due to high charge density of the localized states. Nevertheless, The optical absorption efficiency does not obviously enhanced by hydrogen bonding to the nitrogen in N-doped anatase. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:30:06Z (GMT). No. of bitstreams: 1 ntu-101-R99527045-1.pdf: 19011832 bytes, checksum: f122edc1a9ae8a1b2a77c4588df2c335 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 圖目錄 vii 表目錄 xv 第 1 章 緒論 1 1.1前言 1 1.2研究動機 3 1.3研究目的 3 第 2 章 文獻回顧 4 2.1二氧化鈦之基本特性 4 2.1.1銳鈦礦二氧化鈦之電子結構 8 2.2實驗上量測能隙值之方式 10 2.3銳鈦礦二氧化鈦中摻雜氮原子之文獻探討 11 2.4第一原理計算 18 2.4.1 波恩-歐本海默近似法( Born-Oppenheimer approximation ) 18 2.4.2 密度泛函理論 ( Density Functional Theory, DFT ) 19 2.4.3 Kohn-Sham 方程式 21 2.4.4 贋勢法( Pseudopotential Method ) 23 2.5光吸收係數 25 第 3 章 研究方法與模型建立 27 3.1計算方法 27 3.2模型建立 28 第 4 章 結果與討論 38 4.1摻入氮原子對銳鈦礦二氧化鈦之影響 38 4.1.1氮原子之生成能與結構之相對穩定度 38 4.1.2摻氮二氧化鈦結構之能隙值 69 4.1.3摻氮二氧化鈦之光學性質 84 4.1.4電荷密度與態密度分析 108 4.2摻氮二氧化鈦中存在氧空缺同時對系統之影響 124 4.2.1含有氧空缺之摻氮二氧化鈦結構中氮原子所需之生成能與相對穩定度 124 4.2.2含有氧空缺之摻氮二氧化鈦結構的能隙值變化 128 4.2.3含有氧空缺之摻氮二氧化鈦結構的光學特性以及電子性質 129 4.3摻雜含氫之氮原子(N:H)對銳鈦礦二氧化鈦之影響 146 4.3.1二氧化鈦結構中含有N:H時之相對穩定度 146 4.3.2含有N:H之二氧化鈦結構的能隙值變化 147 4.3.3系統中含有N:H時之電子性質與光學性質 149 第 5 章 結論 159 Reference 161 | |
| dc.language.iso | zh-TW | |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | 銳鈦礦 | zh_TW |
| dc.subject | 摻氮 | zh_TW |
| dc.subject | 紅移 | zh_TW |
| dc.subject | N-doped | en |
| dc.subject | Titania | en |
| dc.subject | Anatase | en |
| dc.subject | Red-shift | en |
| dc.title | 銳鈦礦二氧化鈦中摻雜氮原子以及同時存在氧空缺與氫原子時對其光吸收行為影響之理論分析與模擬 | zh_TW |
| dc.title | First Principles Study on the Origin of the Enhanced Visible-Light Absorption in N-doped Anatase TiO2 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊維(Chun-Wei Chen),謝宗霖(Tzong-Lin Shieh),許文東(Wen-Dung Hsu),郭哲來(Jer-Lai Kuo) | |
| dc.subject.keyword | 銳鈦礦,二氧化鈦,摻氮,紅移, | zh_TW |
| dc.subject.keyword | Anatase,Titania,N-doped,Red-shift, | en |
| dc.relation.page | 162 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 18.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
