Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64079
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余榮熾(Lung-Chih Yu)
dc.contributor.authorChun-Hao Luen
dc.contributor.author呂峻豪zh_TW
dc.date.accessioned2021-06-16T17:29:08Z-
dc.date.available2012-08-19
dc.date.copyright2012-08-19
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation1. Essentials of Glycobiology, 2nd edition, in Essentials of Glycobiology, R.D.C. Ajit Varki, Jeffrey D Esko, Hudson H Freeze, Pamela Stanley, Carolyn R Bertozzi, Gerald W Hart, and Marilynn E Etzler, Editor 2009, Cold Spring Harbor: New York. p. 179-186.
2. Essentials of Glycobiology, 2nd edition, in Essentials of Glycobiology, R.D.C. Ajit Varki, Jeffrey D Esko, Hudson H Freeze, Pamela Stanley, Carolyn R Bertozzi, Gerald W Hart, and Marilynn E Etzler, Editor 2009, Cold Spring Harbor: New York. p. 175-177.
3. Berg, E.L., et al., A carbohydrate domain common to both sialyl Le(a) and sialyl Le(X) is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1. J Biol Chem, 1991. 266(23): p. 14869-72.
4. Kuijpers, T.W., et al., Antigen-specific immune responsiveness and lymphocyte recruitment in leukocyte adhesion deficiency type II. Int Immunol, 1997. 9(4): p. 607-13.
5. Hakomori, S., Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci U S A, 2002. 99(16): p. 10231-3.
6. Dennis, J.W., M. Granovsky, and C.E. Warren, Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta, 1999. 1473(1): p. 21-34.
7. Kannagi, R., et al., Altered expression of glycan genes in cancers induced by epigenetic silencing and tumor hypoxia: clues in the ongoing search for new tumor markers. Cancer Sci, 2010. 101(3): p. 586-93.
8. Fukushima, K., et al., Characterization of sialosylated Lewisx as a new tumor-associated antigen. Cancer Res, 1984. 44(11): p. 5279-85.
9. Ugorski, M. and A. Laskowska, Sialyl Lewis(a): a tumor-associated carbohydrate antigen involved in adhesion and metastatic potential of cancer cells. Acta Biochim Pol, 2002. 49(2): p. 303-11.
10. Itzkowitz, S.H., et al., Lewisx- and sialylated Lewisx-related antigen expression in human malignant and nonmalignant colonic tissues. Cancer Res, 1986. 46(5): p. 2627-32.
11. Yamada, N., et al., Increased sialyl Lewis A expression and fucosyltransferase activity with acquisition of a high metastatic capacity in a colon cancer cell line. Br J Cancer, 1997. 76(5): p. 582-7.
12. Sawada, R., S. Tsuboi, and M. Fukuda, Differential E-selectin-dependent adhesion efficiency in sublines of a human colon cancer exhibiting distinct metastatic potentials. J Biol Chem, 1994. 269(2): p. 1425-31.
13. Takada, A., et al., Contribution of carbohydrate antigens sialyl Lewis A and sialyl Lewis X to adhesion of human cancer cells to vascular endothelium. Cancer Res, 1993. 53(2): p. 354-61.
14. Portela, S.V., et al., sLea and sLex expression in colorectal cancer: implications for tumourigenesis and disease prognosis. Histol Histopathol, 2011. 26(10): p. 1305-16.
15. Nakamori, S., et al., Increased expression of sialyl Lewisx antigen correlates with poor survival in patients with colorectal carcinoma: clinicopathological and immunohistochemical study. Cancer Res, 1993. 53(15): p. 3632-7.
16. Nakayama, T., et al., Expression of sialyl Lewis(a) as a new prognostic factor for patients with advanced colorectal carcinoma. Cancer, 1995. 75(8): p. 2051-6.
17. Kannagi, R., Carbohydrate antigen sialyl Lewis a--its pathophysiological significance and induction mechanism in cancer progression. Chang Gung Med J, 2007. 30(3): p. 189-209.
18. Kannagi, R., et al., Quantitative and qualitative characterization of human cancer-associated serum glycoprotein antigens expressing fucosyl or sialyl-fucosyl type 2 chain polylactosamine. Cancer Res, 1986. 46(5): p. 2619-26.
19. Kumamoto, K., et al., Specific detection of sialyl Lewis X determinant carried on the mucin GlcNAcbeta1-->6GalNAcalpha core structure as a tumor-associated antigen. Biochem Biophys Res Commun, 1998. 247(2): p. 514-7.
20. Essentials of Glycobiology, 2nd edition, in Essentials of Glycobiology, R.D.C. Ajit Varki, Jeffrey D Esko, Hudson H Freeze, Pamela Stanley, Carolyn R Bertozzi, Gerald W Hart, and Marilynn E Etzler, Editor 2009, Cold Spring Harbor: New York. p. 177-179.
21. Bierhuizen, M.F., M.G. Mattei, and M. Fukuda, Expression of the developmental I antigen by a cloned human cDNA encoding a member of a beta-1,6-N-acetylglucosaminyltransferase gene family. Genes Dev, 1993. 7(3): p. 468-78.
22. Watanabe, K., et al., Characterization of a blood group I-active ganglioside. Structural requirements for I and i specificities. J Biol Chem, 1979. 254(9): p. 3221-8.
23. Marsh, W.L., Anti-i: a cold antibody defining the Ii relationship in human red cells. Br J Haematol, 1961. 7: p. 200-9.
24. Marsh, W.L., M.E. Nichols, and M.E. Reid, The definition of two I antigen components. Vox Sang, 1971. 20(3): p. 209-17.
25. Romans, D.G., C.A. Tilley, and K.J. Dorrington, Monogamous bivalency of IgG antibodies. I. Deficiency of branched ABHI-active oligosaccharide chains on red cells of infants causes the weak antiglobulin reactions in hemolytic disease of the newborn due to ABO incompatibility. J Immunol, 1980. 124(6): p. 2807-11.
26. Niemela, R., et al., Isolation and characterization of linear polylactosamines containing one and two site-specifically positioned Lewis x determinants: WGA agarose chromatography in fractionation of mixtures generated by random, partial enzymatic alpha3-fucosylation of pure polylactosamines. Glycobiology, 1999. 9(5): p. 517-26.
27. Nishihara, S., et al., Alpha1,3-fucosyltransferase 9 (FUT9; Fuc-TIX) preferentially fucosylates the distal GlcNAc residue of polylactosamine chain while the other four alpha1,3FUT members preferentially fucosylate the inner GlcNAc residue. FEBS Lett, 1999. 462(3): p. 289-94.
28. Shiraishi, N., et al., Identification and characterization of three novel beta 1,3-N-acetylglucosaminyltransferases structurally related to the beta 1,3-galactosyltransferase family. J Biol Chem, 2001. 276(5): p. 3498-507.
29. Iwai, T., et al., Molecular cloning and characterization of a novel UDP-GlcNAc:GalNAc-peptide beta1,3-N-acetylglucosaminyltransferase (beta 3Gn-T6), an enzyme synthesizing the core 3 structure of O-glycans. J Biol Chem, 2002. 277(15): p. 12802-9.
30. Togayachi, A., et al., Molecular cloning and characterization of UDP-GlcNAc:lactosylceramide beta 1,3-N-acetylglucosaminyltransferase (beta 3Gn-T5), an essential enzyme for the expression of HNK-1 and Lewis X epitopes on glycolipids. J Biol Chem, 2001. 276(25): p. 22032-40.
31. Ishida, H., et al., A novel beta1,3-N-acetylglucosaminyltransferase (beta3Gn-T8), which synthesizes poly-N-acetyllactosamine, is dramatically upregulated in colon cancer. FEBS Lett, 2005. 579(1): p. 71-8.
32. Seko, A. and K. Yamashita, β1,3-N-Acetylglucosaminyltransferase-7 (β3Gn-T7) acts efficiently on keratan sulfate-related glycans. FEBS Lett, 2004. 556(1-3): p. 216-220.
33. Kitayama, K., et al., Enzymes responsible for synthesis of corneal keratan sulfate glycosaminoglycans. J Biol Chem, 2007. 282(41): p. 30085-96.
34. Kataoka, K. and N.H. Huh, A novel beta1,3-N-acetylglucosaminyltransferase involved in invasion of cancer cells as assayed in vitro. Biochem Biophys Res Commun, 2002. 294(4): p. 843-8.
35. Fukuda, M., M.N. Fukuda, and S. Hakomori, Developmental change and genetic defect in the carbohydrate structure of band 3 glycoprotein of human erythrocyte membrane. J Biol Chem, 1979. 254(10): p. 3700-3.
36. Piller, F., et al., Biosynthesis of blood group I antigens. Identification of a UDP-GlcNAc:GlcNAc beta 1-3Gal(-R) beta 1-6(GlcNAc to Gal) N-acetylglucosaminyltransferase in hog gastric mucosa. J Biol Chem, 1984. 259(21): p. 13385-90.
37. Schwientek, T., et al., Control of O-glycan branch formation. Molecular cloning of human cDNA encoding a novel beta1,6-N-acetylglucosaminyltransferase forming core 2 and core 4. J Biol Chem, 1999. 274(8): p. 4504-12.
38. Yeh, J.C., E. Ong, and M. Fukuda, Molecular cloning and expression of a novel beta-1, 6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J Biol Chem, 1999. 274(5): p. 3215-21.
39. Inaba, N., et al., A novel I-branching beta-1,6-N-acetylglucosaminyltransferase involved in human blood group I antigen expression. Blood, 2003. 101(7): p. 2870-6.
40. Yu, L.C., et al., The molecular genetics of the human I locus and molecular background explain the partial association of the adult i phenotype with congenital cataracts. Blood, 2003. 101(6): p. 2081-8.
41. Twu, Y.C., et al., I branching formation in erythroid differentiation is regulated by transcription factor C/EBPalpha. Blood, 2007. 110(13): p. 4526-34.
42. Twu, Y.C., et al., Phosphorylation status of transcription factor C/EBPalpha determines cell-surface poly-LacNAc branching (I antigen) formation in erythropoiesis and granulopoiesis. Blood, 2010. 115(12): p. 2491-9.
43. Zhang, H., et al., Engagement of I-branching {beta}-1, 6-N-acetylglucosaminyltransferase 2 in breast cancer metastasis and TGF-{beta} signaling. Cancer Res, 2011. 71(14): p. 4846-56.
44. Fahrner, J.A., et al., Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res, 2002. 62(24): p. 7213-8.
45. Bird, A., DNA methylation patterns and epigenetic memory. Genes Dev, 2002. 16(1): p. 6-21.
46. Mellor, J., Dynamic nucleosomes and gene transcription. Trends Genet, 2006. 22(6): p. 320-9.
47. Jaenisch, R. and A. Bird, Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 2003. 33 Suppl: p. 245-54.
48. Miyazaki, K., et al., Loss of disialyl Lewis(a), the ligand for lymphocyte inhibitory receptor sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7) associated with increased sialyl Lewis(a) expression on human colon cancers. Cancer Res, 2004. 64(13): p. 4498-505.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64079-
dc.description.abstract消化道系統相關癌症癌化的過程會伴隨癌細胞表面醣結構的改變,這些特定出現於癌細胞表面的醣稱為腫瘤相關醣抗原(tumor-associated antigens);sialyl Lewis a (sLea)與sialyl Lewis x (sLex)是最著名的消化道系統相關癌症的腫瘤相關醣抗原。過去的研究證實,sLea與sLex會促進消化道系統相關癌症的癌細胞轉移(metastasis),且此二醣抗原的表現和術後癌症復發與病人存活率有很大的關係。sLea與sLex建構於重複的N-acetyllactosamine (Gal-GlcNAc,LacNAc)單元所組成的poly-LacNAc鏈的末端。本實驗室過去的研究發現,大腸癌病患的大腸腫瘤組織中,兩個參與poly-LacNAc鏈建構的基因,β-1,3-N-acetylglucosaminyltransferase 7 (B3GNT7)與I-branching β-1,6-N-acetylglucosaminyltransferase (IGnTA),其表現相較於正常大腸組織降低許多。因此, poly-LacNAc鏈的生合成出現問題,是否會改變sLea與sLex的表現,進而影響大腸癌細胞轉移,是我們想要探討的問題。
本研究以大腸癌細胞株做為研究的細胞模型,探討B3GNT7與IGnTA的表現對於大腸癌細胞轉移的影響,並進一步探討造成此二基因於大腸癌細胞中表現降低的機制。我們的研究發現,大量表現B3GNT7與IGnTA的大腸癌細胞,會分別降低其細胞表面sLex與sLea的表現;裸鼠實驗中,大量表現B3GNT7與IGnTA的大腸癌細胞,其癌細胞轉移的情況相較於對照組降低許多。我們也發現大腸癌細胞的B3GNT7與IGnTA的5端調控區域有高度甲基化的現象,並且利用去甲基化藥物5-Aza-2’-deoxycytidine (5AzadC)可回復大腸癌細胞中此二基因的表現與降低B3GNT7與IGnTA的5端調控區域的甲基化程度,顯示大腸癌細胞調控此二基因表現的機制與DNA甲基化有很大的關係。進一步地,我們發現利用epigenetic藥物,包括5AzadC與組蛋白去乙醯酵素抑制劑(HDAC inhibitors),可增加大腸癌細胞中IGnTA的表現,並降低其細胞表面sLea的表現。
我們的研究證實,大腸癌細胞中B3GNT7與IGnTA表現降低的原因與DNA甲基化有很大的關係,而此二基因表現的改變,將影響細胞表面醣抗原的表現,進而可能於大腸癌轉移的機制中扮演重要的角色。
zh_TW
dc.description.abstractThe glycans on the surfaces of gastrointestinal tract-related cancer cells undergo remarkable changes during malignant transformation. The glycans specially expressing on the surfaces of cancer cells are called tumor-associated glycans. Sialyl Lewis a (sLea) and sialyl Lewis x (sLex) are the most famous tumor-associated glycans in gastrointestinal cancers. Previous studies indicated that sLea and sLex expression would promote the metastasis of gastrointestinal cancers and correlate with the risk of recurrence and the survival rate of a patient. sLea and sLex are constructed on the terminals of poly-LacNAc chains composed of repeated N-acetyllactosamine (Gal-GlcNAc,LacNAc) unit. In our previous research, we found that the expression of two glyco-genes, β-1,3-N-acetylglucosaminyltransferase 7 (B3GNT7) and I-branching β-1,6-N-acetylglucosaminyltransferase (IGnTA), which are involved in the biosynthesis of poly-LacNAc chains, are down-regulated in the tumor tissues of the patients with colon cancer. Therefore, the issues what we want to discuss are whether colon cancer cells would alter sLea and sLex expression and thereby affect colon cancer metastasis when the synthesis of poly-LacNAc chains on cell surfaces is altered.
We used colon cancer cell lines as the cell models in our research to examine the effects of B3GNT7 and IGnTA expression on colon cancer metastasis and the mechanisms resulting in down-regulation of B3GNT7 and IGnTA in colon cancer cells. We found that sLea and sLex expression and the extent of colon cancer metastasis in colon cancer cells with over-expressing of B3GNT7 and IGnTA respectively are less than those of control cells. We also found that there are highly-methylated CpG islands in B3GNT7 and the 5’-regulated region of IGnTA in colon cancer cells. After treating colon cancer cells with the demethylating reagent, 5-Aza-2’-deoxycytidine (5AzadC), we found B3GNT7 and IGnTA expression are elevated and the extent of CpG islands methylation in B3GNT7 and the 5’-regulated region of IGnTA decreased. Therefore, the mechanisms regulating B3GNT7 and IGnTA expression in colon cancer cells are highly correlated with DNA methylation. Furthermore, we found that IGnTA expression increase and sLea expression decreases in colon cancer cells with treatments of epigenetic drugs, including 5AzadC and histone deacetylase inhibitors (HDAC inhibitors).
In this research, we demonstrated that in colon cancer cells, B3GNT7 and IGnTA may play important roles in colon cancer metastasis and their expression pattern would affect sLea and sLex expression and DNA methylation may participate in the regulations of B3GNT7 and IGnTA expression.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:29:08Z (GMT). No. of bitstreams: 1
ntu-101-R99b46018-1.pdf: 2498444 bytes, checksum: 4fdc36ebc22875ceb27e7001f808b1ff (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………………i
誌謝……………………………………………………………………………………...ii
中文摘要……………………………………………………………………….……….iii
英文摘要………………………………………………………………………………...v
縮寫表……………………………………………………………………………….…vii
目錄……………………………………………………………………………………..ix
圖表目錄………………………………………………………………………………..xi
第一章 緒論…………………………………………………………………………….1
一、Sialyl Lewis a與sialyl Lewis x的生合成與生理意義
1. Sialyl Lewis a與sialyl Lewis x的生合成………………………………...........1
2. Sialyl Lewis a與sialyl Lewis x的生理意義………………………….………..2
二、Poly-LacNAc鏈的生合成與生理意義
1. Poly-LacNAc鏈的生合成…………………………………………………….…2
2. Poly-LacNAc鏈的生理意義…………………………………………………….3
三、β-1,3-N-acetylglucosaminyltransferase (B3GNT)……………………….………….3
四、I-branching β-1,6-N-acetylglucosaminyltransferase (IGnT)…………………….….4
五、B3GNT7與IGnTA於大腸癌病患的大腸腫瘤組織的表現…………….………...4
六、研究構想與目的…………………………………………………………….…..….5
第二章 實驗方法與材料……………………………………………………………….7
一、細胞培養與藥物處理
1. 細胞培養…………………………………………………………..……………7
2. 藥物處理………………………………………………………..………………7
二、流式細胞儀之分析………………………………………………..……………….7
三、RNA表現之分析
1. RNA萃取……………………………………………..…………………………8
2. 反轉錄PCR (Reverse Transcription-Polymerase Chain Reaction) ……...…….8
3. 同步定量Polymerase Chain Reaction (Real-Time PCR) ………………..…….8
四、DNA甲基化之分析
1. Genomic DNA萃取與Bisulfite conversion……………………………….….....8
2. 巢式PCR (Nested-Polymerase Chain Reaction) …………………………..…...9
3. 基因選殖(Gene cloning)……………………………..……………………...….9
五、蛋白質表現系統…………………………….…………………………………..…10
六、癌細胞轉移實驗
1. Intrasplenic injection…………………………………………….……………..10
2. 傷口癒合實驗(Wound-healing assay)……..………………………………….10
3. 細胞爬行實驗(Migration assay)……………………………………..………..10
第三章 結果
一、大量表現B3GNT7與IGnTA對大腸癌細胞轉移之影響……………………….12
1. 以流式細胞儀分析大腸癌細胞表面sLea與sLex的表現……………………12
2. 以裸鼠實驗觀察大腸癌細胞轉移至肝臟的情況……………………………12
3. 以傷口癒合實驗 & 細胞爬行實驗來觀察大腸癌細胞的爬行能力……….13
二、大腸癌細胞調控B3GNT7與IGnTA表現的機制………………………………13
1. HCT 116 與DLD-1中,B3GNT7的表現與CpG甲基化的關係…………..14
2. HCT 116 與DLD-1中,IGnTA的表現與CpG甲基化的關係……………..15
三、Epigenetic藥物對HCT 116中B3GNT7與IGnTA的表現與細胞表面sLea與sLex
的表現之影響………………………………………………………………………15
1. 5AzadC對HCT 116表面的sLea與sLex表現之影響……………………….16
2. HDAC inhibitors對HCT 116中B3GNT7與IGnTA的表現與sLea與sLex表現
之影響………………………………………………………...………………..16
第四章 討論……..…………………………………………………………………….18
參考文獻……………………………………………………………………………….38
dc.language.isozh-TW
dc.subject腫瘤相關醣抗原zh_TW
dc.subject癌細胞轉移zh_TW
dc.subject大腸癌細胞株zh_TW
dc.subject甲基化zh_TW
dc.subject組蛋白去乙醯酵素抑制劑zh_TW
dc.subjecttumor-associated antigenen
dc.subjectmetastasisen
dc.subjectcolon cancer cell lineen
dc.subjectmethylationen
dc.subjecthistone acetylase inhibitoren
dc.title探討B3GNT7與IGnTA醣轉移酵素基因
於大腸癌細胞轉移的角色與表現機制
zh_TW
dc.titleStudy of the B3GNT7 and IGnTA glycosyltransferase genes: Functional role in colon cancer metastasis and
their regulatory mechanisms
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張?仁(Ching-Jin Chang),朱善德(Sin-Tak Chu),張茂山(Mau-Sun Chang)
dc.subject.keyword腫瘤相關醣抗原,癌細胞轉移,大腸癌細胞株,甲基化,組蛋白去乙醯酵素抑制劑,zh_TW
dc.subject.keywordtumor-associated antigen,metastasis,colon cancer cell line,methylation,histone acetylase inhibitor,en
dc.relation.page41
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved