請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64044完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林晃巖(Hoang Yan LIN) | |
| dc.contributor.author | Jeng-Ren Jiang | en |
| dc.contributor.author | 江正仁 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:27:44Z | - |
| dc.date.available | 2017-08-19 | |
| dc.date.copyright | 2012-08-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | [1] Z. D. Popovic and H. Aziz, 'Reliability and degradation of small molecule-based organic light-emitting devices (OLEDs),' Selected Topics in Quantum Electronics, IEEE Journal of, vol. 8, pp. 362-371, 2002.
[2] C. Tang and S. VanSlyke, 'Organic electroluminescent diodes,' Applied Physics Letters, vol. 51, pp. 913-915, 1987. [3] C. Tang, S. VanSlyke, and C. Chen, 'Electroluminescence of doped organic thin films,' Journal of Applied Physics, vol. 65, pp. 3610-3616, 1989. [4] H. H. Yu, S. J. Hwang, and K. C. Hwang, 'Preparation and characterization of a novel flexible substrate for OLED,' Optics communications, vol. 248, pp. 51-57, 2005. [5] J. Staudigel, M. Stössel, F. Steuber, and J. Simmerer, 'Comparison of mobility and hole current activation energy in the space charge trap-limited regime in a starburst amine,' Applied Physics Letters, vol. 75, p. 217, 1999. [6] Z. Meng and M. Wong, 'Active-matrix organic light-emitting diode displays realized using metal-induced unilaterally crystallized polycrystalline silicon thin-film transistors,' Electron Devices, IEEE Transactions on, vol. 49, pp. 991-996, 2002. [7] C. Lee, R. Pode, D. Moon, and J. Han, 'Realization of an efficient top emission organic light-emitting device with novel electrodes,' Thin Solid Films, vol. 467, pp. 201-208, 2004. [8] K.-M. K. Chang-Wook Han, Sung-Joon Bae, Hong-Seok Choi, and T.-S. K. Jae-Man Lee, Yoon- Heung Tak, Soo-Youle Cha, Byung-Chul Ahn, '55-inch FHD OLED TV employing New Tandem WOLEDs,' the Society for Information Display, International Symposium Digest of Technical Papers, pp.279-281, 2012. [9] Y. R. Do, Y. C. Kim, Y. W. Song, and Y. H. Lee, 'Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure,' Journal of Applied Physics, vol. 96, p. 7629, 2004. [10] S. Sze and K. K. Ng, 'Physics of Semiconductor Devices, 2nd edition,' 1981. [11] S. R. Forrest, D. D. C. Bradley, and M. E. Thompson, 'Measuring the Efficiency of Organic Light‐Emitting Devices,' Advanced Materials, vol. 15, pp. 1043-1048, 2003. [12] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, and Z. Vardeny, 'Formation cross-sections of singlet and triplet excitons in π-conjugated polymers,' Nature, vol. 409, pp. 494-497, 2001. [13] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, 'Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,' Journal of Applied Physics, vol. 90, p. 5048, 2001. [14] M. Baldo, D. O’brien, M. Thompson, and S. Forrest, 'Excitonic singlet-triplet ratio in a semiconducting organic thin film,' Physical Review B, vol. 60, p. 14422, 1999. [15] V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, 'Weak microcavity effects in organic light-emitting devices,' Physical Review B, vol. 58, p. 3730, 1998. [16] P. Hobson, J. Wasey, I. Sage, and W. Barnes, 'The role of surface plasmons in organic light-emitting diodes,' Selected Topics in Quantum Electronics, IEEE Journal of, vol. 8, pp. 378-386, 2002. [17] C. L. Lin, T. Y. Cho, C. H. Chang, and C. C. Wu, 'Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode,' Applied Physics Letters, vol. 88, p. 081114, 2006. [18] G. Gu, D. Garbuzov, P. Burrows, S. Venkatesh, S. Forrest, and M. Thompson, 'High-external-quantum-efficiency organic light-emitting devices,' Optics letters, vol. 22, pp. 396-398, 1997. [19] T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, 'Doubling Coupling‐Out Efficiency in Organic Light‐Emitting Devices Using a Thin Silica Aerogel Layer,' Advanced Materials, vol. 13, pp. 1149-1152, 2001. [20] H. Kwok, H. Peng, Y. Ho, and X. Yu, 'Enhanced coupling of light from OLED based on nanoporous substrates,' 2004, p. 260. [21] H. Peng, Y. Ho, C. Qiu, M. Wong, and H. Kwok, '11.4: Coupling Efficiency Enhancement of Organic Light Emitting Devices with Refractive Microlens Array on High Index Glass Substrate,' the Society for Information Display, International Symposium Digest of Technical Papers, pp.158-161, 2004. [22] A. Mikami and T. Koyanagi, '60.4 L: Late‐News Paper: High Efficiency 200‐lm/W Green Light Emitting Organic Devices Prepared on High‐Index of Refraction Substrate,' the Society for Information Display, International Symposium Digest of Technical Papers, pp.907-910, 2009. [23] S. Mladenovski, K. Neyts, D. Pavicic, A. Werner, and C. Rothe, 'Exceptionally efficient organic light emitting devices using high refractive index substrates,' Optics Express, vol. 17, pp. 7562-7570, 2009. [24] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, 'White organic light-emitting diodes with fluorescent tube efficiency,' Nature, vol. 459, pp. 234-238, 2009. [25] T. Yamasaki, K. Sumioka, and T. Tsutsui, 'Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,' Applied Physics Letters, vol. 76, p. 1243, 2000. [26] L. Lin, T. Shia, and C. Chiu, 'Silicon-processed plastic micropyramids for brightness enhancement applications,' Journal of Micromechanics and Microengineering, vol. 10, p. 395, 2000. [27] S. Möller and S. Forrest, 'Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,' Journal of Applied Physics, vol. 91, p. 3324, 2002. [28] G. Wyszecki and W. S. Stiles, Color science: concepts and methods, quantitative data and formulae, 2nd Edition: Wiley New York, 1982. [29] W. Carter and E. Wolf, 'Coherence properties of Lambertian and non- Lambertian sources,' JOSA, vol. 65, pp. 1067-1071, 1975. [30] E. Reinhard, E. A. Khan, A. O. Akyz, and G. M. Johnson, Color imaging: fundamentals and applications: AK Peters, Ltd., 2008. [31] R. A. Messenger and J. Ventre, Photovoltaic systems engineering, 2nd edition: CRC press, 2004. [32] Synopsys Inc [Online]. Available: http://www.opticalres.com/lt/ltprodds_f [33] K. Saxena, V. Jain, and D. S. Mehta, 'A review on the light extraction techniques in organic electroluminescent devices,' Optical Materials, vol. 32, pp. 221-233, 2009. [34] L. AimCore Technology Co. Product Specification for TN/STN LCD ITO Glass [Online]. Available: http://www.aimcore.com.tw/e/e-p2.htm [35] O. R. Associates. (2010). LightTools Illumination Module User's Guide. Available: http://www.cadfamily.com/download/Optical/Illumination/IlluminationUG.pdf [36] H. Y. Lin, K. Y. Chen, Y. H. Ho, J. H. Fang, S. C. Hsu, J. R. Lin, J. H. Lee, and M. K. Wei, 'Luminance and image quality analysis of an organic electroluminescent panel with a patterned microlens array attachment,' Journal of Optics, vol. 12, p. 085502, 2010. [37] H. Greiner, 'Light extraction from organic light emitting diode substrates: simulation and experiment,' Japanese Journal of Applied Physics, vol. 46, p. 4125, 2007. [38] K. A. Neyts, 'Simulation of light emission from thin-film microcavities,' JOSA A, vol. 15, pp. 962-971, 1998. [39] H. Y. Lin, J. H. Lee, M. K. Wei, C. L. Dai, C. F. Wu, Y. H. Ho, and T. C. Wu, 'Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films,' Optics communications, vol. 275, pp. 464-469, 2007. [40] M. L. Chen, A. C. Wei, and H. P. D. Shieh, 'Increased organic light-emitting diode panel light efficiency by optimizing structure and improving alignment of pyramidal array light-enhancing layers,' Japanese Journal of Applied Physics, vol. 46, p. 1521, 2007. [41] K. Y. Chen, Y. T. Hsiao, H. Y. Lin, M. K. Wei, and J. H. Lee, 'Partitioning pixel of organic light-emitting devices with center-hollowed microlens-array films for efficiency enhancement,' Optics Express, vol. 18, pp. 18685-18690, 2010. [42] F. Rahadian, K. Imai, and I. Fujieda, 'Comparative study of organic light emitting diode efficiency enhancement by the use of optical films,' Optical Engineering, vol. 46, p. 124001, 2007. [43] M. K. Wei, J. H. Lee, H. Y. Lin, Y. H. Ho, K. Y. Chen, C. C. Lin, C. F. Wu, J. H. Tsai, and T. C. Wu, 'Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,' Journal of Optics A: Pure and Applied Optics, vol. 10, p. 055302, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64044 | - |
| dc.description.abstract | 關於有機發光二極體(OLED)應用於平面顯示器用途,目前待解決的問題是在出光效率低下的部分,因此在元件的玻璃基板表面貼附一層微結構陣列,目前已確定是可大幅增加出光效率的一種方法。然而對於顯示器的畫素而言,其影像會因為其正上方微結構耦合自鄰近畫素的光跡,導致畫素間的模糊效應產生。
在本論文中,我們經由光學模擬軟體LightTools®對光線進行幾何追跡的方 法,採用一種與畫素對準貼附的微梯形陣列膜層(mTAFs),確保當有機發光元件維持較高的出光功率同時,能透過配合發光元件規格以調變微梯形的結構參數,使其在正向視角的觀察下能夠消除畫素間的模糊效應,並且進一步提升個別畫素在正向亮度方面的效益。在玻璃基板厚度450 μm、個別畫素尺寸 、間距100 μm的條件下,可使有機發光元件的發光功率效率獲得61.5%的增益,並且具有消除模糊效應後最佳為2.59倍的正向亮度值。 我們更配合一主動矩陣有機發光元件(AMOLED)的實際規格再行設計,並選取先前研究的中央鏤空式微透鏡陣列與微梯形陣列作出比較。然考量到觀測視角傾斜下的亮度分布結果,會發現當微結構在特定的水平位置上,仍有遮蔽畫素並造成其相互干擾的現象。因此在最後也總結了應用於顯示元件上的微結構設計理念,乃至達成全角度耦合的方面,實質上是有待進一步改善的。 | zh_TW |
| dc.description.abstract | In the application of flat-panel display, the problem to be solved on organic light-emitting diode (OLED) is low out-coupling efficiency. It has been confirmed that micro-structure attachment on the surface of glass substrate is a beneficial method for raising the light extraction efficiency. However, for the pixels of display, their image may well encounter blur effect among themselves due to the adjacent light-tracing from the above micro-structure.
In this thesis, we simulate for the optical model through optical simulation software LightTools® by using the method of geometric ray-tracing. As applying an attachment of micro-structured trapezoidal array films (mTAFs) with pixel-alignment, we can ensure that the OLEDs maintain a high output optical power as well as enhance the gain of luminance intensity at the normal direction with removing blur effect, which fits the specification of device itself by tuning the parameters of the structure. Under the condition of glass substrate thickness of 450 μm, the respective pixel size of , and pixel spacing of 100 μm, it allows the luminous power efficiency of the OLEDs to obtain an enhancement 61.5%, and can reach the best value of 2.59 times the gain of luminance intensity with removing the blur effect. Furthermore, we arrange another design for the actual specification of an active-matrix organic light-emitting diode (AMOLED), and select the previously researched center-hollowed microlens array films (MAFs) to make a comparison. However, as we consider the results of luminance distribution under the different oblique viewing angles, it reveals that the micro-structure on the specific position still suffers from the phenomenon of crosstalk. As a result, we finally have a summarization for the micro-structure applying to display devices. As aspects of all-angular coupling optimization, it requires further modification in the actual design. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:27:44Z (GMT). No. of bitstreams: 1 ntu-101-R99941081-1.pdf: 3436723 bytes, checksum: 7cf28ad6c9b89994bd0aed12d9b3710f (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 x 第 1 章 緒論 1 1-1 有機發光二極體介紹 1 1-1-1 有機發光二極體之發光機制 1 1-1-2 有機發光二極體之顯示技術 2 1-2 光耦合效率提升之方法概述 5 1-3 研究動機 8 1-4 本文架構 9 第 2 章 模擬條件與架構 10 2-1 光度學單位 10 2-2 出光效率指標 13 2-3 模擬模型 17 第 3 章 二維微梯形陣列結構膜 22 3-1 結構之幾何設計 22 3-1-1 光跡分析 22 3-1-2 結構與畫素之對準 24 3-1-3 底角匹配 25 3-1-4 底角截止 28 3-2 一對一模型 32 3-2-1 發光功率效率分析 34 3-2-2 正向亮度分析 36 3-2-3 發光強度之角度分析 38 3-2-4 與中央鏤空式微透鏡陣列之比較 39 3-3 一對多模型 44 3-3-1 發光功率效率分析 46 3-3-2 正向亮度分析 47 3-3-3 發光強度之角度分析 52 3-3-4 與中央鏤空式微透鏡陣列之比較 54 3-4 多對多模型與下底式對準之週期性驗證 59 第 4 章 搭配實際規格之一維微梯形陣列結構膜 63 4-1 實際規格之模擬架構 63 4-2 與中央鏤空式微透鏡陣列之比較 66 4-3 改變觀測視角之結果 68 第 5 章 結論與未來展望 82 5-1 結論 82 5-2 未來展望 84 參考文獻 86 | |
| dc.language.iso | zh-TW | |
| dc.subject | 有機發光顯示器 | zh_TW |
| dc.subject | 增進出光效率 | zh_TW |
| dc.subject | 微梯形陣列結構膜 | zh_TW |
| dc.subject | 光學模擬 | zh_TW |
| dc.subject | optical simulation | en |
| dc.subject | micro-trapezoidal array films(mTAFs) | en |
| dc.subject | organic light-emitting displays | en |
| dc.subject | light-extraction efficiency enhancement | en |
| dc.title | 應用於有機顯示器具高正向亮度且消除模糊效應之微梯形陣列結構膜設計 | zh_TW |
| dc.title | Design of Micro-Structured Trapezoidal Array Film in
Application of Organic Light-Emitting Display with High Normal Luminance and Eliminating Blur Effect | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏茂國(Mao-Kuo Wei),李君浩(Jiun-Haw Lee) | |
| dc.subject.keyword | 光學模擬,微梯形陣列結構膜,有機發光顯示器,增進出光效率, | zh_TW |
| dc.subject.keyword | optical simulation,micro-trapezoidal array films(mTAFs),organic light-emitting displays,light-extraction efficiency enhancement, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
