Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64018
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor符文美(Wen-Mei Fu)
dc.contributor.authorChia-Wei Changen
dc.contributor.author張家維zh_TW
dc.date.accessioned2021-06-16T17:26:43Z-
dc.date.available2017-09-18
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citationAdwan, H., Bauerle, T.J., and Berger, M.R. (2004). Downregulation of osteopontin and bone sialoprotein II is related to reduced colony formation and metastasis formation of MDA-MB-231 human breast cancer cells. Cancer Gene Ther 11, 109-120.
Agrawal, D., Chen, T., Irby, R., Quackenbush, J., Chambers, A.F., Szabo, M., Cantor, A., Coppola, D., and Yeatman, T.J. (2002). Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J Natl Cancer Inst 94, 513-521.
Bardos, J.I., and Ashcroft, M. (2004). Hypoxia-inducible factor-1 and oncogenic signalling. Bioessays 26, 262-269.
Bautista, D.S., Denstedt, J., Chambers, A.F., and Harris, J.F. (1996). Low-molecular-weight variants of osteopontin generated by serine proteinases in urine of patients with kidney stones. J Cell Biochem 61, 402-409.
Bellahcene, A., Castronovo, V., Ogbureke, K.U., Fisher, L.W., and Fedarko, N.S. (2008). Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer 8, 212-226.
Bertout, J.A., Patel, S.A., and Simon, M.C. (2008). The impact of O2 availability on human cancer. Nat Rev Cancer 8, 967-975.
Brown, L.F., Papadopoulos-Sergiou, A., Berse, B., Manseau, E.J., Tognazzi, K., Perruzzi, C.A., Dvorak, H.F., and Senger, D.R. (1994). Osteopontin expression and distribution in human carcinomas. Am J Pathol 145, 610-623.
Bucci, D., Rodriguez-Gil, J.E., Vallorani, C., Spinaci, M., Galeati, G., and Tamanini, C. (2011). GLUTs and mammalian sperm metabolism. J Androl 32, 348-355.
Bulfone-Paus, S., and Paus, R. (2008). Osteopontin as a new player in mast cell biology. Eur J Immunol 38, 338-341.
Caltabiano, S., Hum, W.T., Attwell, G.J., Gralnick, D.N., Budman, L.J., Cannistraci, A.M., and Bex, F.J. (1999). The integrin specificity of human recombinant osteopontin. Biochem Pharmacol 58, 1567-1578.
Chakraborty, G., Jain, S., and Kundu, G.C. (2008). Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res 68, 152-161.
Chambers, A.F., Wilson, S.M., Kerkvliet, N., O'Malley, F.P., Harris, J.F., and Casson, A.G. (1996). Osteopontin expression in lung cancer. Lung Cancer 15, 311-323.
Coppola, D., Szabo, M., Boulware, D., Muraca, P., Alsarraj, M., Chambers, A.F., and Yeatman, T.J. (2004). Correlation of osteopontin protein expression and pathological stage across a wide variety of tumor histologies. Clin Cancer Res 10, 184-190.
Courter, D., Cao, H., Kwok, S., Kong, C., Banh, A., Kuo, P., Bouley, D.M., Vice, C., Brustugun, O.T., Denko, N.C., et al. (2010). The RGD domain of human osteopontin promotes tumor growth and metastasis through activation of survival pathways. PLoS One 5, e9633.
Cox, D., Brennan, M., and Moran, N. (2010). Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov 9, 804-820.
Crawford, H.C., Matrisian, L.M., and Liaw, L. (1998). Distinct roles of osteopontin in host defense activity and tumor survival during squamous cell carcinoma progression in vivo. Cancer Res 58, 5206-5215.
Cui, R., Takahashi, F., Ohashi, R., Gu, T., Yoshioka, M., Nishio, K., Ohe, Y., Tominaga, S., Takagi, Y., Sasaki, S., et al. (2007). Abrogation of the interaction between osteopontin and alphavbeta3 integrin reduces tumor growth of human lung cancer cells in mice. Lung Cancer 57, 302-310.
Dai, J., Peng, L., Fan, K., Wang, H., Wei, R., Ji, G., Cai, J., Lu, B., Li, B., Zhang, D., et al. (2009). Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene 28, 3412-3422.
Denko, N.C. (2008). Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8, 705-713.
Desgrosellier, J.S., and Cheresh, D.A. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10, 9-22.
Ding, Q., Stewart, J., Jr., Prince, C.W., Chang, P.L., Trikha, M., Han, X., Grammer, J.R., and Gladson, C.L. (2002). Promotion of malignant astrocytoma cell migration by osteopontin expressed in the normal brain: differences in integrin signaling during cell adhesion to osteopontin versus vitronectin. Cancer Res 62, 5336-5343.
Dkhissi, F., Lu, H., Soria, C., Opolon, P., Griscelli, F., Liu, H., Khattar, P., Mishal, Z., Perricaudet, M., and Li, H. (2003). Endostatin exhibits a direct antitumor effect in addition to its antiangiogenic activity in colon cancer cells. Hum Gene Ther 14, 997-1008.
El-Tanani, M.K., Barraclough, R., Wilkinson, M.C., and Rudland, P.S. (2001). Regulatory region of metastasis-inducing DNA is the binding site for T cell factor-4. Oncogene 20, 1793-1797.
Fedarko, N.S., Jain, A., Karadag, A., and Fisher, L.W. (2004). Three small integrin binding ligand N-linked glycoproteins (SIBLINGs) bind and activate specific matrix metalloproteinases. FASEB J 18, 734-736.
Fedarko, N.S., Jain, A., Karadag, A., Van Eman, M.R., and Fisher, L.W. (2001). Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin Cancer Res 7, 4060-4066.
Fisher, L.W., Torchia, D.A., Fohr, B., Young, M.F., and Fedarko, N.S. (2001). Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem Biophys Res Commun 280, 460-465.
Furger, K.A., Menon, R.K., Tuck, A.B., Bramwell, V.H., and Chambers, A.F. (2001). The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med 1, 621-632.
Galon, J., Fridman, W.H., and Pages, F. (2007). The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res 67, 1883-1886.
Gardner, H.A., Berse, B., and Senger, D.R. (1994). Specific reduction in osteopontin synthesis by antisense RNA inhibits the tumorigenicity of transformed Rat1 fibroblasts. Oncogene 9, 2321-2326.
Grim, J.E., Knoblaugh, S.E., Guthrie, K.A., Hagar, A., Swanger, J., Hespelt, J., Delrow, J.J., Small, T., Grady, W.M., Nakayama, K.I., et al. (2012). Fbw7 and p53 Cooperatively Suppress Advanced and Chromosomally Unstable Intestinal Cancer. Mol Cell Biol 32, 2160-2167.
Guo, W., and Giancotti, F.G. (2004). Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5, 816-826.
Gupta, A.K., Brenner, D.E., and Turgeon, D.K. (2008). Early detection of colon cancer: new tests on the horizon. Mol Diagn Ther 12, 77-85.
Harris, A.L. (2002). Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2, 38-47.
Hill, R.P. (2005). Targeted treatment: insights from studies of osteopontin and hypoxia. Lancet Oncol 6, 733-734.
Hu, D.D., Lin, E.C., Kovach, N.L., Hoyer, J.R., and Smith, J.W. (1995). A biochemical characterization of the binding of osteopontin to integrins alpha v beta 1 and alpha v beta 5. J Biol Chem 270, 26232-26238.
Hui, E.P., Sung, F.L., Yu, B.K., Wong, C.S., Ma, B.B., Lin, X., Chan, A., Wong, W.L., and Chan, A.T. (2008). Plasma osteopontin, hypoxia, and response to radiotherapy in nasopharyngeal cancer. Clin Cancer Res 14, 7080-7087.
Hynes, R.O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687.
Kaelin, W.G., Jr., and Ratcliffe, P.J. (2008). Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30, 393-402.
Katagiri, Y.U., Murakami, M., Mori, K., Iizuka, J., Hara, T., Tanaka, K., Jia, W.Y., Chambers, A.F., and Uede, T. (1996). Non-RGD domains of osteopontin promote cell adhesion without involving alpha v integrins. J Cell Biochem 62, 123-131.
Le, Q.T., Sutphin, P.D., Raychaudhuri, S., Yu, S.C., Terris, D.J., Lin, H.S., Lum, B., Pinto, H.A., Koong, A.C., and Giaccia, A.J. (2003). Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clin Cancer Res 9, 59-67.
Liu, Z., Jia, B., Zhao, H., Chen, X., and Wang, F. (2011). Specific targeting of human integrin alpha(v)beta (3) with (111)In-labeled Abegrin in nude mouse models. Mol Imaging Biol 13, 112-120.
Lum, J.J., Bui, T., Gruber, M., Gordan, J.D., DeBerardinis, R.J., Covello, K.L., Simon, M.C., and Thompson, C.B. (2007). The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 21, 1037-1049.
Mi, Z., Bhattacharya, S.D., Kim, V.M., Guo, H., Talbot, L.J., and Kuo, P.C. (2011). Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis 32, 477-487.
Nordsmark, M., Eriksen, J.G., Gebski, V., Alsner, J., Horsman, M.R., and Overgaard, J. (2007). Differential risk assessments from five hypoxia specific assays: The basis for biologically adapted individualized radiotherapy in advanced head and neck cancer patients. Radiother Oncol 83, 389-397.
Nordsmark, M., Loncaster, J., Aquino-Parsons, C., Chou, S.C., Ladekarl, M., Havsteen, H., Lindegaard, J.C., Davidson, S.E., Varia, M., West, C., et al. (2003). Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas. Radiother Oncol 67, 35-44.
O'Regan, A., and Berman, J.S. (2000). Osteopontin: a key cytokine in cell-mediated and granulomatous inflammation. Int J Exp Pathol 81, 373-390.
Pawa, N., Arulampalam, T., and Norton, J.D. (2011). Screening for colorectal cancer: established and emerging modalities. Nat Rev Gastroenterol Hepatol 8, 711-722.
Rittling, S.R., and Chambers, A.F. (2004). Role of osteopontin in tumour progression. Br J Cancer 90, 1877-1881.
Rohde, F., Rimkus, C., Friederichs, J., Rosenberg, R., Marthen, C., Doll, D., Holzmann, B., Siewert, J.R., and Janssen, K.P. (2007). Expression of osteopontin, a target gene of de-regulated Wnt signaling, predicts survival in colon cancer. Int J Cancer 121, 1717-1723.
Said, H.M., Hagemann, C., Staab, A., Stojic, J., Kuhnel, S., Vince, G.H., Flentje, M., Roosen, K., and Vordermark, D. (2007). Expression patterns of the hypoxia-related genes osteopontin, CA9, erythropoietin, VEGF and HIF-1alpha in human glioma in vitro and in vivo. Radiother Oncol 83, 398-405.
Said, H.M., Katzer, A., Flentje, M., and Vordermark, D. (2005). Response of the plasma hypoxia marker osteopontin to in vitro hypoxia in human tumor cells. Radiother Oncol 76, 200-205.
Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3, 721-732.
Semenza, G.L. (2004). Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda) 19, 176-182.
Semenza, G.L. (2010a). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29, 625-634.
Semenza, G.L. (2010b). HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20, 51-56.
Senger, D.R., Perruzzi, C.A., Gracey, C.F., Papadopoulos, A., and Tenen, D.G. (1988). Secreted phosphoproteins associated with neoplastic transformation: close homology with plasma proteins cleaved during blood coagulation. Cancer Res 48, 5770-5774.
Senger, D.R., Perruzzi, C.A., Papadopoulos, A., and Tenen, D.G. (1989). Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochim Biophys Acta 996, 43-48.
Shattil, S.J., Kim, C., and Ginsberg, M.H. (2010). The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11, 288-300.
Shi, X., Bai, S., Li, L., and Cao, X. (2001). Hoxa-9 represses transforming growth factor-beta-induced osteopontin gene transcription. J Biol Chem 276, 850-855.
Siegel, R., Naishadham, D., and Jemal, A. (2012). Cancer statistics, 2012. CA Cancer J Clin 62, 10-29.
Simpson, I.A., Dwyer, D., Malide, D., Moley, K.H., Travis, A., and Vannucci, S.J. (2008). The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 295, E242-253.
Singhal, H., Bautista, D.S., Tonkin, K.S., O'Malley, F.P., Tuck, A.B., Chambers, A.F., and Harris, J.F. (1997). Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clin Cancer Res 3, 605-611.
Skuli, N., Monferran, S., Delmas, C., Favre, G., Bonnet, J., Toulas, C., and Cohen-Jonathan Moyal, E. (2009). Alphavbeta3/alphavbeta5 integrins-FAK-RhoB: a novel pathway for hypoxia regulation in glioblastoma. Cancer Res 69, 3308-3316.
Smith, H.W., and Marshall, C.J. (2010). Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11, 23-36.
Song, G., Cai, Q.F., Mao, Y.B., Ming, Y.L., Bao, S.D., and Ouyang, G.L. (2008). Osteopontin promotes ovarian cancer progression and cell survival and increases HIF-1alpha expression through the PI3-K/Akt pathway. Cancer Sci 99, 1901-1907.
Tamkun, J.W., DeSimone, D.W., Fonda, D., Patel, R.S., Buck, C., Horwitz, A.F., and Hynes, R.O. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46, 271-282.
Teramoto, H., Castellone, M.D., Malek, R.L., Letwin, N., Frank, B., Gutkind, J.S., and Lee, N.H. (2005). Autocrine activation of an osteopontin-CD44-Rac pathway enhances invasion and transformation by H-RasV12. Oncogene 24, 489-501.
Thalmann, G.N., Sikes, R.A., Devoll, R.E., Kiefer, J.A., Markwalder, R., Klima, I., Farach-Carson, C.M., Studer, U.E., and Chung, L.W. (1999). Osteopontin: possible role in prostate cancer progression. Clin Cancer Res 5, 2271-2277.
Tuck, A.B., Chambers, A.F., and Allan, A.L. (2007). Osteopontin overexpression in breast cancer: knowledge gained and possible implications for clinical management. J Cell Biochem 102, 859-868.
Tuck, A.B., Hota, C., Wilson, S.M., and Chambers, A.F. (2003). Osteopontin-induced migration of human mammary epithelial cells involves activation of EGF receptor and multiple signal transduction pathways. Oncogene 22, 1198-1205.
Tuck, A.B., O'Malley, F.P., Singhal, H., Harris, J.F., Tonkin, K.S., Kerkvliet, N., Saad, Z., Doig, G.S., and Chambers, A.F. (1998). Osteopontin expression in a group of lymph node negative breast cancer patients. Int J Cancer 79, 502-508.
Valle-Casuso, J.C., Gonzalez-Sanchez, A., Medina, J.M., and Tabernero, A. (2012). HIF-1 and c-Src mediate increased glucose uptake induced by endothelin-1 and connexin43 in astrocytes. PLoS One 7, e32448.
Wai, P.Y., and Kuo, P.C. (2004). The role of Osteopontin in tumor metastasis. J Surg Res 121, 228-241.
Wai, P.Y., and Kuo, P.C. (2008). Osteopontin: regulation in tumor metastasis. Cancer Metastasis Rev 27, 103-118.
Weitz, J., Koch, M., Debus, J., Hohler, T., Galle, P.R., and Buchler, M.W. (2005). Colorectal cancer. Lancet 365, 153-165.
Wilson, W.R., and Hay, M.P. (2011). Targeting hypoxia in cancer therapy. Nat Rev Cancer 11, 393-410.
Yang, L., Zhao, W., Zuo, W.S., Wei, L., Song, X.R., Wang, X.W., Zheng, G., and Zheng, M.Z. (2012). Silencing of osteopontin promotes the radiosensitivity of breast cancer cells by reducing the expression of hypoxia inducible factor 1 and vascular endothelial growth factor. Chinese medical journal 125, 293-299.
Yeatman, T.J., and Chambers, A.F. (2003). Osteopontin and colon cancer progression. Clin Exp Metastasis 20, 85-90.
Yu, X.Q., Fan, J.M., Nikolic-Paterson, D.J., Yang, N., Mu, W., Pichler, R., Johnson, R.J., Atkins, R.C., and Lan, H.Y. (1999). IL-1 up-regulates osteopontin expression in experimental crescentic glomerulonephritis in the rat. Am J Pathol 154, 833-841.
Zhou, H., Lu, N., Chen, Z.Q., Song, Q.L., Yu, H.M., and Li, X.J. (2009). Osteopontin mediates dense culture-induced proliferation and adhesion of prostate tumour cells: role of protein kinase C, p38 mitogen-activated protein kinase and calcium. Basic Clin Pharmacol Toxicol 104, 164-170.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64018-
dc.description.abstract人類結腸直腸癌是全球第三常見的癌症,而且在癌症中的死亡率排名全球第四位,根據統計每年大約有一百萬病人罹患大腸癌,而大約有五十萬位大腸癌病人病逝,手術治療是目前最主要治療大腸癌的方式,而且對於早期的大腸癌病患有較好的治療效果。骨調素(osteopontin)是一種含有RGD序列的分泌性磷酸化醣蛋白,骨調素會大量表現在許多不同種類的癌症上,而大量的骨調素表現通常會伴隨著腫瘤惡化的情形發生。有許多的文獻指出骨調素在癌細胞中扮演了很重要的角色,包括抑制免疫細胞的功能、增加細胞的存活、細胞的增生、細胞遷移、細胞侵入與血管新生,癌症病人中骨調素的表現量增加會降低病患的存活率。在許多的人類腫瘤中會有缺氧的情形發生,而細胞會透過缺氧誘導轉錄因子(HIF)去克服缺氧的環境。除此之外,在缺氧環境下骨調素的表現會上升,且骨調素被認為具有作為腫瘤缺氧環境下指標的潛力。
在本篇的研究中我們發現在給予一種誘發化學性缺氧的化合物氯化鈷(CoCl2)之後,人類大腸癌細胞HT-29的骨調素蛋白表現量會有所增加,接著我們探討骨調素在HT-29細胞處於缺氧環境下所扮演的角色,發現到外給骨調素會促進缺氧誘導轉錄因子的蛋白表現,但卻不會影響缺氧誘導轉錄因子mRNA的表現。除此之外,我們利用西方點墨法分析核內蛋白證實外給骨調素會促進缺氧誘導轉錄因子轉移到細胞核內。此外,我們也發現外加骨調素增加缺氧誘導轉錄因子的增加現象會被αvβ5以及CD44抗體所拮抗。
我們接著探討骨調素增加缺氧誘導轉錄因子表現的訊息傳遞機制,我們發現骨調素增加缺氧誘導轉錄因子表現的作用會被PF573228 (FAK抑制劑)、LY294002 (PI3K抑制劑)及PD98059 (MEK抑制劑)所拮抗,進一步我們也發現外給骨調素會增加細胞中FAK、Akt及ERK的磷酸化。當我們轉殖一段具有專一性拮抗骨調素mRNA的RNA使細胞內骨調素的表現量降低,進而發現骨調素表現量缺乏的HT-29細胞在氯化鈷(CoCl2)的刺激之下和正常細胞比較會表現較少的缺氧誘導轉錄因子蛋白。
我們更進一步地去探討骨調素在缺氧環境下對於葡萄糖轉運子(GLUT)表現的影響,在本篇的研究結果顯示骨調素在氯化鈷的作用下會促進葡萄糖轉運子三(GLUT3)的mRNA及蛋白的表現。然而,骨調素並不會影響葡萄糖轉運子一、二及四的表現。我們還探討了骨調素在活體中所扮演的角色,但是我們發現骨調素表現量缺乏的HT-29細胞和正常細胞對於腫瘤的生長並沒有明顯的影響。
總結本篇的研究結果,我們發現在人類大腸癌細胞給予氯化鈷的刺激會增加骨調素的表現,而骨調素則會促進缺氧誘導轉錄因子蛋白的表現和轉移到細胞核,這個現象會被αvβ5 and CD44的抗體所拮抗。此外我們也證實了人類大腸癌細胞在缺氧的環境下骨調素與缺氧誘導轉錄因子之間的關係,骨調素可能會藉由αvβ5 integrin、CD44 receptor、FAK、PI3K/Akt和ERK這些訊息傳遞路徑去調控缺氧誘導轉錄因子的表現。骨調素無論是在生物體外或活體內都會促進葡萄糖轉運子三的表現,但是抑制骨調素的表現卻對於腫瘤的生長沒有影響。
zh_TW
dc.description.abstractHuman colorectal carcinoma is the third most common cancer and the fourth most cause cancer death all over the world. It is estimated that more than 1,000,000 new cases of colon cancer develop each year, and around 500,000 patients die. Surgery is the primary form of therapy for this disease, and it is beneficial to cure in early-stage CRC. Osteopontin (OPN), a secreted RGD-containing phosphoglycoprotein, is abundantly expressed in a number of cancers and concordant with tumor stage. Previous studies have indicated that OPN in cancer cells plays an important role in the inhibition of immune cell function and increase of cell survival, cell proliferation, migration, invasion and angiogenesis. Increase of OPN in cancer patients is associated with poor survival rate. Hypoxia occurs in most solid human tumors, and cells respond to hypoxia is through hypoxia-inducible transcription factor 1 (HIF-1). In addition, OPN is up-regulated in hypoxia condition and considered to be a potential marker of tumor hypoxia.
In the present study, we found that the protein expression of osteopontin was elevated by CoCl2 treatment in HT-29 human colorectal adenocarcinoma cells. We thus further investigated the role of osteopontin in HT-29 cells under hypoxia. Exogenous application of osteopontin enhanced
HIF-1α protein expression under CoCl2 treatment, whereas, the mRNA expression of HIF-1α was not affected by the application of osteopontin (3 ng/ml). In addition, it was found that exogenous application of osteopontin enhanced HIF-1α nuclear translocation using Western blotting analysis of nuclear extract. Furthermore, increase of
HIF-1α by exogenous osteopontin was antagonized by the co-treatment with αvβ5 and CD44 monoclonal antibody.
We then investigated the signaling mechanism by which osteopontin increased CoCl2-induced HIF-1α protein expression. Our data showed that HIF-1α protein expression was inhibited by the pretreatment of PF573228 (an inhibitor of FAK), LY294002 (an inhibitor of PI3K/Akt) and PD98059 (an inhibitor of MEK).Furthermore, exogenous application of osteopontin increased the phosphorylation levels of FAK, Akt and ERK. We further transfected with the specific osteopontin small hairpin RNA (shRNA) in HT-29 cells, and found that osteopontin knockdown shRNA caused a significant reduction of HIF-1α protein expression under CoCl2 treatment.
We further examined the effect of osteopontin on glucose transporter (GLUT) expression under hypoxic condition. It was shown that glucose transporter 3 (GLUT3) mRNA and protein expression was increased by osteopontin under CoCl2 treatment. However, it exerted no effect on GLUT1, GLUT2 and GLUT4 expression. We finally explored the role of osteopontin in tumor growth. However, knockdown of osteopontin did not affect the growth of tumor. Whether osteopontin knockdown affects tumor metastasis needs further investigation.
In conclusion, elevation of osteopontin after CoCl2 treatment enhanced HIF-1α protein expression and accumulation in nucleus, which could be antagonized by pretreatment of αvβ5 and CD44 antibody. In addition, the signaling pathways between osteopontin and HIF-1α in HT-29 cells under hypoxia were demonstrated. The regulation of HIF-1α protein expression by osteopontin may act through
αvβ5 integrin, CD44 receptor, FAK, PI3K/Akt, and ERK signaling pathways. Moreover, osteopontin enhanced GLUT3 expression both in vitro and in vivo. However, knockdown of osteopontin in HT-29 did not influence the growth of tumor.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:26:43Z (GMT). No. of bitstreams: 1
ntu-101-R98443019-1.pdf: 1595333 bytes, checksum: 829dac5694cfdd0193f996435d1eed83 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsAbbreviations…………………………..………………………...……….V
摘要……………………………………………………………..………..VII
Abstract……………………………………………………………..…....IX
Chapter 1 Introduction…………………………………..………………..……….1
1-1 Colorectal carcinoma …………....………………………….………..…………1
1-2 Osteopontin……………………...………………………………...….......……..2
1-3 Integrin………………...……………..…………………………..………….…..5
1-4 Hypoxia……………………………………….………………………...……….6
1-5 Glucose and energy metabolism……………..………………………...………..8
Chapter 2 Materials and Methods…………………………………..……...….16
Chapter 3 Results……………………………...……………………...…...……….22
3-1. Effect of CoCl2 on osteopontin protein expression in human colorectal carcinoma cell line ………………………….……………...….…………...…22
3-2. Effect of osteopontin on CoCl2-induced HIF-1α protein expression……...…..23
3-3. Effect of osteopontin on CoCl2-induced HIF-1α nuclear translocation…….....24
3-4. αvβ5 integrin and CD44 receptor are involved in osteopontin–induced HIF-1α expression………………………………………………………………......…24
3-5. Roles of FAK, PI3K/Akt, and ERK in osteopontin-induced HIF-1α protein expression……...…………………………………………………………...…25
3-6. Role of endogenous osteopontin in CoCl2-induced HIF-1α protein expression………………………………………………………………...…...26
3-7. Exogenous osteopontin increases hypoxia-induced GLUT3 expression…...…27
3-8. Exogenous osteopontin exerts no effect on GLUT1, GLUT2 and GLUT4 expression under hypoxia………...……………………………………...……28
3-9. Knockdown of osteopontin in HT-29 cell line has no effect on tumor growth in vivo.……...……………………………………………………………………29
3-10. Knockdown of osteopontin in HT-29 cells reduces GLUT3 protein expression in vivo………………..……………………………..…………………..……30
Chapter 4 Discussion and Conclusion……………….……………….….……31
References………………………………...………………………………………….49
圖目錄
Figure 1-1-1. A series of genetic mutations involved in colorectal cancer
progression ………………………………………...…………………….11
Figure 1-3-1. The integrin family……….…………………………………………...…12
Figure 1-3-2. Integrin signaling.……………………..…………..……………………..13
Figure 1-4-1. O2-dependent regulation of HIF-1α activity ………………………...….14
Figure 1-4-2. Genes involved in many processes are upregulated by HIF-1…………..15
Figure 3-1. Time-dependent increase of osteopontin protein expression by CoCl2 in HT-29 cells…………………………..……………………………...…...37
Figure 3-2. Osteopontin enhances HIF-1α protein expression under CoCl2 treatment in a dose-dependent manner in HT-29 cells…...………………............…38
Figure 3-3. Osteopontin enhances HIF-1α nuclear translocation under CoCl2 treatment……………….…………………………………..……...…39
Figure 3-4. Inhibition by αvβ5 integrin and CD44 antibody on osteopontin-induced increase of HIF-1α protein expression under hypoxia …………………40
Figure 3-5. Involvement of FAK, PI3K/Akt and ERK signaling pathways in OPN-induced HIF-1α expression in HT-29 cells …….………………41
Figure 3-6. Exogenous osteopontin enhances phosphorylation of FAK, Akt, and ERK under hypoxia in HT-29 cells……..……………..……………...….42
Figure 3-7. Knockdown of osteopontin decreases HIF-1α expression under hypoxia in HT-29 cells……………………...…………………………...……...……43
Figure 3-8. Exogenous osteopontin enhances GLUT3 expression under hypoxia…….44
Figure 3-9. Exogenous osteopontin does not influence GLUT1, GLUT2, and GLUT4 expression under hypoxia in HT-29 cells …………………………….....45
Figure 3-10. Knockdown of osteopontin exerts no significant effect on tumor growth in vivo.……………………….…………………………………….……...46
Figure 3-11. Knockdown of osteopontin decreases GLUT3 protein expression in vivo.……..…………………………………………………………...…47
Figure 3-12. αvβ5 integrin, CD44 receptor, PI3K/Akt and ERK signaling pathways are
involved in osteopontin-enhanced HIF-1α accumulation under hypoxic
condition………………………………………………………….….…48
dc.language.isoen
dc.title探討缺氧環境下osteopontin對結腸直腸癌細胞的調節作用zh_TW
dc.titleRegulation of HIF-1α and glucose transporter by osteopontin in colon carcinoma cells under hypoxic conditionsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏茂雄,楊春茂,劉興華,林琬琬
dc.subject.keyword大腸直腸癌,缺氧,骨調素,組合蛋白,葡萄糖轉運子,zh_TW
dc.subject.keywordcolon cancer,hypoxia,osteopontin,integrin,glucose transporter,en
dc.relation.page58
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
1.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved