Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64028
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳昭宏(Jau-Horng Chen)
dc.contributor.authorJieh Linen
dc.contributor.author林杰zh_TW
dc.date.accessioned2021-06-16T17:27:06Z-
dc.date.available2017-08-17
dc.date.copyright2012-08-17
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation[1] G. Gonzalez, Microwave Transistor Amplifier Analysis and Design, 2nd ed., Pearson, 2010.
[2] H.C. Chiu and B.Y. Ke, “High performance V-band GaAs power amplifier and low noise amplifier using low-loss transmission line technology,” High Speed Intelligent Communication Forμm (HSIC), 2012 4th International, pp. 1-4, May 2012.
[3] M. Hamouda, G. Fischer, R. Weigel and T. Ussmueller, “A low power SiGe HBT LNA For UWB applications,” Microwave Conference (GeMiC), 2012 The 7th German, pp. 1-4, March 2012.
[4] M. El-Nozahi, E. Sanchez-Sinencio and K. Entesari, “A Millimeter-Wave (23–32 GHz) Wideband BiCMOS Low-Noise Amplifier,” IEEE J. Solid-State Circuits,vol.45, no.2, pp.289-299, Feb. 2010.
[5] C.F. Liao and S.I. Liu, “A broadband noise-canceling CMOS LNA for 3.1-10.6-GHz UWB receiver,” Custom Integrated Circuits Conference, Proceedings of the IEEE 2005, pp. 161-164, Sep. 2005.
[6] T.S. Kim and B.S. Kim, “Linearization of differential CMOS low noise amplifier using cross-coupled post distortion canceller,” IEEE Radio Freq. Integr. Circuits Symp., pp. 83-86, June-April 2008.
[7] W. Zhuo, S. Embabi, J.P. de Gyvez and E. Sanchez-Sinencio, “Using capacitive cross-coupling technique in RF low noise amplifiers and down-conversion mixer design,” IEEE J. Solid-State Circuits, ESSCIRC '00, Proceedings of the 26rd European, pp. 77-80, Sep. 2000.
[8] B. Razavi, Design of Analog CMOS Integrated Circuits, International ed., McGraw-Hill, 2001.
[9] Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd ed., Boston: McGraw-Hill, 1999.
[10] G. Sapone and G. Palmisano, “A 3–10-GHz Low-Power CMOS Low-Noise Amplifier for Ultra-Wideband Communication,” IEEE Transactions on Microw. Theory and Tech., vol. 59, no. 3, Mar. 2011.
[11] B. Park, S. Choi and S. Hong, “A low-noise amplifier with tunable interference rejection for 3.1- to 10.6-GHz UWB systems,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp. 40–42, Jan. 2010.
[12] C.F. Liao and S.I. Liu, “A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 329–339, Feb. 2007.
[13] G. Sapone and G. Palmisano, “A low-power 3–5-GHz UWB downconverter with resistive-feedback LNA in a 90-nm CMOS process,” in Proc. IEEE Eur. Microw. Integr. Circuit Conf., pp. 406–409, Oct. 2008.
[14] G. Sapone and G. Palmisano, “A 90-nm CMOS two-stage low-noise amplifier for 3–5-GHz ultra-wideband radio,” in IEEE Radio Freq. Integr. Circuits Symp., pp. 489–492, June 2008.
[15] Y.-H. Yu, Y.-J. E. Chen and D. Heo, “A 0.6-V low power UWB CMOS LNA,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 229–231, Mar. 2007.
[16] P. Heydari, “Design and analysis of a performance-optimized CMOS UWB distributed LNA,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1892–1905, Sep. 2007.
[17] A. Ismail A. A. Abidi, “A 3–10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2269–2277, Dec. 2004.
[18] “AD8651 50 MHz Precision Low Distortion Low Noise CMOS Amplifiers,” Analog Devices Inc., 2006.
[19] “Three Methods of Noise Figure Measurement,” Maxim-IC Inc., Nov. 2003. www.maxim-ic.com/app-notes/index.mvp/id/2875
[20] “MAX2034 Quad-Channel Ultra-Low-Noise Amplifier with Digitally Programmable Input Impedance,” Maxim-IC Inc., 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64028-
dc.description.abstract低雜訊放大器為超音波生醫儀器中關鍵性之零件,其作用為可放大從組織中反射之微小信號且不放大雜訊,超音波探頭與低雜訊放大器之阻抗匹配為相當重要之一環,其功用為在所需頻帶內提供穩定之增益。現今之低雜訊放大器之輸入阻抗為了與探頭之阻抗一致普遍設計為一固定值,若能利用不同的偏壓電流產生不同之輸入阻抗設計適用於各種不同超音波探頭之低雜訊放大器,意味著可以節省可觀之成本。 於是本論文提出一可調式輸入阻抗低雜訊放大器電路原型分別使用異質接面電晶體與0.35 μm CMOS製程設計。在量測結果中顯示於100 kHz~ 30 MHz之操作頻率下,可調整輸入阻抗為30歐姆至90歐姆之任意值,在不同輸入阻抗情況下之增益平均皆有13 ~14 dB,且雜訊指數為7.33 dB。zh_TW
dc.description.abstractLow noise amplifier ( LNA ) is a critical component for ultrasound medical equipment, since it amplifies tiny echo signals reflected from tissues without adding much noise. Wideband input impedance match with the loading of ultrasound transducers is therefore important for LNAs to provide constant gain over a wide frequency range. State-of-the-art LNA for general applications is designed such that the impedance is matched with a specific impedance. To extend the capability of LNA to different transducers, which would lead to significantly lower cost, a wideband tunable input impedance of the amplifier is designed by varying bias current of the transistor, which is used to provide the system gain. Two prototypes amplifier are constructed to validate the proposed architecture with discrete HBT transistors and 0.35 μm CMOS process, respectively. And it has shown the small gain variation with a wide tuning range of input impedance from 30 to 90 Ohm. The measured noise figure is 7.33 dB with an average gain of 13.5 dB over the range of input impedance.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:27:06Z (GMT). No. of bitstreams: 1
ntu-101-R99525033-1.pdf: 2661921 bytes, checksum: dd87ac099610a7953c1d0d20f715e9ec (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
誌謝 I
中文摘要 II
英文摘要 III
第一章 緒論 1
1.1 研究動機 1
1.2 文獻探討 2
1.3 論文章節簡介 4
第二章 文獻回顧 5
2.1 雜訊 ( Noise ) 5
2.1.1 熱雜訊 ( Thermal noise ) 5
2.1.2 閃爍雜訊 ( Flicker noise ) 7
2.1.3 雜訊指數 ( Noise figure ) 8
2.1.4 輸入相關雜訊電壓、電流源 9
2.1.5 S參數 ( S parameter ) 10
2.2 穩定度 ( Stability ) 12
2.3 線性度 ( Linearity ) 13
2.3.1 1 dB壓縮點 ( 1 dB compression point ) 13
2.3.2 交互調變失真 ( Intermodulation distortion ) 14
2.4 低雜訊放大器種類 15
第三章 可調式輸入阻抗低雜訊放大器設計 19
3.1 低雜訊放大器架構 19
3.2 低雜訊放大器雜訊模型 23
第四章 可調式輸入阻抗低雜訊放大器實現 28
4.1 電路實現 28
4.2 電路量測結果 28
第五章 結論與未來展望 52
5.1 結論 52
5.2 未來展望 52
參考文獻 54
dc.language.isozh-TW
dc.subject低雜訊放大器zh_TW
dc.subject可調式輸入阻抗zh_TW
dc.subjectLNAen
dc.subjecttunable input impedanceen
dc.title可調式輸入阻抗寬帶低雜訊放大器zh_TW
dc.titleA Tunable Impedance Wideband Low Noise Amplifieren
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李坤彥,李佳翰,夏勤
dc.subject.keyword低雜訊放大器,可調式輸入阻抗,zh_TW
dc.subject.keywordLNA,tunable input impedance,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved