請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64066完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑(Yi-You Huang) | |
| dc.contributor.author | Yun Hung | en |
| dc.contributor.author | 洪昀 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:28:37Z | - |
| dc.date.available | 2014-12-10 | |
| dc.date.copyright | 2012-12-10 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | [1] Cunningham CC, Van Horn CG. Energy availability and alcohol-related liver pathology. Alcohol research & health : the journal of the National Institute on Alcohol Abuse and Alcoholism. 2003;27:291-9.
[2] Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. The Journal of biological chemistry. 2000;275:2247-50. [3] Asonuma K, Gilbert JC, Stein JE, Takeda T, Vacanti JP. Quantitation of transplanted hepatic mass necessary to cure the Gunn rat model of hyperbilirubinemia. Journal of pediatric surgery. 1992;27:298-301. [4] Kulig KM, Vacanti JP. Hepatic tissue engineering. Transplant immunology. 2004;12:303-10. [5] Kuddus R, Patzer JF, 2nd, Lopez R, Mazariegos GV, Meighen B, Kramer DJ, et al. Clinical and laboratory evaluation of the safety of a bioartificial liver assist device for potential transmission of porcine endogenous retrovirus. Transplantation. 2002;73:420-9. [6] Goulet F, Normand C, Morin O. Cellular interactions promote tissue-specific function, biomatrix deposition and junctional communication of primary cultured hepatocytes. Hepatology (Baltimore, Md). 1988;8:1010-8. [7] Mooney D, Hansen L, Vacanti J, Langer R, Farmer S, Ingber D. Switching from differentiation to growth in hepatocytes: control by extracellular matrix. Journal of cellular physiology. 1992;151:497-505. [8] Wu FJ, Friend JR, Hsiao CC, Zilliox MJ, Ko WJ, Cerra FB, et al. Efficient assembly of rat hepatocyte spheroids for tissue engineering applications. Biotechnology and bioengineering. 1996;50:404-15. [9] Abu-Absi SF, Friend JR, Hansen LK, Hu WS. Structural polarity and functional bile canaliculi in rat hepatocyte spheroids. Experimental cell research. 2002;274:56-67. [10] Terada S, Sato M, Sevy A, Vacanti JP. Tissue engineering in the twenty-first century. Yonsei medical journal. 2000;41:685-91. [11] Maher JJ. Primary hepatocyte culture: is it home away from home? Hepatology (Baltimore, Md). 1988;8:1162-6. [12] Selden C, Khalil M, Hodgson HJ. What keeps hepatocytes on the straight and narrow? Maintaining differentiated function in the liver. Gut. 1999;44:443-6. [13] Hammond JS, Beckingham IJ, Shakesheff KM. Scaffolds for liver tissue engineering. Expert review of medical devices. 2006;3:21-7. [14] Weigel PH. Rat hepatocytes bind to synthetic galactoside surfaces via a patch of asialoglycoprotein receptors. The Journal of cell biology. 1980;87:855-61. [15] Yin C, Ying L, Zhang PC, Zhuo RX, Kang ET, Leong KW, et al. High density of immobilized galactose ligand enhances hepatocyte attachment and function. Journal of biomedical materials research Part A. 2003;67:1093-104. [16] Bhandari RN, Riccalton LA, Lewis AL, Fry JR, Hammond AH, Tendler SJ, et al. Liver tissue engineering: a role for co-culture systems in modifying hepatocyte function and viability. Tissue engineering. 2001;7:345-57. [17] Lee H, Cusick RA, Browne F, Ho Kim T, Ma PX, Utsunomiya H, et al. Local delivery of basic fibroblast growth factor increases both angiogenesis and engraftment of hepatocytes in tissue-engineered polymer devices. Transplantation. 2002;73:1589-93. [18] Tateno C, Yoshizato K. Long-term cultivation of adult rat hepatocytes that undergo multiple cell divisions and express normal parenchymal phenotypes. The American journal of pathology. 1996;148:383-92. [19] Bader A, Knop E, Kern A, Boker K, Fruhauf N, Crome O, et al. 3-D coculture of hepatic sinusoidal cells with primary hepatocytes-design of an organotypical model. Experimental cell research. 1996;226:223-33. [20] Ries K, Krause P, Solsbacher M, Schwartz P, Unthan-Fechner K, Christ B, et al. Elevated expression of hormone-regulated rat hepatocyte functions in a new serum-free hepatocyte-stromal cell coculture model. In vitro cellular & developmental biology Animal. 2000;36:502-12. [21] Kuri-Harcuch W, Mendoza-Figueroa T. Cultivation of adult rat hepatocytes on 3T3 cells: expression of various liver differentiated functions. Differentiation; research in biological diversity. 1989;41:148-57. [22] Sato H, Funahashi M, Kristensen DB, Tateno C, Yoshizato K. Pleiotrophin as a Swiss 3T3 cell-derived potent mitogen for adult rat hepatocytes. Experimental cell research. 1999;246:152-64. [23] Vepari C, Kaplan DL. Silk as a Biomaterial. Progress in polymer science. 2007;32:991-1007. [24] Murphy AR, Kaplan DL. Biomedical applications of chemically-modified silk fibroin. Journal of materials chemistry. 2009;19:6443-50. [25] Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials. 2006;27:6064-82. [26] Fiegel HC, Kaufmann PM, Bruns H, Kluth D, Horch RE, Vacanti JP, et al. Hepatic tissue engineering: from transplantation to customized cell-based liver directed therapies from the laboratory. Journal of cellular and molecular medicine. 2008;12:56-66. [27] Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in biotechnology. 1998;16:224-30. [28] Liu Y, Li X, Qu X, Zhu L, He J, Zhao Q, et al. The fabrication and cell culture of three-dimensional rolled scaffolds with complex micro-architectures. Biofabrication. 2012;4:015004. [29] Du Y, Chia SM, Han R, Chang S, Tang H, Yu H. 3D hepatocyte monolayer on hybrid RGD/galactose substratum. Biomaterials. 2006;27:5669-80. [30] Gotoh Y, Ishizuka Y, Matsuura T, Niimi S. Spheroid formation and expression of liver-specific functions of human hepatocellular carcinoma-derived FLC-4 cells cultured in lactose-silk fibroin conjugate sponges. Biomacromolecules. 2011;12:1532-9. [31] Chen Q, Kon J, Ooe H, Sasaki K, Mitaka T. Selective proliferation of rat hepatocyte progenitor cells in serum-free culture. Nature protocols. 2007;2:1197-205. [32] Yu CH, Chen HL, Chen WT, Ni YH, Lin YL, Chang MH. Portal hemodynamic changes after hepatocyte transplantation in acute hepatic failure. Journal of biomedical science. 2004;11:756-63. [33] Kano K, Yamato M, Okano T. Ectopic transplantation of hepatocyte sheets fabricated with temperature-responsive culture dishes. Hepatology research : the official journal of the Japan Society of Hepatology. 2008;38:1140-7. [34] Gotoh Y, Niimi S, Hayakawa T, Miyashita T. Preparation of lactose-silk fibroin conjugates and their application as a scaffold for hepatocyte attachment. Biomaterials. 2004;25:1131-40. [35] Tamura T, Sakai Y, Nakazawa K. Two-dimensional microarray of HepG2 spheroids using collagen/polyethylene glycol micropatterned chip. Journal of materials science Materials in medicine. 2008;19:2071-7. [36] Zinchenko YS, Culberson CR, Coger RN. Contribution of non-parenchymal cells to the performance of micropatterned hepatocytes. Tissue engineering. 2006;12:2241-1251. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64066 | - |
| dc.description.abstract | 肝臟疾病一直是台灣及世界其他國家的人民主要的死亡原因,無論是酒精、疾病或藥物引起的肝炎或是肝癌都會造成肝臟受損,可能導致嚴重的肝衰竭。目前臨床上比較有效治療肝衰竭的方法為肝臟移植,然而肝臟的來源一直是供不應求,並且接受肝臟移植的病患必須長期服用免疫抑制劑,因此近年來便開始發展肝臟組織工程,希望能提供更多替代治療方式,延長病患的生命。肝臟組織工程包括了肝細胞移植(hepatocyte transplantation)、組織工程移植物(tissue-engineered grafts)和人工肝臟輔助裝置(liver assist devices, LADs)。肝臟組織工程發展以來遇到最大的困難之一是肝細胞無法在體外長時間維持其活性且會快速的去分化,近年來的研究指出選擇適當的支架、加入特定生長因子和以非肝細胞株共同培養之方式可望改善此問題。
多孔性材料可製成類似細胞外基質三維結構,並且具有高度的孔隙度讓養分通透及細胞貼附,因而促進細胞的貼附、增生、遷移和分化等功能。因此本實驗利用蠶絲良好的生物相容性和機械性質,結合半乳糖基,幫助肝細胞形成球狀聚集,模擬體內的三維環境;使用冷凍乾燥製備多孔性乳糖-三聚氰氯-蠶絲蛋白海綿支架,再將肝細胞培養於支架,觀察肝細胞與支架的相互作用,期望能夠延長肝細胞在體外培養的時間。 研究結果證實多孔性乳糖-三聚氰氯-蠶絲蛋白海綿支架能夠作為肝細胞培養的支架,長期培養下能維持肝細胞的存活率及功能性;此外利用非肝細胞株共同培養的方式更能增進肝細胞的功能性表現。雖然影響肝細胞功能表現的原因仍須進一步確認,但結合乳醣-蠶絲蛋白支架、肝細胞及非肝細胞株共同培養的系統應用於肝臟組織工程上是有相當的發展性。 | zh_TW |
| dc.description.abstract | Liver diseases have threatened people’s lives in the world. Especially in Taiwan, liver diseases are the major cause of death throughout the years. Alcohol, drugs, virus-induced hepatitis, and malignant tumor may cause liver damage and result in liver failure. In the treatment of liver failure, liver transplantation has been established as the most effective option. However, there is limitation due to the shortage of donated organ supply, and the immunosuppressive therapy must be administrated to prevent immunological rejection of transplanted tissue. In this decade, hepatic tissue engineering, which includes hepatocyte transplantation, tissue engineered grafts and liver assist devices (LADs), has been investigated in attempt to provide alternative approaches. One of the major limitation of hepatic tissue engineering is the short-term viability and rapid de-differentiation of hepatocytes in vitro. To overcome this problem, recent studies have indicated the combination of appropriate scaffold, growth factor, and co-culture with other types of cells when culturing hepatic cells.
In this study, porous sponge made by silk fibroin is used to be the 3D scaffold in hepatic tissue engineering. Porous scaffold is like the 3D structure of extra-cellular matrix (ECM) in morphology and provides suitable microenvironment for higher seeding density and exchange of nutrients, oxygen, and metabolites. Silk fibroin is the biodegradable and biocompatible material, and it can provide good mechanical properties. Silk fibroin conjugated with lactose can approve the formation of spherical cell pellet to mimic 3D microstructure of hepatocyte in vivo. By observing the interaction of hepatocytes and lactose-cyanuric chloride-silk fibroin porous sponge manufactured by lyophilization, the results demonstrated that hepatocytes had good viability and normal metabolic function while culturing over a long period of time. On the other hand, hepatocytes co-cultured with the nonparenchtmal cells may approve the hepatocellular specific functions. Although the cell-cell interaction and the soluble factors between hepatocytes and nonparenchtmal cells requires further understanding, the combination of lactose-cyanuric chloride-silk fibroin porous sponge, hepocytes, and nonparechymal cells co-culturing system has the potential in hepatic tissue engineering application. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:28:37Z (GMT). No. of bitstreams: 1 ntu-101-R99548049-1.pdf: 2022409 bytes, checksum: 07b5cd9ecfcefb7d69c4367930ca1c1e (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 第一章 序論 1
1.1 肝臟 1 1.2 肝臟組織工程 3 1.2.1 細胞 3 1.2.2 支架 6 1.2.3 生長因子 7 1.3 蠶絲蛋白 8 1.3.1 結構與性質 9 1.3.2 蠶絲蛋白支架 10 1.3.3 多孔性蠶絲蛋白支架 11 第二章 研究動機與目的 12 第三章 實驗材料與方法 13 3.1 實驗藥品 13 3.2 實驗儀器 15 3.3 蠶絲蛋白水溶液製備 16 3.4 乳糖-三聚氰氯-蠶絲蛋白水溶液製備 (Lac-CY-SF) 16 3.5 製備乳糖-三聚氰氯-蠶絲蛋白、蠶絲蛋白及乳糖和蠶絲蛋白混合物的孔洞性海綿支架 18 3.6 核磁共振儀量測 18 3.7 掃描式電子顯微鏡觀測(Scanning Electron Microscope, SEM) 18 3.8 肝細胞初代培養 19 3.9 肝細胞培養於蠶絲蛋白海綿支架 25 3.10 肝細胞與非肝細胞株NIH/3T3共同培養於蠶絲蛋白海綿支架 25 3.11 細胞活性測試 26 3.12 LIVE/DEAD Viability/Cytotoxicity kit染色觀察細胞活性 27 3.13 以細胞追蹤染劑標定細胞並使用共軛焦顯微鏡觀察肝細胞與非肝細胞株共同培養的情形 27 3.14 檢測肝細胞之尿素功能性表現 28 第四章 結果與討論 29 4.1製備乳糖-三聚氰氯-蠶絲蛋白(Lac-CY-SF)化合物並量測其氫核磁共振頻譜 29 4.2多孔性海綿支架型態 32 4.3 將肝細胞培養於蠶絲蛋白海綿支架之細胞活性測試 35 4.4 肝細胞培養於蠶絲蛋白海綿支架 36 4.5 肝細胞與NIH/3T3共同培養於Lac-CY-SF支架 41 4.6 檢測尿素合成量以評估肝細胞培養於蠶絲蛋白支架之功能性表現 42 第五章 結論 44 參考文獻 45 | |
| dc.language.iso | zh-TW | |
| dc.subject | 肝細胞 | zh_TW |
| dc.subject | 肝臟組織工程 | zh_TW |
| dc.subject | 乳糖 | zh_TW |
| dc.subject | 蠶絲蛋白 | zh_TW |
| dc.subject | Hepatic tissue engineering | en |
| dc.subject | hepatocyte | en |
| dc.subject | silk fibroin | en |
| dc.subject | lactose | en |
| dc.title | 製備乳糖-蠶絲蛋白多孔性海綿支架於肝臟組織工程的應用 | zh_TW |
| dc.title | Application of Lactose-Silk Fibroin Porous Sponge Scaffold in Liver Tissue Engineering | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾次文(Tze-Wen Chung),許馨云(Hsin-Yun Hsu),黃意真(Yi-Cheng Huang) | |
| dc.subject.keyword | 肝臟組織工程,乳糖,蠶絲蛋白,肝細胞, | zh_TW |
| dc.subject.keyword | Hepatic tissue engineering,lactose,silk fibroin,hepatocyte, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
