Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64027
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭智馨(Chis-Hsin Cheng)
dc.contributor.authorTing-Ya Changen
dc.contributor.author張婷雅zh_TW
dc.date.accessioned2021-06-16T17:27:04Z-
dc.date.available2020-03-11
dc.date.copyright2020-03-11
dc.date.issued2020
dc.date.submitted2020-03-05
dc.identifier.citation向萬勝、黃敏、李學垣 (2004) 土壤磷素的化學組分及其植物有效性。植物營養與肥料學報 10(6): 663-670。
行政院農業委員會 (1997) 臺灣森林經營管理方案 (修正版)。行政院臺79農30430號函核定通過。行政院臺農第19043號函核定修正。
行政院經濟建設委員會 (2005) 國土復育策略方案暨行動計畫 (修正版)。行政院第2924次院會核定通過。行政院院臺經字第0950080496函核定修正。
汪洪、宋書會、張金堯、劉云霞 (2017) 土壤磷形態組分分級及31 P-NMR技術應用研究進展.。植物營養與肥料學報 23(2): 512-523。
周寶庫、張喜林 (2005) 長期施肥對黑土磷素積累,形態轉化及其有效性影響的研究。植物營養與肥料學報 11(2): 143-147。
林苡涵 (2017) 臺灣農地廢耕造林對土壤有機碳儲存量及形態劃分的影響。臺灣大學森林環境暨資源學研究所學位論文。
秦勝金、劉景雙、王國平、周旺明 (2007) 三江平原不同土地利用方式下土壤磷形態的變化。環境科學 28(12): 2777-2782。
陳建宏(2007)行政院農委會「日本廢耕地的現狀與相關課題」http://ebooks.lib.ntu.edu.tw/1_file/COAEY/031036/1036.pdf
黃瑞彰 (2018)有機質肥料肥效觀察點,可提升土壤三大性質: 物理、化學、生物,遠勝於供肥能力。豐年雜誌 68(9): 80-85。
蔣柏藩 (1992) 石灰性土壤無機磷有效性的研究。土壤24(2): 61-64。
滕澤琴、李旭東、韓會閣、張春平、傅華 (2013) 土地利用方式對隴中黃土高原土壤磷組分的影響。草業學報 22(2): 30。
羅秋雄 (2005) 作物施肥手冊. 台中. 中華肥料協會編印. 增修六版。
Agbenin, J. O., and Tiessen, H. (1995). Phosphorus forms in particle-size fractions of a toposequence from northeast Brazil. Soil Science Society of America Journal, 59(6), 1687-1693.
Ajiboye, B., Akinremi, O. O., Hu, Y., and Flaten, D. N. (2007). Phosphorus speciation of sequential extracts of organic amendments using nuclear magnetic resonance and X-ray absorption near-edge structure spectroscopies. Journal of Environmental Quality, 36(6), 1563-1576.
Aue, W. P., Roufosse, A. H., Glimcher, M. J., and Griffin, R. G. (1984). Solid-state phosphorus-31 nuclear magnetic resonance studies of synthetic solid phases of calcium phosphate: potential models of bone mineral. Biochemistry, 23(25), 6110-6114.
Bedrock, C. N., Cheshire, M. V., Chudek, J. A., Fraser, A. R., Goodman, B. A., and Shand, C. A. (1995). Effect of pH on precipitation of humic acid from peat and mineral soils on the distribution of phosphorus forms in humic and fulvic acid fractions. Communications in Soil Science and Plant Analysis, 26(9-10), 1411-1425.
Belton, P. S., Harris, R. K., and Wilkes, P. J. (1988). Solid-state phosphorus-31 NMR studies of synthetic inorganic calcium phosphates. Journal of Physics and Chemistry of Solids, 49(1), 21-27.
Bleam, W. F., Pfeffer, P. E., and Frye, J. S. (1989). 31 P solid-state nuclear magnetic resonance spectroscopy of aluminum phosphate minerals. Physics and Chemistry of Minerals, 16(5), 455-464.
Beauchemin, S., Hesterberg, D., Chou, J., Beauchemin, M., Simard, R. R., and Sayers, D. E. (2003). Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray absorption near-edge structure spectroscopy and chemical fractionation. Journal of Environmental Quality, 32(5), 1809-1819.
Cade-Menun, B., and Liu, C. W. (2014). Solution phosphorus-31 nuclear magnetic resonance spectroscopy of soils from 2005 to 2013: a review of sample preparation and experimental parameters. Soil Science Society of America Journal, 78(1), 19-37.
Chen, C. R., Condron, L. M., Davis, M. R., and Sherlock, R. R. (2003). Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. Forest Ecology and Management, 177(1-3), 539-557.
Chimdi, A., Esala, M., and Ylivainio, K. (2014). Sequential fractionation patterns of soil phosphorus collected from different land use systems of Dire Inchine District, West Shawa Zone, Ethiopia. American-Eurasian Journal of Scientific Research, 9(3), 51-57.
Condron, L. M., Frossard, E., Tiessen, H., Newmans, R. H., and Stewart, J. W. B. (1990). Chemical nature of organic phosphorus in cultivated and uncultivated soils under different environmental conditions. Journal of Soil Science, 41(1), 41-50.
Condron, L. M., Turner, B. L., Cade-Menun, B. J., Sims, J. T., and Sharpley, A. N. (2005). Chemistry and dynamics of soil organic phosphorus. Agronomy, 46, 87.
Cross, A. F., and Schlesinger, W. H. (1995). A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma, 64(3-4), 197-214.
David, M. B., Vance, G. F., and Krzyszowska, A. J. (1996). Characterization of phosphorus in a spruce-fir Spodosol by phosphorus-31 nuclear magnetic resonance spectroscopy. Soil Science Society of America Journal, 60(6), 1943-1950.
Dormaar, J. F. (1972). Seasonal pattern of soil organic phosphorus. Canadian Journal of Soil Science, 52(1), 107-112.
Gagnon, B., Demers, I., Ziadi, N., Chantigny, M. H., Parent, L. E., Forge, T. A., Larney, F., and Buckley, K. E. (2012). Forms of phosphorus in composts and in compost-amended soils following incubation. Canadian Journal of Soil Science, 92(5), 711-721.
Garbouchev, I. P. (1966). Changes occurring during a year in the soluble phosphorus and potassium in soil under crops in rotation experiments at Rothamsted, Woburn and Saxmundham. The Journal of Agricultural Science, 66(3), 399-412.
Griffiths, L., Root, A., Harris, R. K., Packer, K. J., Chippendale, A. M., and Tromans, F. R. (1986). Magic-angle spinning phosphorus-31 nuclear magnetic resonance of polycrystalline sodium phosphates. Journal of the Chemical Society, Dalton Transactions, (10), 2247-2251.
Guggenberger, G., Haumaier, L., Zech, W., and Thomas, R. J. (1996). Assessing the organic phosphorus status of an Oxisol under tropical pastures following native savanna using 31 P NMR spectroscopy. Biology and Fertility of Soils, 23(3), 332-339.
Guillaume, T., Damris, M., and Kuzyakov, Y. (2015). Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ13C. Global Change Biology, 21(9), 3548-3560.
Harrison, A.F. (1987). Soil Organic Phosphorus. A Review of World Literature. CABI Publ., Wallingford, UK.
Hedley, M. J., Stewart, J. W. B., and Chauhan, B. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations 1. Soil Science Society of America Journal, 46(5), 970-976.
Hinedi, Z. R., Chang, A. C., and Lee, R. W. K. (1988). Mineralization of phosphorus in sludge-amended soils monitored by phosphorus-31-nuclear magnetic resonance spectroscopy. Soil Science Society of America Journal, 52(6), 1593-1596.
Ingall, E. D., Brandes, J. A., Diaz, J. M., de Jonge, M. D., Paterson, D., McNulty, I., ... and Northrup, P. (2011). Phosphorus K-edge XANES spectroscopy of mineral standards. Journal of Synchrotron Radiation, 18(2), 189-197.
Jenny, H. (1994). Factors of Soil Formation: A System of Quantitative Pedology. Courier Corporation.
Kitayama, K., Majalap-Lee, N., and Aiba, S. I. (2000). Soil phosphorus fractionation and phosphorus-use efficiencies of tropical rainforests along altitudinal gradients of Mount Kinabalu, Borneo. Oecologia, 123(3), 342-349.
Kolawole, G. O., Tian, G., and Tijani-Eniola, H. (2005). Effects of fallow duration on soil phosphorus fractions and crop P uptake under natural regrowth and planted Pueraria phaseoloides fallow systems in southwestern Nigeria. Experimental Agriculture, 41(1), 51-68.
Kruse, J., and Leinweber, P. (2008). Phosphorus in sequentially extracted fen peat soils: AK‐edge X‐ray absorption near‐edge structure (XANES) spectroscopy study. Journal of Plant Nutrition and Soil Science, 171(4), 613-620.
Lee, C. H., Park, C. Y., Do Park, K., Jeon, W. T., and Kim, P. J. (2004). Long-term effects of fertilization on the forms and availability of soil phosphorus in rice paddy. Chemosphere, 56(3), 299-304.
Li, J. H., Xu, D. H., and Wang, G. (2008). Weed inhibition by sowing legume species in early succession of abandoned fields on Loess Plateau, China. Acta Oecologica, 33(1), 10-14.
Magid, J., and Nielsen, N. E. (1992). Seasonal variation in organic and inorganic phosphorus fractions of temperate-climate sandy soils. Plant and Soil, 144(2), 155-165.
Magid, J., Tiessen, H., and Condron, L. M. (1996). Dynamics of organic phosphorus in soils under natural and agricultural ecosystems. In Humic Substances in Terrestrial Ecosystems (pp. 429-466). Elsevier Science BV.
Maranguit, D., Guillaume, T., and Kuzyakov, Y. (2017). Land-use change affects phosphorus fractions in highly weathered tropical soils. Catena, 149, 385-393.
Makarov, M. I., Haumaier, L., and Zech, W. (2002). Nature of soil organic phosphorus: an assessment of peak assignments in the diester region of 31P NMR spectra. Soil Biology and Biochemistry, 34(10), 1467-1477.
McDowell, R. W., Condron, L. M., and Mahieu, N. (2003). Analysis of phosphorus in sequentially extracted grassland soils using solid state NMR. Communications in Soil Science and Plant Analysis, 34(11-12), 1623-1636.
McDowell, R. W., and Stewart, I. (2006). The phosphorus composition of contrasting soils in pastoral, native and forest management in Otago, New Zealand: Sequential extraction and 31P NMR. Geoderma, 130(1-2), 176-189.
McGrath, D. A., Smith, C. K., Gholz, H. L., and de Assis Oliveira, F. (2001). Effects of land-use change on soil nutrient dynamics in Amazonia. Ecosystems, 4(7), 625-645.
McKeague, J. A. (1967). An evaluation of 0.1 M pyrophosphate and pyrophosphate-dithionite in comparison with oxalate as extractants of the accumulation products in podzols and some other soils. Canadian Journal of Soil Science, 47(2), 95-99.
McKeague, J. A., and Day, J. (1966). Dithionite-and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science, 46(1), 13-22.
Mehra, O. P., and Jackson, M. L. (1958). Iron Oxide Removal from Soils and Clays by a Dithionite-Citrate System Buffered with Sodium Bicarbonate. Clays and Clay Minerals, 7(1), 317-327.
Mesquita Filho, M. V., and Torrent, J. (1993). Phosphate sorption as related to mineralogy of a hydrosequence of soils from the Cerrado region (Brazil). Geoderma, 58(1-2), 107-123.
Motavalli, P., and Miles, R. (2002). Soil phosphorus fractions after 111 years of animal manure and fertilizer applications. Biology and Fertility of Soils, 36(1), 35-42.
Murphy, J. A. M. E. S., and Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36.
Paul, E. A. (2014). Soil Microbiology, Ecology and Biochemistry. Academic press.
Prietzel, J., Dümig, A., Wu, Y., Zhou, J., and Klysubun, W. (2013). Synchrotron-based P K-edge XANES spectroscopy reveals rapid changes of phosphorus speciation in the topsoil of two glacier foreland chronosequences. Geochimica et Cosmochimica Acta, 108, 154-171.
Qiong, Z. H. A. O., De-Hui, Z. E. N. G., Zhi-Ping, F. A. N., and Lee, D. K. (2008). Effect of land cover change on soil phosphorus fractions in Southeastern Horqin Sandy Land, Northern China. Pedosphere, 18(6), 741-748.
Raboy, V. (2007). Seed phosphorus and the development of low-phytate crops. Inositol phosphates: Linking Agriculture and the Environment, 1.
Redel, Y. D., Escudey, M., Alvear, M., Conrad, J., and Borie, F. (2015). Effects of land use change on P bioavailability determined by chemical fractionation and 31P-NMR spectroscopy in a Nothofagus forest and adjacent grassland. Journal of Soil Science and Plant Nutrition, 15(4), 1061-1070.
Redel, Y., Cartes, P., Demanet, R., Velásquez, G., Poblete-Grant, P., Bol, R., and Mora, M. L. (2016). Assessment of phosphorus status influenced by Al and Fe compounds in volcanic grassland soils. Journal of Soil Science and Plant Nutrition, 16(2), 490-506.
Rubaek, G. H., and Sibbesen, E. (1995). Soil phosphorus dynamics in a long-term field experiment at Askov. Biology and Fertility of Soils, 20(1), 86-92.
Rui, Y., Wang, Y., Chen, C., Zhou, X., Wang, S., Xu, Z., Duan, J., Kang, X., Lu, S., and Luo, C. (2012). Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 357(1-2), 73-87.
Russell, E. J. (1951). Soil Conditions and Plant Growth (Vol. 71, No. 3, p. 247). LWW.
Sato, S., Solomon, D., Hyland, C., Ketterings, Q. M., and Lehmann, J. (2005). Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Environmental Science and Technology, 39(19), 7485-7491.
Schimel, J. P., Bilbrough, C., and Welker, J. M. (2004). Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biology and Biochemistry, 36(2), 217-227.
Schmidt, I. K., Jonasson, S., Shaver, G. R., Michelsen, A., and Nordin, A. (2002). Mineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warming. Plant and Soil, 242(1), 93-106.
Sharpley, A. N. (1985). Phosphorus Cycling in Unfertilized and Fertilized Agricultural Soils 1. Soil Science Society of America Journal, 49(4), 905-911.
Siebers, N., Sumann, M., Kaiser, K., and Amelung, W. (2017). Climatic effects on phosphorus fractions of native and cultivated north American grassland soils. Soil Science Society of America Journal, 81(2), 299-309.
Smeck, N. E. (1985). Phosphorus dynamics in soils and landscapes. Geoderma, 36(3-4), 185-199.
Solomon, D., Lehmann, J., Mamo, T., Fritzsche, F., and Zech, W. (2002). Phosphorus forms and dynamics as influenced by land use changes in the sub-humid Ethiopian highlands. Geoderma, 105(1), 21-48. Tate, K. R. 1984. 'The biological transformation of P in soil', Plant and Soil, 76: 245-56.
Stewart, J. W. B., and Tiessen, H. (1987). Dynamics of soil organic phosphorus. Biogeochemistry, 4(1), 41-60.
Strickland, M. S., Lauber, C., Fierer, N., and Bradford, M. A. (2009). Testing the functional significance of microbial community composition. Ecology, 90(2), 441-451.
Stutter, M. I., Shand, C. A., George, T. S., Blackwell, M. S., Dixon, L., Bol, R., MacKay, R.L., Richardson, A.E., Condron, L.M., and Haygarth, P.M., (2015). Land use and soil factors affecting accumulation of phosphorus species in temperate soils. Geoderma, 257, 29-39.
Tanner, E. V. J., Vitousek, P. A., and Cuevas, E. (1998). Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology, 79(1), 10-22.
Tate, K. R., and Newman, R. H. (1982). Phosphorus fractions of a climosequence of soils in New Zealand tussock grassland. Soil Biology and Biochemistry, 14(3), 191-196.
Tate, K. R. (1984). The biological transformation of P in soil. In Biological Processes and Soil Fertility (pp. 245-256). Springer, Dordrecht.
Tate, K. R., Ross, D. J., Ramsay, A. J., and Whale, K. N. (1991). Microbial biomass and bacteria in two pasture soils: An assessment of measurement procedures, temporal variations, and the influence of P fertility status. Plant and Soil, 132(2), 233-241.
Tiessen, H., and Stewart, J. W. (1985). The Biogeochemistry of Soil Phosphorus. in D. E. Caldwell, J. A. Brierley, and C. L. Brierley, editors. Planetary ecology, 463-472. Van Nostrand Reinhold, New York, New York, USA.
Tiessen, H., and Moir, J. O. (1993). Characterization of available P by sequential extraction. Soil Sampling and Methods of Analysis, 7, 5-229.
Tisdale, S. L., Nelson, W. L. and J. D. Beaton (1984). Soil Fertility and Fertilizers. Macmillan Company.; New York.
Turner, B. L., Mahieu, N., and Condron, L. M. (2003a). Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH–EDTA extracts. Soil Science Society of America Journal, 67(2), 497-510.
Turner, B. L., Mahieu, N., and Condron, L. M. (2003b). The phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution 31P NMR spectroscopy. Organic Geochemistry, 34(8), 1199-1210.
Turner, B. L., and Richardson, A. E. (2004). Identification of scyllo-inositol phosphates in soil by solution phosphorus-31 nuclear magnetic resonance spectroscopy. Soil Science Society of America Journal, 68(3), 802-808.
Turner, B. L., Condron, L. M., Richardson, S. J., Peltzer, D. A., and Allison, V. J. (2007). Soil organic phosphorus transformations during pedogenesis. Ecosystems, 10(7), 1166-1181.
Vincent, A. G., Sundqvist, M. K., Wardle, D. A., and Giesler, R. (2014). Bioavailable soil phosphorus decreases with increasing elevation in a subarctic tundra landscape. PLOS ONE, 9(3), e92942.
Walker, T. W., and Syers, J. K. (1976). The fate of phosphorus during pedogenesis. Geoderma, 15(1), 1-19.
Wang, G., Ma, H., Qian, J., and Chang, J. (2004). Impact of land use changes on soil carbon, nitrogen and phosphorus and water pollution in an arid region of northwest China. Soil Use and Management, 20(1), 32-39.
Weaver, D. M., Ritchie, G. S. P., and Anderson, G. C. (1988). Phosphorus leaching in sandy soils. II. Laboratory studies of the long-term effects of the phosphorus source. Soil Research, 26(1), 191-200.
Williams, R. J., Giles, R. G., and Posner, A. M. (1981). Solid state phosphorus NMR spectroscopy of minerals and soils. Journal of the Chemical Society, Chemical Communications, (20), 1051-1052.
Yang, W., Cheng, H., Hao, F., Ouyang, W., Liu, S., and Lin, C. (2012). The influence of land-use change on the forms of phosphorus in soil profiles from the Sanjiang Plain of China. Geoderma, 189, 207-214.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64027-
dc.description.abstract磷是維持地球生命的重要元素,磷在土壤中會以多種化學形態存在。不同的土地利用方式,特別是在不同農業管理下,造成土壤磷型含量和型態有所不同。台灣過去積極開發山林,因環保與國土保安意識提高加上林業政策推動,對不當使用農地進行廢耕,而導致廢耕造林的出現。當農地轉為廢耕地後,對土壤磷含量和型態影響,並不是十分清楚。本研究選擇四個採樣樣區,依海拔從低至高,分別為瑞穗、名間、清境與梅峰等樣區,並於各採樣樣區選取三種不同土地利用型態,包括廢耕林地、耕犁農地與無耕犁農地等型態,探討不同土地利用型態對土壤磷的含量和型態影響。本研究結合Hedley Fractionation、K-edge X光吸收光譜分析 (XANES)、固態與液態核磁共振光譜 (31P-NMR) 等不同分析技術,綜合評估土壤磷型態與含量的改變。
實驗結果顯示除梅峰樣區外,全磷含量農地高於廢耕林地。無機磷方面,大部分樣區的Resin-P、NaHCO3-Pi和NaOH-Pi含量,農地顯著高於廢耕林地。HCl-P含量,無耕犁農地含量高於其他兩種土地利用或呈無顯著差異。而有機磷含量,則是在耕犁農地含量最低。從XANES的分析結果得知,無耕犁農地皆有碳酸鈣的訊號,而耕犁農地只有清境樣區有明顯的shoulder與峰值訊號,其餘無訊號或不明顯,廢耕造林則是中海拔有訊號。液態31P核磁共振光譜分析得出,正磷酸鹽為最主要的磷型態 (65- 96%),而農地土壤的磷酸二酯比例與含量,均小於廢耕林地。固態31P核磁共振光譜分析結果顯示相較於瑞穗樣區,Ca-P為梅峰樣區主要的土壤磷型態。上述三種實驗分析結果與磷的序列萃取在全磷、Ca-P的結果相似。並非所有不同植物可利用有效性的磷分級皆會隨海拔上升而含量增加,而年均溫除了無耕犁農地的HCl-P外,其餘磷分級皆會隨年均溫下降而含量增加。總而言之,不同土地利用會改變土壤磷的含量和型態,年均溫或許比海拔更能解釋磷分級的變化。
zh_TW
dc.description.abstractPhosphorus (P) is an essential element for life and may exist in various chemical speciation in the soil. Different land uses, such as agricultural management, is proposed to affect the content and speciation of soil P. Similar with other countries in the world, Taiwan used to conduct forest reclamation actively. However, some improper using arable fields have been abandoned recently due to the awareness of environmental protection and reservation. Little is known about the changes in the content and speciation of soil P after the conversion from arable fields to abandoned fields. In this study, I selected four study sites, including Ruisui, Minjian, Wuling, and Meifung with the altitude ranged from 300 m to 2200 m. In each study site, three different land uses of abandoned fields, tillage, and non-tillage fields were compared. I applied Hedley fractionation, X-ray absorption near edge structure (XANES), and solid- and liquid-state 31P nuclear magnetic resonance (NMR) spectroscopies to examine how different land uses affected the content and speciation of soil P.
The results indicated a significantly lower total P in the abandoned fields, except the Meifung site that had a lower total P in the tillage field. The resin-P, NaHCO3-Pi, and NaOH-Pi were higher in the abandoned fields. HCl-P in the non-tillage fields was higher or no significant difference compared to other land uses. Except for the Meifung site, significantly lower organic P was found in the tillage fields. The XANES spectra of the residues after NaOH extraction showed the Ca-P signal in the non-tillage fields. The spectra in the Qingjing site and Meifung site had the clearest Ca-P signal, suggesting the highest Ca-P signal in the middle elevation in abandoned fields. Phosphorus was mainly composted in the orthophosphate form in the NMR extract (65- 96%). The proportion and concentration of diesters in both tillage and non-tillage fields were less than those in the abandoned fields. Solid 31P-NMR showed that the primary soil P speciation in the Meifung site was in the Ca-P formation. The measurements from both chemical and spectroscopic methods showed similar results in P content and speciation, particularly in total P and Ca-P. Except for HCl-P in the non-tillage fields, P content increased with the elevation or the decreasing mean annual temperature. The results indicated that the different land uses had different phosphorus content and speciation.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:27:04Z (GMT). No. of bitstreams: 1
ntu-109-R05625002-1.pdf: 8100020 bytes, checksum: 239067916a0dc2bdb31a7cb150ba243a (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目錄
謝誌 I
摘要 Ⅱ
ABSTRACT Ⅲ
圖目錄 Ⅶ
表目錄 Ⅷ
一、 前言 ........ 1
1.1台灣地區的土地改變 ........ 2
1.2土壤磷含量與型態分析 ........ 3
1.3研究目的 ........ 4
二、 材料與方法 ........ 6
2.1 採樣樣區介紹 ........ 6
2.2 實驗方法 ........ 9
2.2.1 土壤基本性質析 ........ 9
2.2.2 經Tiessen修正的Hedley磷序列萃取法 ........ 11
2.2.3 K-edge X光吸收光譜分析 (XANES) ........ 13
2.2.4 液態31P核磁共振圖譜 (31P-NMR) ........ 14
2.2.5 固態31P核磁共振圖譜 (31P-NMR) ........ 16
2.2.6 選擇性萃取 (Selective extraction) ........ 18
2.3統計分析 ........ 18
三、 結果 ........ 19
3.1 土壤磷含量與Hedley序列萃取 ........ 19
3.3.1 三種土地利用間的差異 ........ 19
3.1.2耕犁農地 (T) 和廢耕林地 (F) 的差異 ........ 21
3.1.3 耕犁農地 (T) 和無耕犁農地 (NT) 的差異 ........ 21
3.2 磷元素K-edge X光吸收光譜分析 (XANES) ........ 24
3.3 液相31P核磁共振光譜 (31P NMR) ........ 29
3.4 固態31P核磁共振光譜 (31P-NMR) ........ 35
3.5 海拔和年均溫對磷分級濃度的影響 ........ 38
3.5.1 海拔 ........ 40
3.5.1 年均溫 ........ 48
四、 討論 ........ 48
4.1 農地廢耕造林對磷含量和型態的影響 ........ 48
4.2 耕犁和無耕犁農地磷含量和型態的差異 ........ 53
4.3 磷元素K-edge X光吸收光譜分析與Hedley Fractionation的相關性 ........ 55
4.4 液態與固態核磁31P共振光譜與Hedley Fractionation的相關性 ........ 57
4.4.1 液態31P核磁共振光譜 ........ 57
4.4.2 固態31P核磁共振光譜 ........ 59
4.5 海拔和年雨量對磷分級的影響 ........ 62
五、 結論 ........ 65
六、 參考文獻 ........ 67
 
圖目錄
圖1、研究樣區之地點分布及其英文縮寫與海拔高度。 ........ 7
圖2、土壤樣品磷序列萃取步驟圖。 ........ 12
圖3、瑞穗 (RS) 樣區不同土地利用之磷K-edge X光吸收邊緣光譜。 ........ 25
圖4、名間 (MJ) 樣區不同土地利用之磷K-edge X光吸收邊緣光譜。 ........ 26
圖5、清境 (CJ) 樣區不同土地利用之磷K-edge X光吸收邊緣光譜。 ........ 27
圖6、梅峰 (MF) 樣區不同土地利用之磷K-edge X光吸收邊緣光譜。 ........ 28
圖7-1、(a) 瑞穗樣區 (b) 名間樣區的液態31P核磁共振光圖。 ........ 31
圖7-2、(c) 清境樣區 (d) 梅峰樣區的液態31P核磁共振光圖。 ........ 32
圖8、瑞穗樣區固態31P核磁共振光譜圖。 ........ 36
圖9、梅峰樣區固態31P核磁共振光譜圖。 ........ 37
圖10、廢耕林地不同採樣地點的磷分級濃度。 ........ 42
圖11、耕犁農地不同採樣地點的磷分級濃度。 ........ 43
圖12、無耕犁農地不同採樣地點的磷分級含量。 ........ 44
圖13、海拔與年雨量 (a) 及年均溫 (b)之線性相關回歸圖。 ........ 45
圖14、不同土地利用型下,調查樣區全磷、labile P、 moderately stable P與HCl-P隨海拔的變化。 ........ 46
圖15、不同土地利用型下,調查樣區全磷、labile P、 moderately stable P與HCl-P隨年均溫的變化。 ........ 47
圖16、NaOH + EDTA萃取全磷含量和labile P+NaOH P含量的關係圖。 ........ 61
 
表目錄
表1、研究樣區之氣候與不同土地利用之植被概況。 ........ 8
表2、研究樣區之土壤pH值、土壤有機碳 (organic carbon)、土壤有機碳存量 (SOC stock) 、全氮 (total N)與土壤質地 (soil texture) ........ 9
表3、液態31P核磁共振光譜對不同磷化合物之化學位移分配。 ........ 13
表4、土壤磷序列萃取結果。 ........ 19
表5、土壤序列萃取磷不同分級磷濃度佔全磷之相對比例。 ........ 20
表6、液態31P核磁共振光譜有機磷化合物分析濃度。 ........ 30
表7、液態31P核磁共振光譜有機磷化合物分析結果。 ........ 31
表8、Hedley序列萃取磷分級與海拔(elevation)、年均溫(mean annual temperature)、年雨量(mean annual precipitation)的相關係數表。 ........ 37
表9、樣區不同選擇性萃取土壤之鐵、鋁濃度。 ........ 47
表10、Hedley序列萃取磷分級與土壤基本性質、海拔及土壤鐵、鋁之選擇性萃取的相關係數表。 ........ 48
表11、液態31P核磁共振光譜磷化合物與土壤基本性質、NaHCO3-P磷分級和酸性草酸安萃取之鐵、鋁的相關係數表。 ........ 57
dc.language.isozh-TW
dc.subject31P核磁共振光譜zh_TW
dc.subject磷的序列萃取zh_TW
dc.subjectK-edge X光吸收光譜zh_TW
dc.subject廢耕zh_TW
dc.subject土地利用zh_TW
dc.subjectphosphorusen
dc.subjectland useen
dc.subject31P-NMRen
dc.subjectXANESen
dc.subjectHedley Fractionationen
dc.title不同土地利用之土壤磷含量與型態zh_TW
dc.titlePhosphorus content and speciation in soils with
different land uses
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳秋萍,簡士濠,白創文
dc.subject.keyword土地利用,廢耕,磷的序列萃取,K-edge X光吸收光譜,31P核磁共振光譜,zh_TW
dc.subject.keywordland use,phosphorus,Hedley Fractionation,XANES,31P-NMR,en
dc.relation.page74
dc.identifier.doi10.6342/NTU202000672
dc.rights.note有償授權
dc.date.accepted2020-03-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
7.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved