請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64100完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高景輝(Ching-Huei Kao) | |
| dc.contributor.author | Mi-Yin Wei | en |
| dc.contributor.author | 韋宓妍 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:30:00Z | - |
| dc.date.available | 2017-08-17 | |
| dc.date.copyright | 2012-08-17 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | Abel GH, MacKenize AJ (1964) Salt tolerance of soybean varieties (Glycine max L.
Merrill) during germination and later growth. Crop Sci 4:157-161 Abraham NG, Lavrovsky Y, Schwartzman ML, Stoltz RA, Levere RD, Gerritsen ME, Shibahara S, Kappas A (1995) Transfection of the human heme oxygenase gene into rabbit coronary microvessel endothelial cells: protective effect against heme and hemoglobin toxicity. Proc Natl Acad Sci USA 92:6798-6802 Alexandrov NN, Brover VV, Freidin S, Troukhan ME, Tatarinova TV, Zhang H, Swaller TJ, Lu YP, Bouck J, Flavell RB, Feldmann KA (2009) Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol Biol 69:179-194 Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559-1572 Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13:146-150 Bannister JV, Bannister WH, Rotilio G (1987) Aspeccts of the structure function and application defence system in soybean nodule sand roots subjected to cadmium stress. CRC Crit Rev Biochem 22:111-180 Bashir K, Nagasaka S, Itai RN, Kobaysahi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants. Plant Mol Biol 64:277-284 Bestwick CS, Brown IR, Bennett MHR, Mansfield JW (1997) Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce 49 cells to Pseudomonas syringae pv phaseolicola. Plant Cell 9:209-221 Blokhina OB, Chirkova TV, Fagerstedt KV (2001) Anoxic stress leads to hydrogen peroxide formation in plant cells. J Exp Bot 52:1179-1190 Bolwell GP, Butt VS, Davies DR, Zimmerlin A (1995) The origin of the oxidative burst in plants. Free Radic Res 23:517-532 Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83-116 Cao ZY, Huang BK, Wang QY, Xuan W, Ling TF, Zhang B, Chen X, Nie L, Shen WB (2007) Involvement of carbon monoxide produced by heme oxygenase in ABA-induced stomatal closure in Vicia faba and its proposed signal transduction pathway. Chin Sci Bull 52:2365-2373 Chang HS Chen W, Cooper B, Glazebrook J, Goff SA, Hou YM, Katagiri F, Quan S, Tao Y, Whitham S, Xie Z, Zhu T, Zou G (2003) Plant genes involved in defense against pathogens. European Patent EP1402037 Chaparzadeh N, D’Amico ML, Khavari-Nejad RA, Izzo R, Navari-Izzo F (2004) Antioxidative responses of Calendula offıcinalis under salinity conditions. Plant Physiol Biochem 42:695-701 Chen WP, Hou ZA, Wu LS, Liang YC, Wei CZ (2010) Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China. Agr Water Manage 97:2001-2008 Chen XY, Ding X, Xu S, Wang R, Xuan W, Cao ZY, Chen J, Wu HH, Ye MB, Shen WB (2009) Endogenous hydrogen peroxide plays a positive role in the upregulation of heme oxygenase and acclimation to oxidative stress in wheat seedling leaves. J Integr Plant Biol 51:951-960 Cho SC, Chao YY, Hong CY, Kao CH (2012) The role hydrogen peroxide in 50 cadmium-inhibited root growth of rice seedlings. Plant Growth Regul 66:27-35 Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113-120 Choi AM (2001) Heme oxygenase-1 protects the heart. Circ Res 89:105-107 Choi AM, Alam J (1996) Heme oxygenase-1: function, regulation and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Resp Cell Mol 15:9-19 Chou TS, Chao YY, Kao CH (2012) Involvement of hydrogen peroxide in heat shockand cadmium-induced expression of ascorbate peroxidase and glutathione reductase in leaves of rice seedlings. Plant Physiol 169:478-486 Cui WT, Fu GQ, Wu HH, Shen WB (2011) Cadmium-induced heme oxygenase-1 gene expression is associated with the depletion of glutathione in the roots of Medicago sativa. Biometals 24:93-103 Davis SJ, Bhoo SH, Durski AM, Walker JM, Vierstra RD (2001) The heme-oxygenase family required for phytochrome chromophore biosynthesis is necessary for proper photomorphogenesis in higher plants. Plant Physiol 126:656-669 de Azevedo Neto DA, Prisco JT, Eneas-Filho J, CEB de Abreu, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87-94 Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1-9 Dulak J, Jozkowicz A (2003) Carbon monoxide - a ‘new’ gaseous modulator of gene expression. Acta Biochim Pol 50:31-47 51 Emborg TJ, Walker JM, Noh B, Vierstra RD (2006) Multiple heme oxygenase family members contribute to the biosynthesis of the phytochrome chromophore in Arabidopsis. Plant Physiol 140:856-868 Eraslan F, Inal A, Savasturk O, Gunes A (2007) Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Sci Hortic 114:5-10 Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Sci 135:1-9 Foster JG, Hess JL (1980) Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol 66: 482-487 Frederich SE, Newcomb EH (1969) Cytochemical localization of catalase in leaf microbodies (peroxisomes). J Cell Biol 49:343-353 Fu GQ, Xu S, Xie YJ, Han B, Nie L, Shen WB, Wang R (2011) Molecular cloning, characterization, and expression of an alfalfa (Medicago sativa L.) heme oxygenase-1 gene, MsHO1, which is pro-oxidants-regulated. Plant Physiol Biochem 49:792-799 Fukusako S, Yamada M (1993) Recent advances in research on water-freezing and ice-melting problems. Exp Therm Fluid Sci 6:90-105 Gao Y, Guo YK, Lin SH, Fang YY, Bai JG (2010) Hydrogen peroxide pretreatment alters the activity of antioxidant enzymes and protects chloroplast ultrastructure in heat-stressed cucumber leaves. Sci Hortic 126:20-26 Gisk B, Yasui Y, Kohchi T, Frankenberg-Dinkel N (2010) Characterization of the haem oxygenase protein family in Arabidopsis thaliana reveals a diversity of functions. J Biochem 425:425-434 52 Gomes Filho E, Prisco JT, Campoa FAP, Eneas Filho J (1983) Effects of NaCl salinity in vivo and in vitro on ribonuclease activity of Vigna unguiculata cotyledons during germination. Physiol Plant 59:183-188 Han B, Xu S, Xie YJ, Huang JJ, Wang LJ, Yang Z, Zhang CH, Sun Y, Shen WB, Xie GS (2012) ZmHO-1, a maize haem oxygenase-1 gene, plays a role in determining lateral root development. Plant Sci 184:63-74 Han Y, Zhang J, Chen XY, Gao ZZ, Xuan Q, Xu S, Ding X, Shen WB (2008) Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa. New Phytol 177:155-166 Hao F, Wang X, Chen J (2006) Involvement of plasma-membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings. Plant Sci 170:151-158 Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E (2010) A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot 61:521-535 Hong CY, Kao CH (2008) NaCl-induced expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings is not associated with osmotic component. Plant Signaling Behav 3:199-201 Hong CY, Hsu YT, Tsai YC, Kao CH (2007) Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J Exp Bot 58:3273-3283 Hong CY, Chao YY, Yang MY, Cho SC, Kao CH (2009a) NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant Soil 320: 103-115 53 Hong CY, Chao YY, Yang MY, Cho SC, Kao CH (2009b) Na+ but not Cl- or osmotic stress is involved in NaCl-induced expression of glutathione reductase in roots of rice seedlings. Plant Physiol 166:1598-1606 Hsu YT, Kao CH (2007) Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant Soil 298: 231-241 Hsu YT, Kao CH (2010) Abscisic acid-induced leaf senescence of rice seedlings is due to hydrogen peroxide accumulation. Crop Environ Bioinfo 7:243-249. Huang AX, She XP, Cao BH, Ren Y (2011) Distribution of hydrogen peroxide during adventitious roots initiation and development in mung bean hypocotyls cuttings. Plant Growth Regul 64:109-118 Huang BK, Xu S, Xuan W, Li M, Cao ZY, Liu KL, Ling TF, Shen WB (2006) Carbon monoxide alleviates salt-induced oxidative damage in wheat seedling leaves. Plant Biol 48:249-254 Huang JJ, Han B, Xu S, Zhou MX, Shen WB (2011) Heme oxygenase-1 is involved in the cytokinin-induced alleviation of senescence in detached wheat leaves during dark incubation. Plant Physiol 168:768-775 Ishibashi Y, Yamaguchi H, Yuasa T, Iwaya-Inoue M, Arima S, Zheng SH (2011) Hydrogen peroxide spraying alleviates drought stress in soybean plants. Plant Physiol 168:1562-1567 Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K (2000) Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J 22:391-399 Jana S, Choudhuri MA (1981) Glycolate metabolism of three submerged aquatic angiosperms: Effect of heavy metals. Aquat Bot 11: 67-77 Kaminaka H, Morita S, Nakajima M, Masumura T, Tanaka K (1998) Gene 54 cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.). Plant Cell Physiol 39:1269-1280 Kent LM, Lauchli A (1985) Germination and seedling growth of cotton: salinity-calcium interactions. Plant Cell Environ 8:155-159 Koca H, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344-351 Lamar CA, Mahesh VB, Brann DW (1996) Regulation of gonadotrophin-releasing hormone (GnRH) secretion by hememolecules: a regulatory role for carbon monoxide? Endocrinology 137:790-793 Li SW, Xuea L, Xub S, Feng H, An L (2009) Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. Environ Exp Bot 65:63-71 Lin CC, Kao CH (1996) Proline accumulation is associated with inhibition of rice seedling root growth caused by NaCl. Plant Sci 114:121-128 Lin CC, Kao CH (2000) Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul 30:151-155 Lin CC, Kao CH (2001a) Cell wall peroxidase activity, hydrogen peroxide level and NaCl-inhibited root growth of rice seedlings. Plant Soil 230:135-143 Lin CC, Kao CH (2001b) Relative importance of Na+, Cl−, and abscisic acid in NaCl induced inhibition of root growth of rice seedlings. Plant Soil 237:165-171 Lin CC, Kao CH (2001c) Cell wall peroxidase against ferulic acid, lignin, and NaCl-reduced root growth of rice seedlings. Plant Physiol 158:667-671 Lin CC, Kao CH (2002a) Osmotic stress-induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Growth 55 Regul 37:177-183 Lin CC, Kao CH (2002b) NaCl-induced changes in purtrescine content and diamine oxidase activity in roots of rice seedlings. Biol Plant 45:633-636 Lin CC, Hsu YT, Kao CH (2002a) Ammonium ion, ethylene, and NaCl-induced senescence of detached rice leaves. Plant Growth Regul 37:85-92 Lin CC, Hsu YT, Kao CH (2002b) The effect of NaCl on proline accumulation in rice leaves. Plant Growth Regul 36:275-285 Ling TF, Zhang B, Cui WT, Wu MZ, Lin JS, Zhou WT, Huang JJ, Shen WB (2009) Carbon monoxide mitigates salt-induced inhibition of root growth and suppresses programmed cell death in wheat primary roots by inhibiting superoxide anion overproduction. Plant Sci 177:331-340 Linley PJ, Landsberger M, Kohchi T, Cooper JB, Terry MJ (2006) The molecular basis of heme oxygenase deficiency in the pcd1 mutant of pea. Fed Eur Biochem Soc 273:2594-2606 Liu KL, Xu S, Xuan W, Ling TF, Cao ZY, Huang BK, Sun YG, Fang L, Liu ZY, Zhao N, Shen WB (2007) Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa. Plant Sci 172: 544-555 Liu YH, Xu S, Ling TF, Xu LL, Shen WB (2010) Heme oxygenase/carbon monoxide system participates in regulating wheat seed germination under osmotic stress involving the nitric oxide pathway. J Plant Physiol 167:1371-1379 Longo M, Jain V, Vedernikov YP, Saade GR, Goodrum L, Facchinetti F, Garfield RE (1999) Effect of nitric oxide and carbon monoxide on uterine contractility during human and rat pregnancy. Am J Obst Gynecol 181:981-988 Lovelli S, Scopa A, Perniola M, Tommaso TD, Sofo A (2011) Abscisic acid root 56 and leaf concentration in relation to biomass partitioning in salinized tomato plants. Plant Physiol 169:226-233 Marton LS, Wang X, Kowalczuk A, Zhang ZD, Windmeyer E, Macdonald RL (2000) Effects of hemoglobin on heme oxygenase gene expression and viability of cultured smooth muscle cells. Am J Physiol Heart Circ Physiol 279:2405-2413 Matsumoto F, Obayashi T, Sasaki-Sekimoto Y, Ohta H, Takamiya K, Masuda T (2004) Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system. Plant Physiol 135:2379-2391 Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405-410 Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105-1113 Montero E, Cabot C, Poschenrieder C, Barcelo O (1998) Relative importance of osmotic-stress and ion-specific effects on ABA-mediated inhibition of leaf expansion growth in Phaseolus vulgaris. Plant Cell Environ 21:54-62 Moya JL, Gomez-Cadenas A, Primo-Millo E, Talon M (2003) Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use. J Exp Bot 54:825-833 Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645-663 Muramoto T, Kohchi T, Yokota A, Hwang I, Goodman HM (1999) The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11:335-347 57 Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388-395 Neumann PM, Azaizeh H, Leon D (1994) Hardening of root cell walls: Growth inhibitory responses to salinity stress. Plant Cell Environ 17:303-309 Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2004) Heme oxygenase exerts a protective role against oxidative stress in soybean leaves. Biochem Biophys Res Commun 323:1003-1008 Noriega GO, Yannarelli GG, Balestrasse KB, Batlle A, Tomaro ML (2007) The effect of nitric oxide on heme oxygenase gene expression in soybean leaves. Planta 226:1155-1163 Orozco-Cardenas ML, Narvaez-Vasquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179-191 Prakash L, Prathapasenan G (1988) Putrescine reduces NaCl-induced inhibition of germination and early seedling growth of rice (Oryza sativa L.). Aust J Plant Physiol 15:761-767 Radić V, Beatović D, Mrđa J (2007) Salt tolerance of corn genotypes (Zea mays L.) during germination and later growth. J Agric Sci 52:115-120 Romero-Aranda R, Moya JL, Tadeo FR, Legaz F, Primo-Millo E, Talon M (1998) Physiological and anatomical disturbances induced by chloride salts in sensitive and tolerant citrus: beneficial and detrimental effects of cations. Plant Cell Environ 21:1243-1253 Santa-Cruz DM, Pacienza NA, Polizio AH, Balestrasse KB, Tomaro ML, Yannarelli GG (2010) Nitric oxide synthase-like dependent NO production enhances heme oxygenase up-regulation in ultraviolet-B-irradiated soybean 58 plants. Phytochemistry 71:1700-1707 Shekhawat GS, Verma K (2010) Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence. J Exp Bot 61:2255-2270 Shen CH, Yeh KW (2010) Hydrogen peroxide mediates the expression of ascorbaterelated genes in response to methanol stimulation in Oncidium. Plant Physiol 167:400-407 Shen Q, Jiang M, Li H, Che LL, Yang ZM (2011) Expression of a Brassica napus heme oxygenase confers plant tolerance to mercury toxicity. Plant Cell Environ 34:752-763 Shi Q, Ding F, Wang X, Wei M (2007) Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress. Plant Physiol Biochem 45:542-550 Shibahara S, Kitamuro T, Takahashi K (2002) Heme degradation and human disease: diversity is the soul of life. Antioxid Redox Signal 4:593-602 Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA 101: 8827-8832 Sibole JV, Montero E, Cabot C, Poschenrieder C, Barcelo J (1998) Role of sodium in the ABA-mediated long-term growth response of bean to salt stress. Plant Physiol 104: 299–305 Steer A, Worby A, Heil P (2008) Observed changes in sea-ice floe size distribution during early summer in the western Weddell Sea. Deep-Sea Res II 55:933-942 Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci 161:613-619 Teixeira FK, Menezes-Benzvente L, Margis R, Margis-Pinheiro M (2004) 59 Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. J Mol Evol 59:761-770 Terry MJ, Kendrick RE (1996) The aurea and yellow-green-2 mutants of tomato are deficient in phytochrome chromophore synthesis. J Biol Chem 271:21681-21686. Terry MJ, Linley PJ, Kohch T (2002) Making light of it: the role of plant haem oxygenases in phytochrome chromophore synthesis. Biochem Soc Trans 30:604-609 Tsai YC, Hong CY, Liu LF, Kao CH (2004) Relative importance of Na+ and Clin NaCl-induced antioxidant systems in roots of rice seedlings. Physiol Plant 122: 86-94 Tsai YC, Hong CY, Liu LF, Kao CH (2005) Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. J Plant Physiol 162:291-299 Tsai YC, Kao CH (2004) The involvement of hydrogen peroxide in abscisic acidincreased activities of ascorbate peroxidase and glutathione reductase in rice roots. Plant Growth Regul 43:207-212 Van Breusegem F, Vranova E, Dat JF, Inze D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405-414 Van Gestelen P, Asard H, Caubergs RJ (1997) Solubilization and separation of a plant plasma membrane NADPH-O2 synthase from other NAD(P)H oxidoreductases. Plant Physiol 115: 543-550 Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon monoxide: a putative neural messenger. Science 259:381-384 Vile GF, Tyrrell RM (1993) Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase-dependent increase in 60 ferritin. J Biol Chem 268:14678-14681 Wang XS, Han JG (2009) Changes of proline content, activity, and active isoforms of antioxidative enzymes in two alfalfa cultivars under salt stress. Agri Sci 8:431-440 Watts RN, Ponka P, Richardson DR (2003) Effects of nitrogen monoxide and carbon monoxide on molecular and cellular iron metabolism: mirror-image effector molecules that target iron. Biochem J 369:429-440 Weller JL, Terry MJ, Rameau C, Reid JB, Kendrick RE (1996) The phytochrome-deficient pcd1 mutant of pea is unable to convert heme to biliverdin Ixα. Plant Cell 8:55-67 Wind S, Beuerlein K, Eucker T, Muller H, Scheurer P, Armitage ME, Ho H, Schmidt HHHW, Wingler K (2010) Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. Brit J Pharmacol 161:885-898 Wu ZS, Zhao YF, Kaleem I, Li C (2011) Preparation of calcium-alginate microcapsuled microbial fertilizer coating Klebsiella oxytoca Rs-5 and its performance under salinity stress. Eurp J Soil Biol 47:152-159 Wyn Jones RG, Storey R (1978) Salt stress and comparative physiology in the Gramineae II. Glycinebetaine and proline accumulation in two salt- and water-stressed barley cultivars. Aust J Plant Physiol 5:817-829 Xie YJ, Ling TF, Han Y, Liu KL, Zheng QS, Huang LQ, Yuan XX, He ZY, Hu B, Fang L, Shen ZG, Yang Q, Shen WB (2008) Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and upregulation of antioxidant defence in wheat seedling roots. Plant Cell Environ 31:1864-1881 Xie YJ, Xu S, Han B, Wu MZ, Yuan XX, Han Y, Gu Q, Xu DK, Yang Q, Shen 61 WB (2011) Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. Plant J 66:280-292 Xing T, Higgins VJ, Blumwald E (1997) Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells. Plant Cell 9:249-259 Xu S, Hu B, He ZY, Ma F, Feng JF, Shen WB, Yang J (2011) Enhancement of salinity tolerance during rice seed germination by presoaking with hemoglobin. Int J Mol Sci 12:2488-2501 Xu S, Sa ZS, Cao ZY, Xuan W, Huang BK, Ling TF, Hu QY, Shen WB (2006) Carbon monoxide alleviates wheat seed germination inhibition and counteracts lipid peroxidation mediated by salinity. J Integr Plant Biol 48:1168-1176 Xu S, Zhang B, Cao ZY, Ling TF, Shen WB (2011) Heme oxygenase is involved in cobalt chloride-induced lateral root development in tomato. Biometals 24:181-191 Xuan W, Zhu FY, Xu S, Huang BK, Ling TF, Qi JY, Ye MB, Shen WB (2008) The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol 148:881-893 Xue YF, Liu L, Liu ZP, Mehta SK, Zhao GM (2008) Protective role of Ca against NaCl toxicity in Jerusalem artichoke by up-regulation of antioxidant enzymes. Pedosphere 18:766-774 Yamane K, Mitsuya S, Taniguchi M, Miyake H (2009a) Antioxidant capacity and damages caused by salinity stress in apical and basal regions of rice leaf. Plant Prod Sci 12:319-326 Yamane K, Taniguchi M, Miyake H (2009b) Salinity-induced subcellular 62 accumulation of H2O2 in leaves of rice. Protoplasma 249:301-308 Yannarelli GG, Noriega GO, Batlle A, Tomaro ML (2006) Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta 224:1154-1162 Yazici I, Turkan I, Sekmen AH, Demiral T (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ Exp Bot 61:49-57 Zhang FQ, Zhang HX, Wang GP, Xu LL, Shen ZG (2009) Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. J Hazard Mater 168:76-84 Zhang XL, Jia XF, Yu B, Gao Y, Bai JG (2011) Exogenous hydrogen peroxide influences antioxidant enzyme activity and lipid peroxidation in cucumber leaves at low light. Sci Hortic 129:656-662 Zilli CG, Balestrasse KB, Yannarelli GG, Polizio AH, Santa-Cruz DM, Tomaro ML (2008) Heme oxygenase up-regulation under salt stress protects nitrogen metabolism in nodules of soybean plants. Environ Exp Bot 64:83-89 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64100 | - |
| dc.description.abstract | 本論文係以水稻品種台中在來一號(Oryza sativa L. cv. Taichung Native 1)黃化幼苗作為材料,探討(a)過氧化氫(H2O2)與氯化鈉(NaCl)所抑制水稻黃化幼苗根生長之關係、(b) H2O2與NaCl誘導水稻黃化幼苗根穀胱甘肽還原酶(glutathione reductase, GR)活性增加之關係及(c) NaCl逆境下水稻黃化幼苗根H2O2和血紅素氧化酶(heme oxygenase, HO)活性之關係。
NaCl抑制水稻黃化幼苗根之根長及根乾重,在相同滲透勢條件下,NaCl與NaNO3對水稻黃化幼苗根長及乾重抑制情形相同,然而mannitol的抑制較為減緩。NaCl使幼苗根中於3小時迅速累積H2O2,發生在NaCl抑制幼苗根生長(6小時)前。Ascorbic acid (AsA) 、diphenyleneiodonium (DPI) 、imidazole (IMD) 及sodium nitroprusside (SNP)皆可降低NaCl所誘導根中H2O2累積,卻無法回復根長及乾重之降低,證實水稻黃化幼苗在NaCl逆境下,因Na+之作用透過細胞膜上之NADPH oxidase形成H2O2,然而H2O2並非NaCl抑制水稻黃化幼苗根生長之限制因子。 NaCl誘導水稻黃化幼苗根中GR活性之增加,且H2O2累積與GR活性提升均發 生於NaCl處理3小時後。AsA、DPI、IMD及SNP皆可以降低NaCl所導致根中H2O2 累積與GR活性增加。NaCl亦可增加水稻黃化幼苗根中HO活性,且NaCl所誘導之 HO活性提升(6小時)在H2O2累積(3小時)後。AsA、DPI、IMD及SNP可清除NaCl 所導致之H2O2累積,同時降低NaCl所誘導之HO活性提升。外加H2O2可使水稻幼 苗根GR及HO活性提升。另外,NaCl與NaNO3造成GR及HO活性之提升相同。本 論文之結果證實NaCl透過Na+作用以H2O2做為訊息分子誘導水稻黃化幼苗根中 GR及HO活性提升。 | zh_TW |
| dc.description.abstract | In this thesis, rice (Oryza sativa L. cv. Taichung Native 1) etiolated seedlings were used to investigate (a) the role of H2O2 in NaCl-inibited growth of rice etiolated seedling roots, (b) the role of H2O2 in NaCl-increased glutathione reductase(GR)activity of rice etiolated seedling roots, (c) and the role of H2O2 in NaCl-increased heme oxygenase activity of rice etiolated seedling roots.
Rice etiolated seedlings treated with NaCl increased H2O2 production in rice roots (3 hours), and then inhibited root growth of etiolated seedlings (6 hours). Addition of H2O2 scavenger ascorbic acid (AsA) and nitric oxide (NO) donor sodium nitroprusside(SNP) , which decreased H2O2 accumulation, could not reduce NaCl-inhibited growth in rice roots. Also, application of NADPH oxidase inhibitors diphenyleneiodonium(DPI) and imidazole(IMD), which inhibited the H2O2 production, had no effect on NaCl-inhibited root growth. These data indicated that H2O2 production through NADPH oxidase caused by Na+ is unlikely responsible for NaCl-inhibited root growth. NaCl treatment increased H2O2 production and GR activity in rice roots. Addition of AsA and SNP, which decreased H2O2 accumulation, could lower the NaCl-induced GR activity. Also, application of DPI and IMD, which inhibited the H2O2 production, reduced the NaCl-induced GR activity. NaCl treatment resulted in an increase in HO activity in roots of rice etiolated seedlings. Results of time-course study indicated that H2O2 accumulation occurred 3 hours after NaCl treatment, whereas the increase in HO activity occurred 6 hours after NaCl treatment. Addition of AsA and SNP, which decreased H2O2 accumulation, could lower the NaCl-induced HO activity in rice etiolated seedling roots. Also, application of DPI and IMD reduced the NaCl-induced HO activity. Moreover, NaNO3 and NaCl are equally effective in inducing GR and HO activity, indicating that Na+ but not Cl- is responsible for increasing GR and HO activities. Based on the data of this thesis, it is concluded that H2O2 production caused by NaCl may be responsible for NaCl-increased GR and HO activities in rice etiolated seedling roots. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:30:00Z (GMT). No. of bitstreams: 1 ntu-101-R99621102-1.pdf: 3083816 bytes, checksum: f9f99a451c719baad115c0f5f4958f0f (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書.........................................................................................................i
誌謝...............................................................................................................................ii 中文摘要.......................................................................................................................iii ABSTRACT..................................................................................................................iv 目錄...............................................................................................................................vi 圖目錄.........................................................................................................................viii 附錄目錄........................................................................................................................x 縮寫字對照...................................................................................................................xi 前言...............................................................................................................................1 前人研究........................................................................................................................3 鹽害(NaCl)逆境.....................................................................................................3 NaCl與植物生長...................................................................................................4 活化氧族之形成及作用........................................................................................5 NaCl與H2O2...........................................................................................................6 植物抗氧化系統....................................................................................................7 NaCl與抗氧化酵素...............................................................................................8 Heme oxygenase....................................................................................................9 Heme oxygenase之生理作用..............................................................................10 NaCl與heme oxygenase.......................................................................................11 研究室過去文獻相關探討..................................................................................11 本論文研究方向..................................................................................................12 材料方法......................................................................................................................13 一、材料種植與處理...........................................................................................13 vii 二、根長與乾重之測定.......................................................................................14 三、化學成分分析...............................................................................................14 四、酵素活性分析...............................................................................................16 五、統計分析.......................................................................................................17 六、供試藥劑之配製...........................................................................................17 結果..............................................................................................................................18 一、NaCl處理對水稻黃化幼苗根中H2O2螢光影像之影響..............................18 二、NaCl對水稻黃化幼苗根生長之影響..........................................................18 三、H2O2累積與NaCl抑制水稻黃化幼苗根生長之關係..................................23 四、NaCl對水稻黃化幼苗根GR活性之影響.....................................................30 五、NaCl逆境下水稻黃化幼苗根中H2O2和HO活性之關係............................30 (一) NaCl與水稻黃化幼苗根中HO活性增加之影響................................30 (二) H2O2參與NaCl誘導水稻黃化幼苗根中HO活性之增加...................35 討論..............................................................................................................................41 引用文獻......................................................................................................................48 附錄..............................................................................................................................63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 過氧化氫 | zh_TW |
| dc.subject | 生長 | zh_TW |
| dc.subject | 血紅素氧化酶 | zh_TW |
| dc.subject | 還原酶 | zh_TW |
| dc.subject | 氯化鈉 | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 幼 苗根 | zh_TW |
| dc.subject | 穀胱甘肽 | zh_TW |
| dc.subject | Glutathione reductase | en |
| dc.subject | NaCl | en |
| dc.subject | rice | en |
| dc.subject | seedling roots | en |
| dc.subject | H2O2 | en |
| dc.subject | growth | en |
| dc.subject | heme oxygenase | en |
| dc.title | 水稻幼苗根氯化鈉逆境之研究:過氧化氫之功能 | zh_TW |
| dc.title | Studies on NaCl stress of rice seedling roots: the role of hydrogen peroxide | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳宗禮(Tsung-Li Chen),王恆隆(Heng-Long Wang),洪傳揚(Chwan-Yang Hong),許奕婷(Yi-Ting Hsu) | |
| dc.subject.keyword | 穀胱甘肽,還原酶,生長,過氧化氫,血紅素氧化酶,氯化鈉,水稻,幼 苗根, | zh_TW |
| dc.subject.keyword | Glutathione reductase,growth,H2O2,heme oxygenase,NaCl,rice,seedling roots, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
