Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64022
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞峰(Ruey-Feng Chang)
dc.contributor.authorYun-Chih Chinen
dc.contributor.author覃韵之zh_TW
dc.date.accessioned2021-06-16T17:26:52Z-
dc.date.available2017-08-19
dc.date.copyright2012-08-19
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citation1. Citron ML, Berry DA, Cirrincione C, et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: First report of intergroup trial C9741/cancer and leukemia group B trial 9741. J Clin Oncol 2003;21(8):1431-1439.
2. Pritchard KI, Shepherd LE, O'Malley FP, et al. HER2 and responsiveness of breast cancer to adjuvant chemotherapy. New Engl J Med 2006;354(20):2103-2111.
3. Overgaard M, Hansen PS, Overgaard J, et al. Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. New Engl J Med 1997;337(14):949-955.
4. Smith IC, Heys SD, Hutckeon AW, et al. Neoadjuvant chemotherapy in breast cancer: Significantly enhanced response with docetaxel. J Clin Oncol 2002;20(6):1456-1466.
5. Geels P, Eisenhauer E, Bezjak A, Zee B, Day A. Palliative effect of chemotherapy: Objective tumor response is associated with symptom improvement in patients with metastatic breast cancer. J Clin Oncol 2000;18(12):2395-2405.
6. Grunfeld EA, Maher EJ, Browne S, et al. Advanced breast cancer patients' perceptions of decision making for palliative chemotherapy. J Clin Oncol 2006;24(7):1090-1098.
7. Kuerer HM, Newman LA, Smith TL, et al. Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol 1999;17(2):460-469.
8. Thibault F, Nos C, Meunier M, et al. MRI for surgical planning in patients with breast cancer who undergo preoperative chemotherapy. Am J Roentgenol 2004;183(4):1159-1168.
9. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer 2009;45(2):228-247.
10. Takada K, Yamada S, Teramoto A. Correlation between tumor vascularity and clinical findings in patients with pituitary adenomas. Endocr Pathol 2004;15(2):131-139.
11. Fox SB, Gatter KC, Bicknell R, et al. Relationship of Endothelial-Cell Proliferation to Tumor Vascularity in Human Breast-Cancer. Cancer Res 1993;53(18):4161-4163.
12. Valkovic T, Dobrila F, Melato M, Sasso F, Rizzardi C, Jonjic N. Correlation between vascular endothelial growth factor, angiogenesis, and tumor-associated macrophages in invasive ductal breast carcinoma. Virchows Arch 2002;440(6):583-588.
13. Weidner N, Folkman J, Pozza F, et al. Tumor Angiogenesis - a New Significant and Independent Prognostic Indicator in Early-Stage Breast-Carcinoma. J Natl Cancer I 1992;84(24):1875-1887.
14. Nieto Y, Woods J, Jones RB, et al. Prognostic analysis of intratumor microvessel density (MVD) and vascular endothelial growth factor (VEGF) in high-risk primary breast cancer (HRPBC) patients (PTS) receiving high-dose chemotherapy (HDC). J Clin Oncol 2005;23(16):27s-27s.
15. Uzzan B, Nicolas P, Cucherat M, Perret GY. Microvessel density as a prognostic factor in women with breast cancer: A systematic review of the literature and meta-analysis. Cancer Res 2004;64(9):2941-2955.
16. Ludovini V, Sidoni A, Pistola L, et al. Evaluation of the prognostic role of vascular endothelial growth factor and microvessel density in stages I and II breast cancer patients. Breast Cancer Res Tr 2003;81(2):159-168.
17. Roubidoux MA, LeCarpentier GL, Fowlkes JB, et al. Sonographic evaluation of early-stage breast cancers that undergo neoadjuvant chemotherapy. J Ultras Med 2005;24(7):885-895.
18. Chang RF, Huang SF, Moon WK, Lee YH, Chen DR. Solid breast masses: Neural network analysis of vascular features at three-dimensional power Doppler US for benign or malignant classification. Radiology 2007;243(1):56-62.
19. Huang SF, Chang RF, Moon WK, Lee YH, Chen DR, Suri JS. Analysis of tumor vascularity using three-dimensional power Doppler ultrasound images. Ieee T Med Imaging 2008;27(3):320-330.
20. Luengo-Matos S, Polo-Santos M, Saz-Parkinson Z. Mammography use and factors associated with its use after the introduction of breast cancer screening programmes in Spain. Eur J Cancer Prev 2006;15(3):242-248.
21. Schott AF, Roubidoux MA, Helvie MA, et al. Clinical and radiologic assessments to predict breast cancer pathologic complete response to neoadjuvant chemotherapy. Breast Cancer Res Tr 2005;92(3):231-238.
22. Buist DSM, Aiello EJ, Miglioretti DL, White E. Mammographic breast density, dense area, and breast area differences by phase in the menstrual cycle. Cancer Epidem Biomar 2006;15(11):2303-2306.
23. Schelling M, Avril N, Nahrig J, et al. Positron emission tomography using [F-18]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 2000;18(8):1689-1695.
24. Tiling R, Linke R, Untch M, et al. F-18-FDG PET and Tc-99m-sestamibi scintimammography for monitoring breast cancer response to neoadjuvant chemotherapy: a comparative study. Eur J Nucl Med 2001;28(6):711-720.
25. Lin M, Chen J-H, Nalcioglu O, Su M-YL. Automatic Template-based Breast Segmentation on MRI Using Nonrigid Registration Algorithms. International Society for Magnetic Resonance in Medicine (ISMRM) conference. Melbourne, Australia2012; p. 2569.
26. Folkman J, Klagsbrun M. Angiogenic Factors. Science 1987;235(4787):442-447.
27. Sato Y, Nakajima S, Atsumi H, et al. 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Lect Notes Comput Sc 1997;1205:213-222.
28. Nie K, Chen JH, Chan S, et al. Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI. Med Phys 2008;35(12):5253-5262.
29. Reed VK, Woodward WA, Zhang LF, et al. Automatic Segmentation of Whole Breast Using Atlas Approach and Deformable Image Registration. Int J Radiat Oncol 2009;73(5):1493-1500.
30. Kroon DJ, Slump CH. MRI modalitiy transformation in demon registration. Biomedical Imaging: From Nano to Macro, 2009 ISBI '09 IEEE International Symposium on2009; p. 963-966.
31. Wang H, Dong L, O'Daniel J, et al. Validation of an accelerated 'demons' algorithm for deformable image registration in radiation therapy. Phys Med Biol 2005;50(12):2887-2905.
32. Bezdek JC, Ehrlich R, Full W. Fcm - the Fuzzy C-Means Clustering-Algorithm. Comput Geosci 1984;10(2-3):191-203.
33. Chen WJ, Giger ML, Bick U. A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images. Acad Radiol 2006;13(1):63-72.
34. Stark JA. Adaptive image contrast enhancement using generalizations of histogram equalization. Ieee T Image Process 2000;9(5):889-896.
35. Abbas Q, Celebi ME, Garcia IF, Rashid M. Lesion border detection in dermoscopy images using dynamic programming. Skin Res Technol 2011;17(1):91-100.
36. Rohlfing T, Maurer CR. Multi-classifier framework for atlas-based image segmentation. Pattern Recogn Lett 2005;26(13):2070-2079.
37. Belhomme P, Elmoataz A, Herlin P, Bloyet D. Generalized region growing operator with optimal scanning: Application to segmentation of breast cancer images. J Microsc-Oxford 1997;186:41-50.
38. Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. Medical Image Computing and Computer-Assisted Intervention - Miccai'98 1998;1496:130-137.
39. Stefanel.R, Rosenfel.A. Some Parallel Thinning Algorithms for Digital Pictures. J Acm 1971;18(2):255-&.
40. Kong TY, Rosenfeld A. Digital-Topology - Introduction and Survey. Comput Vision Graph 1989;48(3):357-393.
41. Palagyi K, Kuba A. A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recogn Lett 1998;19(7):613-627.
42. Chang RF, Huang SF, Moon WK, Lee YH, Chen DR. Computer algorithm for analysing breast tumor angiogenesis using 3-D power doppler ultrasound. Ultrasound Med Biol 2006;32(10):1499-1508.
43. Baish JW, Jain RK. Fractals and cancer. Cancer Res 2000;60(14):3683-3688.
44. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliver Rev 2004;56(11):1649-1659.
45. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer I 2000;92(3):205-216.
46. Hosmer DW, Lemeshow S. Applied logistic regression. 2nd ed. New York: Wiley, 2000.
47. Alpaydin E. Introduction to machine learning. Cambridge, Mass.: MIT Press, 2004.
48. Sprinthall RC. Basic statistical analysis. 8th ed. Boston: Pearson Allyn & Bacon, 2007.
49. Williams S. Pearson's correlation coefficient. New Zeal Med J 1996;109(1015):38-38.
50. Savage IR. Nonparametric Statistics. J Am Stat Assoc 1957;52(279):331-344.
51. Mao KZ. Orthogonal forward selection and backward elimination algorithms for feature subset selection. Ieee T Syst Man Cy B 2004;34(1):629-634.
52. Weber WA, Ott K, Becker K, et al. Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol 2001;19(12):3058-3065.
53. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin Selectively Targets Cancer Stem Cells, and Acts Together with Chemotherapy to Block Tumor Growth and Prolong Remission (vol 69, pg 7507, 2009). Cancer Res 2009;69(22):8832-8833.
54. Colleoni M, Rocca A, Sandri MT, et al. Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumor activity and correlation with vascular endothelial growth factor levels. Ann Oncol 2002;13(1):73-80.
55. Toi M, Kashitani J, Tominaga T. Tumor Angiogenesis Is an Independent Prognostic Indicator in Primary Breast-Carcinoma. Int J Cancer 1993;55(3):371-374.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64022-
dc.description.abstract在所有癌症之中,乳癌已經成為全世界女性最常罹患的癌症並為現代女性主要的死亡原因之一。而在乳癌的治療上,化療是一種被普遍且多方面使用的治療方法,不僅用在手術前以縮小腫瘤使手術順利施行 (前置性輔助治療) 和手術後的輔助治療,也被用來控制癌細胞的轉移,因此若能提早得知化療的效果將在乳癌治療上提供很大的幫助。而近年來的研究顯示,血管與腫瘤的生長、惡化與轉移皆習習相關,通常腫瘤需要更多的血管來提供足夠養分以生長與存活,因此目前腫瘤血管已在乳房病變的診斷以及化療治療成效評估的相關研究中被廣泛的使用。有鑑於核磁共振成像 (MRI) 與其他醫學成像技術相比能提供較佳的血管對比度影像,因此本篇論文採用核磁共振影像作為實驗影像,並從核磁共振影像中擷取出血管特徵來嘗試評估前置性輔助治療的成效和嘗試探討血管資訊是否能提早預測出最終的化療結果。本篇論文大致可分為三大部份,乳房的切割、乳房內血管的擷取與血管特徵的計算。首先會使用以模板為基礎的乳房切割演算法來將乳房部份從完整的胸部核磁共振影像中切割出來,同時為了避免皮膚組織被誤認為血管取出,在擷取乳房血管前會先將灰階亮度與血管類似的皮膚組織從切割出的乳房中排除。在本篇論文中所使用的是以 Hessian matrix 為基礎的血管擷取演算法來擷取血管,並對血管作細線化以取出血管的中心骨架進而分別計算左右兩邊乳房內血管的型態與曲度特徵,最後以乳房化療前與化療早期血管特徵的變化率作為化療治療效果的評估指標。在本篇論文之中,乳房內的血管特徵將用來測試是否能預測化療晚期即最終化療治療的結果,並與腫瘤大小的變化率結合做預測,最後再與僅使用腫瘤大小變化率的預測做診斷效能比較。實驗總共分析了31個乳癌病例,包含了14個化療治療無效與17個化療治療有效病例。使用包含有腫瘤的乳房該側血管特徵做預測的正確率、敏感性與專一性分別為77.42% (24/31)、82.35% (14/17)與71.43% (10/14),使用腫瘤大小變化率做預測的正確率、敏感性與專一性分別為80.65% (25/31)、76.47% (13/17)與85.71% (12/14),而結合含有腫瘤的乳房該側血管特徵與腫瘤大小變化率做預測的正確率、敏感性與專一性則分別達到了83.87% (26/31)、88.24% (15/17)與78.57% (11/14)。實驗結果顯示,腫瘤大小變化率提供了較佳的專一性,而血管特徵的變化率則提供較好的敏感性,至於結合血管特徵與腫瘤大小變化率的方法則可以提升並提供最佳的診斷效能,這表示血管特徵的確擁有評估化療成效與預測最終化療結果的潛力。zh_TW
dc.description.abstractIn recent years, breast cancer has become the most common female cancer in the world, and it is also one of main common cause of death in modern times. Chemotherapy is one of the common methods of treatment breast cancer. Not only used before surgery to shrink the tumor (neo-adjuvant therapy) and post-operative adjuvant therapy, it is also used to control the cancer metastasis. Therefore, the early prediction of chemotherapy response would provide a great help in the treatment evaluation of breast cancer. On the other hand, recent studies have shown that tumors usually need more vessels than normal cells to provide sufficient nutrients for growth and survival. It means that the growth of vessels is high correlation with the growth of tumors. In addition, the vessel information has been widely used in the diagnosis of breast lesions and therapy response evaluation of chemotherapy. Hence, the main purpose of this study is to extract the vessel features from the 3-D MRI to evaluate the response of neo-adjuvant chemotherapy and analyze whether the vessel information can predict the final treatment response or not. There are three main parts in this study, including breast segmentation, vessel extraction and vessel feature extraction. First, the template-base breast segmentation algorithm is used to segment the breast region from the 3-D MRI. In order to avoid the skin being mistaken extracted as vessel, the breast skin would be excluded before vessel extraction. The line filter based on Hessian matrix is used to extract the vessels inside the segmented breast region in this study. After the vessel extraction, the vessels skeletons are obtained from the vessels by thinning algorithm and then transformed into tree structure in order to quantify the vessels. Total 17 vessel features including 11 morphological and 6 tortuous features are used in this study. The change ratio of vessel features between pre-chemotherapy and early stage of chemo treatment is utilized as indicators to evaluate the treatment response. That is, the vessel features is used to predict the final treatment response (i.e. the response of late stage of chemo treatment). In addition, diagnostic performance of vessel features method are compared with the change ratio of tumor size method and combined the change ratio of vessel features and tumor size method. This experiment evaluates total 31 breast cancer cases, including 14 positive response and 17 negative response cases. The accuracy, sensitivity and specificity for the vessel features in breast harboring tumor are 77.42% (24/31), 82.35% (14/17) and 71.43% (10/14), respectively. The accuracy, sensitivity and specificity for the tumor size method are 80.65% (25/31), 76.47% (13/17) and 85.71% (12/14), respectively. The combined vessel features and tumor size can provide the best diagnostic performance with accuracy, sensitivity and specificity improved to 83.87% (26/31), 88.24% (15/ 17), and 78.57% (11/14), respectively. The experimental results show that the tumor size method could provide a better specificity and the vessel features method can provide a better sensitivity. Furthermore, the combined method could provide the best diagnostic performance. It means that the vessel features could improve the diagnostic performance and might provide the capability of predicting the final chemotherapy response.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:26:52Z (GMT). No. of bitstreams: 1
ntu-101-R99922009-1.pdf: 1018315 bytes, checksum: b00022d4482d5dbf57c94732a059899e (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員審定書 I
Acknowledgements II
摘要 III
Abstract V
Table of Contents VIII
List of Figures IX
List of Tables XI
Chapter 1 Introduction 1
Chapter 2 Material 4
2.1 Patients and Lesion Characters 4
2.2 MRI Acquisition 4
Chapter 3 The Proposed Chemotherapy Response Evaluation System 6
3.1 Breast Segmentation 8
3.1.1 Template Image 10
3.1.2 Demons Algorithm 11
3.1.3 Preliminary Breast Region 13
3.1.4 Muscle Removing 14
3.2 Skin Exclusion 15
3.3 3-D Vessel Extraction 18
3.4 3-D Thinning 19
3.5 Vascular Tree Construction 21
3.6 3-D Vessel Feature Extraction 21
3.6.1 Morphological Features 23
3.6.2 Tortuous Features 26
Chapter 4 Experiments and Results 30
4.1 Statistic Analysis 31
4.2 Feature Analysis 34
4.3 Therapy Response Analysis 38
4.4 Discussion 44
Chapter 5 Conclusion and Future Work 48
References 50
dc.language.isoen
dc.subject核磁共振影像zh_TW
dc.subject乳房zh_TW
dc.subject血管分析zh_TW
dc.subject前置性輔助治療zh_TW
dc.subjectVascular analysisen
dc.subjectMRIen
dc.subjectBreasten
dc.subjectNeo-adjuvant chemotherapyen
dc.title以DCE-MRI影像之血管分析為基礎的乳癌化療效果評估zh_TW
dc.titleThe Therapy Response Evaluation of Breast Cancer Chemotherapy Based on Vascular Analysis of DCE-MRIen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃俊升,張允中
dc.subject.keyword核磁共振影像,乳房,血管分析,前置性輔助治療,zh_TW
dc.subject.keywordMRI,Breast,Vascular analysis,Neo-adjuvant chemotherapy,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
994.45 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved