Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64100
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高景輝(Ching-Huei Kao)
dc.contributor.authorMi-Yin Weien
dc.contributor.author韋宓妍zh_TW
dc.date.accessioned2021-06-16T17:30:00Z-
dc.date.available2017-08-17
dc.date.copyright2012-08-17
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citationAbel GH, MacKenize AJ (1964) Salt tolerance of soybean varieties (Glycine max L.
Merrill) during germination and later growth. Crop Sci 4:157-161
Abraham NG, Lavrovsky Y, Schwartzman ML, Stoltz RA, Levere RD, Gerritsen
ME, Shibahara S, Kappas A (1995) Transfection of the human heme
oxygenase gene into rabbit coronary microvessel endothelial cells: protective
effect against heme and hemoglobin toxicity. Proc Natl Acad Sci USA
92:6798-6802
Alexandrov NN, Brover VV, Freidin S, Troukhan ME, Tatarinova TV, Zhang H,
Swaller TJ, Lu YP, Bouck J, Flavell RB, Feldmann KA (2009) Insights into
corn genes derived from large-scale cDNA sequencing. Plant Mol Biol
69:179-194
Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in
tobacco epidermal cells. Plant Cell 9:1559-1572
Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin
Biotechnol 13:146-150
Bannister JV, Bannister WH, Rotilio G (1987) Aspeccts of the structure function
and application defence system in soybean nodule sand roots subjected to
cadmium stress. CRC Crit Rev Biochem 22:111-180
Bashir K, Nagasaka S, Itai RN, Kobaysahi T, Takahashi M, Nakanishi H, Mori
S, Nishizawa NK (2007) Expression and enzyme activity of glutathione
reductase is upregulated by Fe-deficiency in graminaceous plants. Plant Mol Biol
64:277-284
Bestwick CS, Brown IR, Bennett MHR, Mansfield JW (1997) Localization of
hydrogen peroxide accumulation during the hypersensitive reaction of lettuce
49
cells to Pseudomonas syringae pv phaseolicola. Plant Cell 9:209-221
Blokhina OB, Chirkova TV, Fagerstedt KV (2001) Anoxic stress leads to hydrogen
peroxide formation in plant cells. J Exp Bot 52:1179-1190
Bolwell GP, Butt VS, Davies DR, Zimmerlin A (1995) The origin of the oxidative
burst in plants. Free Radic Res 23:517-532
Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress
tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83-116
Cao ZY, Huang BK, Wang QY, Xuan W, Ling TF, Zhang B, Chen X, Nie L, Shen
WB (2007) Involvement of carbon monoxide produced by heme oxygenase in
ABA-induced stomatal closure in Vicia faba and its proposed signal transduction
pathway. Chin Sci Bull 52:2365-2373
Chang HS Chen W, Cooper B, Glazebrook J, Goff SA, Hou YM, Katagiri F,
Quan S, Tao Y, Whitham S, Xie Z, Zhu T, Zou G (2003) Plant genes involved
in defense against pathogens. European Patent EP1402037
Chaparzadeh N, D’Amico ML, Khavari-Nejad RA, Izzo R, Navari-Izzo F (2004)
Antioxidative responses of Calendula offıcinalis under salinity conditions. Plant
Physiol Biochem 42:695-701
Chen WP, Hou ZA, Wu LS, Liang YC, Wei CZ (2010) Evaluating salinity
distribution in soil irrigated with saline water in arid regions of northwest China.
Agr Water Manage 97:2001-2008
Chen XY, Ding X, Xu S, Wang R, Xuan W, Cao ZY, Chen J, Wu HH, Ye MB, Shen
WB (2009) Endogenous hydrogen peroxide plays a positive role in the
upregulation of heme oxygenase and acclimation to oxidative stress in wheat
seedling leaves. J Integr Plant Biol 51:951-960
Cho SC, Chao YY, Hong CY, Kao CH (2012) The role hydrogen peroxide in
50
cadmium-inhibited root growth of rice seedlings. Plant Growth Regul 66:27-35
Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to
cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113-120
Choi AM (2001) Heme oxygenase-1 protects the heart. Circ Res 89:105-107
Choi AM, Alam J (1996) Heme oxygenase-1: function, regulation and implication of
a novel stress-inducible protein in oxidant-induced lung injury. Am J Resp Cell
Mol 15:9-19
Chou TS, Chao YY, Kao CH (2012) Involvement of hydrogen peroxide in heat shockand
cadmium-induced expression of ascorbate peroxidase and glutathione
reductase in leaves of rice seedlings. Plant Physiol 169:478-486
Cui WT, Fu GQ, Wu HH, Shen WB (2011) Cadmium-induced heme oxygenase-1
gene expression is associated with the depletion of glutathione in the roots of
Medicago sativa. Biometals 24:93-103
Davis SJ, Bhoo SH, Durski AM, Walker JM, Vierstra RD (2001) The
heme-oxygenase family required for phytochrome chromophore biosynthesis is
necessary for proper photomorphogenesis in higher plants. Plant Physiol
126:656-669
de Azevedo Neto DA, Prisco JT, Eneas-Filho J, CEB de Abreu,
Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid
peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize
genotypes. Environ Exp Bot 56:87-94
Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to
salinity stress. Plant Sci 135:1-9
Dulak J, Jozkowicz A (2003) Carbon monoxide - a ‘new’ gaseous modulator of gene
expression. Acta Biochim Pol 50:31-47
51
Emborg TJ, Walker JM, Noh B, Vierstra RD (2006) Multiple heme oxygenase
family members contribute to the biosynthesis of the phytochrome chromophore
in Arabidopsis. Plant Physiol 140:856-868
Eraslan F, Inal A, Savasturk O, Gunes A (2007) Changes in antioxidative
system and membrane damage of lettuce in response to salinity and boron
toxicity. Sci Hortic 114:5-10
Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in
Arabidopsis. Plant Sci 135:1-9
Foster JG, Hess JL (1980) Responses of superoxide dismutase and glutathione
reductase activities in cotton leaf tissue exposed to an atmosphere enriched in
oxygen. Plant Physiol 66: 482-487
Frederich SE, Newcomb EH (1969) Cytochemical localization of catalase in leaf
microbodies (peroxisomes). J Cell Biol 49:343-353
Fu GQ, Xu S, Xie YJ, Han B, Nie L, Shen WB, Wang R (2011) Molecular cloning,
characterization, and expression of an alfalfa (Medicago sativa L.) heme
oxygenase-1 gene, MsHO1, which is pro-oxidants-regulated. Plant Physiol
Biochem 49:792-799
Fukusako S, Yamada M (1993) Recent advances in research on water-freezing
and ice-melting problems. Exp Therm Fluid Sci 6:90-105
Gao Y, Guo YK, Lin SH, Fang YY, Bai JG (2010) Hydrogen peroxide pretreatment
alters the activity of antioxidant enzymes and protects chloroplast ultrastructure in
heat-stressed cucumber leaves. Sci Hortic 126:20-26
Gisk B, Yasui Y, Kohchi T, Frankenberg-Dinkel N (2010) Characterization of the
haem oxygenase protein family in Arabidopsis thaliana reveals a diversity of
functions. J Biochem 425:425-434
52
Gomes Filho E, Prisco JT, Campoa FAP, Eneas Filho J (1983) Effects of NaCl
salinity in vivo and in vitro on ribonuclease activity of Vigna unguiculata
cotyledons during germination. Physiol Plant 59:183-188
Han B, Xu S, Xie YJ, Huang JJ, Wang LJ, Yang Z, Zhang CH, Sun Y, Shen WB,
Xie GS (2012) ZmHO-1, a maize haem oxygenase-1 gene, plays a role in
determining lateral root development. Plant Sci 184:63-74
Han Y, Zhang J, Chen XY, Gao ZZ, Xuan Q, Xu S, Ding X, Shen WB (2008)
Carbon monoxide alleviates cadmium-induced oxidative damage by modulating
glutathione metabolism in the roots of Medicago sativa. New Phytol 177:155-166
Hao F, Wang X, Chen J (2006) Involvement of plasma-membrane NADPH oxidase
in nickel-induced oxidative stress in roots of wheat seedlings. Plant Sci
170:151-158
Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E (2010) A different
role for hydrogen peroxide and the antioxidative system under short and long salt
stress in Brassica oleracea roots. J Exp Bot 61:521-535
Hong CY, Kao CH (2008) NaCl-induced expression of ASCORBATE PEROXIDASE
8 in roots of rice (Oryza sativa L.) seedlings is not associated with osmotic
component. Plant Signaling Behav 3:199-201
Hong CY, Hsu YT, Tsai YC, Kao CH (2007) Expression of ASCORBATE
PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J
Exp Bot 58:3273-3283
Hong CY, Chao YY, Yang MY, Cho SC, Kao CH (2009a) NaCl-induced
expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is
mediated through hydrogen peroxide but not abscisic acid. Plant Soil 320:
103-115
53
Hong CY, Chao YY, Yang MY, Cho SC, Kao CH (2009b) Na+ but not Cl- or
osmotic stress is involved in NaCl-induced expression of glutathione reductase in
roots of rice seedlings. Plant Physiol 166:1598-1606
Hsu YT, Kao CH (2007) Toxicity in leaves of rice exposed to cadmium is due to
hydrogen peroxide accumulation. Plant Soil 298: 231-241
Hsu YT, Kao CH (2010) Abscisic acid-induced leaf senescence of rice seedlings is
due to hydrogen peroxide accumulation. Crop Environ Bioinfo 7:243-249.
Huang AX, She XP, Cao BH, Ren Y (2011) Distribution of hydrogen peroxide
during adventitious roots initiation and development in mung bean hypocotyls
cuttings. Plant Growth Regul 64:109-118
Huang BK, Xu S, Xuan W, Li M, Cao ZY, Liu KL, Ling TF, Shen WB (2006)
Carbon monoxide alleviates salt-induced oxidative damage in wheat seedling
leaves. Plant Biol 48:249-254
Huang JJ, Han B, Xu S, Zhou MX, Shen WB (2011) Heme oxygenase-1 is involved
in the cytokinin-induced alleviation of senescence in detached wheat leaves during
dark incubation. Plant Physiol 168:768-775
Ishibashi Y, Yamaguchi H, Yuasa T, Iwaya-Inoue M, Arima S, Zheng SH (2011)
Hydrogen peroxide spraying alleviates drought stress in soybean plants. Plant
Physiol 168:1562-1567
Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K (2000) Phytochromes
confer the photoperiodic control of flowering in rice (a short-day plant). Plant J
22:391-399
Jana S, Choudhuri MA (1981) Glycolate metabolism of three submerged aquatic
angiosperms: Effect of heavy metals. Aquat Bot 11: 67-77
Kaminaka H, Morita S, Nakajima M, Masumura T, Tanaka K (1998) Gene
54
cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa
L.). Plant Cell Physiol 39:1269-1280
Kent LM, Lauchli A (1985) Germination and seedling growth of cotton:
salinity-calcium interactions. Plant Cell Environ 8:155-159
Koca H, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid
peroxidation, antioxidative enzymes and proline content of sesame cultivars.
Environ Exp Bot 60:344-351
Lamar CA, Mahesh VB, Brann DW (1996) Regulation of gonadotrophin-releasing
hormone (GnRH) secretion by hememolecules: a regulatory role for carbon
monoxide? Endocrinology 137:790-793
Li SW, Xuea L, Xub S, Feng H, An L (2009) Hydrogen peroxide acts as a signal
molecule in the adventitious root formation of mung bean seedlings. Environ Exp
Bot 65:63-71
Lin CC, Kao CH (1996) Proline accumulation is associated with inhibition of rice
seedling root growth caused by NaCl. Plant Sci 114:121-128
Lin CC, Kao CH (2000) Effect of NaCl stress on H2O2 metabolism in rice leaves.
Plant Growth Regul 30:151-155
Lin CC, Kao CH (2001a) Cell wall peroxidase activity, hydrogen peroxide level and
NaCl-inhibited root growth of rice seedlings. Plant Soil 230:135-143
Lin CC, Kao CH (2001b) Relative importance of Na+, Cl−, and abscisic acid in NaCl
induced inhibition of root growth of rice seedlings. Plant Soil 237:165-171
Lin CC, Kao CH (2001c) Cell wall peroxidase against ferulic acid, lignin, and
NaCl-reduced root growth of rice seedlings. Plant Physiol 158:667-671
Lin CC, Kao CH (2002a) Osmotic stress-induced changes in cell wall peroxidase
activity and hydrogen peroxide level in roots of rice seedlings. Plant Growth
55
Regul 37:177-183
Lin CC, Kao CH (2002b) NaCl-induced changes in purtrescine content and diamine
oxidase activity in roots of rice seedlings. Biol Plant 45:633-636
Lin CC, Hsu YT, Kao CH (2002a) Ammonium ion, ethylene, and NaCl-induced
senescence of detached rice leaves. Plant Growth Regul 37:85-92
Lin CC, Hsu YT, Kao CH (2002b) The effect of NaCl on proline accumulation in rice
leaves. Plant Growth Regul 36:275-285
Ling TF, Zhang B, Cui WT, Wu MZ, Lin JS, Zhou WT, Huang JJ, Shen WB
(2009) Carbon monoxide mitigates salt-induced inhibition of root growth and
suppresses programmed cell death in wheat primary roots by inhibiting superoxide
anion overproduction. Plant Sci 177:331-340
Linley PJ, Landsberger M, Kohchi T, Cooper JB, Terry MJ (2006) The molecular
basis of heme oxygenase deficiency in the pcd1 mutant of pea. Fed Eur Biochem
Soc 273:2594-2606
Liu KL, Xu S, Xuan W, Ling TF, Cao ZY, Huang BK, Sun YG, Fang L, Liu ZY,
Zhao N, Shen WB (2007) Carbon monoxide counteracts the inhibition of seed
germination and alleviates oxidative damage caused by salt stress in Oryza sativa.
Plant Sci 172: 544-555
Liu YH, Xu S, Ling TF, Xu LL, Shen WB (2010) Heme oxygenase/carbon monoxide
system participates in regulating wheat seed germination under osmotic stress
involving the nitric oxide pathway. J Plant Physiol 167:1371-1379
Longo M, Jain V, Vedernikov YP, Saade GR, Goodrum L, Facchinetti F,
Garfield RE (1999) Effect of nitric oxide and carbon monoxide on uterine
contractility during human and rat pregnancy. Am J Obst Gynecol 181:981-988
Lovelli S, Scopa A, Perniola M, Tommaso TD, Sofo A (2011) Abscisic acid root
56
and leaf concentration in relation to biomass partitioning in salinized tomato plants.
Plant Physiol 169:226-233
Marton LS, Wang X, Kowalczuk A, Zhang ZD, Windmeyer E, Macdonald RL
(2000) Effects of hemoglobin on heme oxygenase gene expression and viability
of cultured smooth muscle cells. Am J Physiol Heart Circ Physiol
279:2405-2413
Matsumoto F, Obayashi T, Sasaki-Sekimoto Y, Ohta H, Takamiya K, Masuda T
(2004) Gene expression profiling of the tetrapyrrole metabolic pathway in
Arabidopsis with a mini-array system. Plant Physiol 135:2379-2391
Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci
7:405-410
Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the
antioxidative system in root mitochondria and peroxisomes of the wild
salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105-1113
Montero E, Cabot C, Poschenrieder C, Barcelo O (1998) Relative importance of
osmotic-stress and ion-specific effects on ABA-mediated inhibition of leaf
expansion growth in Phaseolus vulgaris. Plant Cell Environ 21:54-62
Moya JL, Gomez-Cadenas A, Primo-Millo E, Talon M (2003) Chloride absorption
in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus
rootstocks is linked to water use. J Exp Bot 54:825-833
Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol
167:645-663
Muramoto T, Kohchi T, Yokota A, Hwang I, Goodman HM (1999) The
Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome
chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase.
Plant Cell 11:335-347
57
Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant
Biol 5:388-395
Neumann PM, Azaizeh H, Leon D (1994) Hardening of root cell walls: Growth
inhibitory responses to salinity stress. Plant Cell Environ 17:303-309
Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2004) Heme oxygenase exerts
a protective role against oxidative stress in soybean leaves. Biochem Biophys
Res Commun 323:1003-1008
Noriega GO, Yannarelli GG, Balestrasse KB, Batlle A, Tomaro ML (2007) The
effect of nitric oxide on heme oxygenase gene expression in soybean leaves.
Planta 226:1155-1163
Orozco-Cardenas ML, Narvaez-Vasquez J, Ryan CA (2001) Hydrogen peroxide
acts as a second messenger for the induction of defense genes in tomato plants in
response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179-191
Prakash L, Prathapasenan G (1988) Putrescine reduces NaCl-induced inhibition of
germination and early seedling growth of rice (Oryza sativa L.). Aust J Plant
Physiol 15:761-767
Radić V, Beatović D, Mrđa J (2007) Salt tolerance of corn genotypes (Zea mays L.)
during germination and later growth. J Agric Sci 52:115-120
Romero-Aranda R, Moya JL, Tadeo FR, Legaz F, Primo-Millo E, Talon M (1998)
Physiological and anatomical disturbances induced by chloride salts in sensitive
and tolerant citrus: beneficial and detrimental effects of cations. Plant Cell Environ
21:1243-1253
Santa-Cruz DM, Pacienza NA, Polizio AH, Balestrasse KB, Tomaro ML,
Yannarelli GG (2010) Nitric oxide synthase-like dependent NO production
enhances heme oxygenase up-regulation in ultraviolet-B-irradiated soybean
58
plants. Phytochemistry 71:1700-1707
Shekhawat GS, Verma K (2010) Haem oxygenase (HO): an overlooked enzyme of
plant metabolism and defence. J Exp Bot 61:2255-2270
Shen CH, Yeh KW (2010) Hydrogen peroxide mediates the expression of ascorbaterelated
genes in response to methanol stimulation in Oncidium. Plant Physiol
167:400-407
Shen Q, Jiang M, Li H, Che LL, Yang ZM (2011) Expression of a Brassica napus
heme oxygenase confers plant tolerance to mercury toxicity. Plant Cell Environ
34:752-763
Shi Q, Ding F, Wang X, Wei M (2007) Exogenous nitric oxide protect cucumber
roots against oxidative stress induced by salt stress. Plant Physiol Biochem
45:542-550
Shibahara S, Kitamuro T, Takahashi K (2002) Heme degradation and human
disease: diversity is the soul of life. Antioxid Redox Signal 4:593-602
Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response
to nutrient deprivation. Proc Natl Acad Sci USA 101: 8827-8832
Sibole JV, Montero E, Cabot C, Poschenrieder C, Barcelo J (1998) Role of sodium
in the ABA-mediated long-term growth response of bean to salt stress. Plant
Physiol 104: 299–305
Steer A, Worby A, Heil P (2008) Observed changes in sea-ice floe size distribution
during early summer in the western Weddell Sea. Deep-Sea Res II 55:933-942
Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changes in the antioxidant
enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.)
under NaCl salinity. Plant Sci 161:613-619
Teixeira FK, Menezes-Benzvente L, Margis R, Margis-Pinheiro M (2004)
59
Analysis of the molecular evolutionary history of the ascorbate peroxidase gene
family: inferences from the rice genome. J Mol Evol 59:761-770
Terry MJ, Kendrick RE (1996) The aurea and yellow-green-2 mutants of tomato are
deficient in phytochrome chromophore synthesis. J Biol Chem 271:21681-21686.
Terry MJ, Linley PJ, Kohch T (2002) Making light of it: the role of plant haem
oxygenases in phytochrome chromophore synthesis. Biochem Soc Trans
30:604-609
Tsai YC, Hong CY, Liu LF, Kao CH (2004) Relative importance of Na+ and Clin
NaCl-induced antioxidant systems in roots of rice seedlings. Physiol Plant 122:
86-94
Tsai YC, Hong CY, Liu LF, Kao CH (2005) Expression of ascorbate peroxidase and
glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. J
Plant Physiol 162:291-299
Tsai YC, Kao CH (2004) The involvement of hydrogen peroxide in abscisic acidincreased
activities of ascorbate peroxidase and glutathione reductase in rice
roots. Plant Growth Regul 43:207-212
Van Breusegem F, Vranova E, Dat JF, Inze D (2001) The role of active oxygen
species in plant signal transduction. Plant Sci 161:405-414
Van Gestelen P, Asard H, Caubergs RJ (1997) Solubilization and separation of a
plant plasma membrane NADPH-O2 synthase from other NAD(P)H
oxidoreductases. Plant Physiol 115: 543-550
Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon
monoxide: a putative neural messenger. Science 259:381-384
Vile GF, Tyrrell RM (1993) Oxidative stress resulting from ultraviolet A irradiation
of human skin fibroblasts leads to a heme oxygenase-dependent increase in
60
ferritin. J Biol Chem 268:14678-14681
Wang XS, Han JG (2009) Changes of proline content, activity, and active isoforms
of antioxidative enzymes in two alfalfa cultivars under salt stress. Agri Sci
8:431-440
Watts RN, Ponka P, Richardson DR (2003) Effects of nitrogen monoxide and
carbon monoxide on molecular and cellular iron metabolism: mirror-image
effector molecules that target iron. Biochem J 369:429-440
Weller JL, Terry MJ, Rameau C, Reid JB, Kendrick RE (1996) The
phytochrome-deficient pcd1 mutant of pea is unable to convert heme to
biliverdin Ixα. Plant Cell 8:55-67
Wind S, Beuerlein K, Eucker T, Muller H, Scheurer P, Armitage ME, Ho H,
Schmidt HHHW, Wingler K (2010) Comparative pharmacology of chemically
distinct NADPH oxidase inhibitors. Brit J Pharmacol 161:885-898
Wu ZS, Zhao YF, Kaleem I, Li C (2011) Preparation of calcium-alginate
microcapsuled microbial fertilizer coating Klebsiella oxytoca Rs-5 and its
performance under salinity stress. Eurp J Soil Biol 47:152-159
Wyn Jones RG, Storey R (1978) Salt stress and comparative physiology in the
Gramineae II. Glycinebetaine and proline accumulation in two salt- and
water-stressed barley cultivars. Aust J Plant Physiol 5:817-829
Xie YJ, Ling TF, Han Y, Liu KL, Zheng QS, Huang LQ, Yuan XX, He ZY, Hu B,
Fang L, Shen ZG, Yang Q, Shen WB (2008) Carbon monoxide enhances salt
tolerance by nitric oxide-mediated maintenance of ion homeostasis and
upregulation of antioxidant defence in wheat seedling roots. Plant Cell Environ
31:1864-1881
Xie YJ, Xu S, Han B, Wu MZ, Yuan XX, Han Y, Gu Q, Xu DK, Yang Q, Shen
61
WB (2011) Evidence of Arabidopsis salt acclimation induced by up-regulation
of HY1 and the regulatory role of RbohD-derived reactive oxygen species
synthesis. Plant J 66:280-292
Xing T, Higgins VJ, Blumwald E (1997) Race-specific elicitors of Cladosporium
fulvum promote translocation of cytosolic components of NADPH oxidase to the
plasma membrane of tomato cells. Plant Cell 9:249-259
Xu S, Hu B, He ZY, Ma F, Feng JF, Shen WB, Yang J (2011) Enhancement of
salinity tolerance during rice seed germination by presoaking with hemoglobin. Int
J Mol Sci 12:2488-2501
Xu S, Sa ZS, Cao ZY, Xuan W, Huang BK, Ling TF, Hu QY, Shen WB (2006)
Carbon monoxide alleviates wheat seed germination inhibition and counteracts
lipid peroxidation mediated by salinity. J Integr Plant Biol 48:1168-1176
Xu S, Zhang B, Cao ZY, Ling TF, Shen WB (2011) Heme oxygenase is involved in
cobalt chloride-induced lateral root development in tomato. Biometals
24:181-191
Xuan W, Zhu FY, Xu S, Huang BK, Ling TF, Qi JY, Ye MB, Shen WB (2008) The
heme oxygenase/carbon monoxide system is involved in the auxin-induced
cucumber adventitious rooting process. Plant Physiol 148:881-893
Xue YF, Liu L, Liu ZP, Mehta SK, Zhao GM (2008) Protective role of Ca against
NaCl toxicity in Jerusalem artichoke by up-regulation of antioxidant enzymes.
Pedosphere 18:766-774
Yamane K, Mitsuya S, Taniguchi M, Miyake H (2009a) Antioxidant capacity and
damages caused by salinity stress in apical and basal regions of rice leaf. Plant
Prod Sci 12:319-326
Yamane K, Taniguchi M, Miyake H (2009b) Salinity-induced subcellular
62
accumulation of H2O2 in leaves of rice. Protoplasma 249:301-308
Yannarelli GG, Noriega GO, Batlle A, Tomaro ML (2006) Heme oxygenase
up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen
species. Planta 224:1154-1162
Yazici I, Turkan I, Sekmen AH, Demiral T (2007) Salinity tolerance of purslane
(Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower
level of lipid peroxidation and proline accumulation. Environ Exp Bot 61:49-57
Zhang FQ, Zhang HX, Wang GP, Xu LL, Shen ZG (2009) Cadmium-induced
accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and
Vicia sativa and the roles of different antioxidant enzymes. J Hazard Mater
168:76-84
Zhang XL, Jia XF, Yu B, Gao Y, Bai JG (2011) Exogenous hydrogen peroxide
influences antioxidant enzyme activity and lipid peroxidation in cucumber leaves
at low light. Sci Hortic 129:656-662
Zilli CG, Balestrasse KB, Yannarelli GG, Polizio AH, Santa-Cruz DM, Tomaro
ML (2008) Heme oxygenase up-regulation under salt stress protects nitrogen
metabolism in nodules of soybean plants. Environ Exp Bot 64:83-89
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64100-
dc.description.abstract本論文係以水稻品種台中在來一號(Oryza sativa L. cv. Taichung Native 1)黃化幼苗作為材料,探討(a)過氧化氫(H2O2)與氯化鈉(NaCl)所抑制水稻黃化幼苗根生長之關係、(b) H2O2與NaCl誘導水稻黃化幼苗根穀胱甘肽還原酶(glutathione reductase, GR)活性增加之關係及(c) NaCl逆境下水稻黃化幼苗根H2O2和血紅素氧化酶(heme oxygenase, HO)活性之關係。
NaCl抑制水稻黃化幼苗根之根長及根乾重,在相同滲透勢條件下,NaCl與NaNO3對水稻黃化幼苗根長及乾重抑制情形相同,然而mannitol的抑制較為減緩。NaCl使幼苗根中於3小時迅速累積H2O2,發生在NaCl抑制幼苗根生長(6小時)前。Ascorbic acid (AsA) 、diphenyleneiodonium (DPI) 、imidazole (IMD) 及sodium nitroprusside (SNP)皆可降低NaCl所誘導根中H2O2累積,卻無法回復根長及乾重之降低,證實水稻黃化幼苗在NaCl逆境下,因Na+之作用透過細胞膜上之NADPH oxidase形成H2O2,然而H2O2並非NaCl抑制水稻黃化幼苗根生長之限制因子。
NaCl誘導水稻黃化幼苗根中GR活性之增加,且H2O2累積與GR活性提升均發
生於NaCl處理3小時後。AsA、DPI、IMD及SNP皆可以降低NaCl所導致根中H2O2
累積與GR活性增加。NaCl亦可增加水稻黃化幼苗根中HO活性,且NaCl所誘導之
HO活性提升(6小時)在H2O2累積(3小時)後。AsA、DPI、IMD及SNP可清除NaCl
所導致之H2O2累積,同時降低NaCl所誘導之HO活性提升。外加H2O2可使水稻幼
苗根GR及HO活性提升。另外,NaCl與NaNO3造成GR及HO活性之提升相同。本
論文之結果證實NaCl透過Na+作用以H2O2做為訊息分子誘導水稻黃化幼苗根中
GR及HO活性提升。
zh_TW
dc.description.abstractIn this thesis, rice (Oryza sativa L. cv. Taichung Native 1) etiolated seedlings were used to investigate (a) the role of H2O2 in NaCl-inibited growth of rice etiolated seedling roots, (b) the role of H2O2 in NaCl-increased glutathione reductase(GR)activity of rice etiolated seedling roots, (c) and the role of H2O2 in NaCl-increased heme oxygenase activity of rice etiolated seedling roots.
Rice etiolated seedlings treated with NaCl increased H2O2 production in rice roots (3 hours), and then inhibited root growth of etiolated seedlings (6 hours). Addition of H2O2 scavenger ascorbic acid (AsA) and nitric oxide (NO) donor sodium nitroprusside(SNP) , which decreased H2O2 accumulation, could not reduce NaCl-inhibited growth in rice roots. Also, application of NADPH oxidase inhibitors diphenyleneiodonium(DPI) and imidazole(IMD), which inhibited the H2O2 production, had no effect on NaCl-inhibited root growth. These data indicated that H2O2 production through NADPH oxidase caused by Na+ is unlikely responsible for
NaCl-inhibited root growth.
NaCl treatment increased H2O2 production and GR activity in rice roots. Addition of AsA and SNP, which decreased H2O2 accumulation, could lower the NaCl-induced GR activity. Also, application of DPI and IMD, which inhibited the
H2O2 production, reduced the NaCl-induced GR activity. NaCl treatment resulted in an increase in HO activity in roots of rice etiolated seedlings. Results of time-course study indicated that H2O2 accumulation occurred 3 hours after NaCl treatment, whereas the increase in HO activity occurred 6 hours after NaCl treatment. Addition of AsA and SNP, which decreased H2O2 accumulation, could lower the NaCl-induced
HO activity in rice etiolated seedling roots. Also, application of DPI and IMD reduced the NaCl-induced HO activity. Moreover, NaNO3 and NaCl are equally effective in
inducing GR and HO activity, indicating that Na+ but not Cl- is responsible for increasing GR and HO activities.
Based on the data of this thesis, it is concluded that H2O2 production caused by NaCl may be responsible for NaCl-increased GR and HO activities in rice etiolated seedling roots.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:30:00Z (GMT). No. of bitstreams: 1
ntu-101-R99621102-1.pdf: 3083816 bytes, checksum: f9f99a451c719baad115c0f5f4958f0f (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書.........................................................................................................i
誌謝...............................................................................................................................ii
中文摘要.......................................................................................................................iii
ABSTRACT..................................................................................................................iv
目錄...............................................................................................................................vi
圖目錄.........................................................................................................................viii
附錄目錄........................................................................................................................x
縮寫字對照...................................................................................................................xi
前言...............................................................................................................................1
前人研究........................................................................................................................3
鹽害(NaCl)逆境.....................................................................................................3
NaCl與植物生長...................................................................................................4
活化氧族之形成及作用........................................................................................5
NaCl與H2O2...........................................................................................................6
植物抗氧化系統....................................................................................................7
NaCl與抗氧化酵素...............................................................................................8
Heme oxygenase....................................................................................................9
Heme oxygenase之生理作用..............................................................................10
NaCl與heme oxygenase.......................................................................................11
研究室過去文獻相關探討..................................................................................11
本論文研究方向..................................................................................................12
材料方法......................................................................................................................13
一、材料種植與處理...........................................................................................13
vii
二、根長與乾重之測定.......................................................................................14
三、化學成分分析...............................................................................................14
四、酵素活性分析...............................................................................................16
五、統計分析.......................................................................................................17
六、供試藥劑之配製...........................................................................................17
結果..............................................................................................................................18
一、NaCl處理對水稻黃化幼苗根中H2O2螢光影像之影響..............................18
二、NaCl對水稻黃化幼苗根生長之影響..........................................................18
三、H2O2累積與NaCl抑制水稻黃化幼苗根生長之關係..................................23
四、NaCl對水稻黃化幼苗根GR活性之影響.....................................................30
五、NaCl逆境下水稻黃化幼苗根中H2O2和HO活性之關係............................30
(一) NaCl與水稻黃化幼苗根中HO活性增加之影響................................30
(二) H2O2參與NaCl誘導水稻黃化幼苗根中HO活性之增加...................35
討論..............................................................................................................................41
引用文獻......................................................................................................................48
附錄..............................................................................................................................63
dc.language.isozh-TW
dc.subject過氧化氫zh_TW
dc.subject生長zh_TW
dc.subject血紅素氧化&#37238zh_TW
dc.subject還原&#37238zh_TW
dc.subject氯化鈉zh_TW
dc.subject水稻zh_TW
dc.subject幼 苗根zh_TW
dc.subject穀胱甘&#32957zh_TW
dc.subjectGlutathione reductaseen
dc.subjectNaClen
dc.subjectriceen
dc.subjectseedling rootsen
dc.subjectH2O2en
dc.subjectgrowthen
dc.subjectheme oxygenaseen
dc.title水稻幼苗根氯化鈉逆境之研究:過氧化氫之功能zh_TW
dc.titleStudies on NaCl stress of rice seedling roots: the role of hydrogen peroxideen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳宗禮(Tsung-Li Chen),王恆隆(Heng-Long Wang),洪傳揚(Chwan-Yang Hong),許奕婷(Yi-Ting Hsu)
dc.subject.keyword穀胱甘&#32957,還原&#37238,生長,過氧化氫,血紅素氧化&#37238,氯化鈉,水稻,幼 苗根,zh_TW
dc.subject.keywordGlutathione reductase,growth,H2O2,heme oxygenase,NaCl,rice,seedling roots,en
dc.relation.page64
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved