Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64016
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林唯芳(Wei-Fang Su)
dc.contributor.authorTzu-Yi Yuen
dc.contributor.author游子毅zh_TW
dc.date.accessioned2021-06-16T17:26:39Z-
dc.date.available2025-03-11
dc.date.copyright2020-03-11
dc.date.issued2020
dc.date.submitted2020-03-06
dc.identifier.citation[1] T. C. Chen et al., 'Polybenzyl Glutamate Biocompatible Scaffold Promotes the Efficiency of Retinal Differentiation toward Retinal Ganglion Cell Lineage from Human-Induced Pluripotent Stem Cells,' Int J Mol Sci, vol. 20, no. 1, Jan 5 2019, doi: 10.3390/ijms20010178.
[2] Z. H. Wang et al., 'Novel 3D Neuron Regeneration Scaffolds Based on Synthetic Polypeptide Containing Neuron Cue,' Macromol Biosci, vol. 18, no. 3, Mar 2018, doi: 10.1002/mabi.201700251.
[3] C.-Y. Lin, S.-C. Luo, J.-S. Yu, T.-C. Chen, and W.-F. Su, 'Peptide-Based Polyelectrolyte Promotes Directional and Long Neurite Outgrowth,' ACS Applied Bio Materials, vol. 2, no. 1, pp. 518-526, 2018.
[4] S. Merino, C. Martin, K. Kostarelos, M. Prato, and E. Vázquez, 'Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery,' Acs Nano, vol. 9, no. 5, pp. 4686-4697, 2015.
[5] A. Fajardo, A. Pereira, A. Rubira, A. Valente, and E. Muniz, 'Stimuli-Responsive Polysaccharide-Based Hydrogels,' in Polysaccharide Hydrogels, 2015, pp. 325-366.
[6] T. C. Lai, J. Yu, and W. B. Tsai, 'Gelatin methacrylate/carboxybetaine methacrylate hydrogels with tunable crosslinking for controlled drug release,' J Mater Chem B, vol. 4, no. 13, pp. 2304-2313, 2016.
[7] K.-C. Cheng, C.-F. Huang, Y. Wei, and S.-h. Hsu, 'Novel chitosan–cellulose nanofiber self-healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects,' NPG Asia Materials, vol. 11, no. 1, 2019, doi: 10.1038/s41427-019-0124-z.
[8] W. Hu, Z. Wang, Y. Xiao, S. Zhang, and J. Wang, 'Advances in crosslinking strategies of biomedical hydrogels,' Biomater Sci, vol. 7, no. 3, pp. 843-855, Feb 26 2019.
[9] H. T. Cui, X. L. Zhuang, C. L. He, Y. Wei, and X. S. Chen, 'High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications,' Acta Biomater, vol. 11, pp. 183-190, Jan 1 2015.
[10] S. A. Asher, J. Holtz, L. Liu, and Z. Wu, 'Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays,' J Am Chem Soc, vol. 116, no. 11, pp. 4997-4998, 1994.
[11] H. Lv et al., 'A versatile method for fabricating ion-exchange hydrogel nanofibrous membranes with superb biomolecule adsorption and separation properties,' J Colloid Interface Sci, vol. 506, pp. 442-451, Nov 15 2017.
[12] J. Y. Li and D. J. Mooney, 'Designing hydrogels for controlled drug delivery,' Nat Rev Mater, vol. 1, no. 12, Dec 2016, doi: ARTN 1607110.1038/natrevmats.2016.71.
[13] W. Wu, J. Shen, P. Banerjee, and S. Zhou, 'Core–shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment,' Biomaterials, vol. 31, no. 29, pp. 7555-7566, 2010.
[14] J. Zheng et al., 'Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation,' Nat Commun, vol. 10, no. 1, p. 1604, 2019.
[15] B. Yan, J.-C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, 'Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles,' J Am Chem Soc, vol. 134, no. 40, pp. 16558-16561, 2012.
[16] C. Loebel, R. L. Mauck, and J. A. Burdick, 'Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels,' Nat Mater, p. 1, 2019.
[17] P. Prang et al., 'The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels,' Biomaterials, vol. 27, no. 19, pp. 3560-9, Jul 2006.
[18] I. Doench et al., 'Injectable and gellable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering,' Polymers, vol. 10, no. 11, p. 1202, 2018.
[19] Z. Zhao, R. Fang, Q. Rong, and M. Liu, 'Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures,' Adv Mater, vol. 29, no. 45, Dec 2017, doi: 10.1002/adma.201703045.
[20] D. Ye et al., 'Robust anisotropic cellulose hydrogels fabricated via strong self-aggregation forces for cardiomyocytes unidirectional growth,' Chem Mater, vol. 30, no. 15, pp. 5175-5183, 2018.
[21] J. Thumbs and H.-H. Kohler, 'Capillaries in alginate gel as an example of dissipative structure formation,' Chemical physics, vol. 208, no. 1, pp. 9-24, 1996.
[22] Z. L. Wu, T. Kurokawa, D. Sawada, J. Hu, H. Furukawa, and J. P. Gong, 'Anisotropic Hydrogel from Complexation-Driven Reorientation of Semirigid Polyanion at Ca2+Diffusion Flux Front,' Macromolecules, vol. 44, no. 9, pp. 3535-3541, 2011.
[23] M. Chau et al., 'Composite hydrogels with tunable anisotropic morphologies and mechanical properties,' Chem Mater, vol. 28, no. 10, pp. 3406-3415, 2016.
[24] S. M. Zhang et al., 'A self-assembly pathway to aligned monodomain gels,' Nat Mater, vol. 9, no. 7, pp. 594-601, Jul 2010.
[25] C. Yan, M. E. Mackay, K. Czymmek, R. P. Nagarkar, J. P. Schneider, and D. J. Pochan, 'Injectable solid peptide hydrogel as a cell carrier: effects of shear flow on hydrogels and cell payload,' Langmuir, vol. 28, no. 14, pp. 6076-6087, 2012.
[26] A. H. Milani et al., 'Anisotropic pH-responsive hydrogels containing soft or hard rod-like particles assembled using low shear,' Chem Mater, vol. 29, no. 7, pp. 3100-3110, 2017.
[27] M. A. Haque, G. Kamita, T. Kurokawa, K. Tsujii, and J. P. Gong, 'Unidirectional alignment of lamellar bilayer in hydrogel: one‐dimensional swelling, anisotropic modulus, and stress/strain tunable structural color,' Adv Mater, vol. 22, no. 45, pp. 5110-5114, 2010.
[28] Z. L. Wu et al., 'Strain-induced molecular reorientation and birefringence reversion of a robust, anisotropic double-network hydrogel,' Macromolecules, vol. 44, no. 9, pp. 3542-3547, 2011.
[29] W. Yang, H. Furukawa, and J. P. Gong, 'Highly extensible double‐network gels with self‐assembling anisotropic structure,' Adv Mater, vol. 20, no. 23, pp. 4499-4503, 2008.
[30] F. Khan, D. Walsh, A. J. Patil, A. W. Perriman, and S. Mann, 'Self-organized structural hierarchy in mixed polysaccharide sponges,' Soft Matter, vol. 5, no. 16, pp. 3081-3085, 2009.
[31] N. Lin and A. Dufresne, 'Nanocellulose in biomedicine: Current status and future prospect,' Eur Polym J, vol. 59, pp. 302-325, Oct 2014.
[32] T. Abitbol et al., 'Nanocellulose, a tiny fiber with huge applications,' (in English), Curr Opin Biotech, vol. 39, pp. 76-88, Jun 2016.
[33] Z. Khatri, G. Mayakrishnan, Y. Hirata, K. Wei, and I.-S. Kim, 'Cationic-cellulose nanofibers: preparation and dyeability with anionic reactive dyes for apparel application,' Carbohyd Polym, vol. 91, no. 1, pp. 434-443, 2013.
[34] A. Isogai, T. Saito, and H. Fukuzumi, 'TEMPO-oxidized cellulose nanofibers,' Nanoscale, vol. 3, no. 1, pp. 71-85, Jan 2011.
[35] A. Basu, J. Lindh, E. Alander, M. Stromme, and N. Ferraz, 'On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: Physicochemical properties and application-oriented biocompatibility studies,' Carbohyd Polym, vol. 174, pp. 299-308, Oct 15 2017, doi: 10.1016/j.carbpol.2017.06.073.
[36] R. Kolakovic, L. Peltonen, A. Laukkanen, J. Hirvonen, and T. Laaksonen, 'Nanofibrillar cellulose films for controlled drug delivery,' Eur J Pharm Biopharm, vol. 82, no. 2, pp. 308-315, 2012.
[37] S. Zhou, P. Liu, M. Wang, H. Zhao, J. Yang, and F. Xu, 'Sustainable, reusable, and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation,' Acs Sustain Chem Eng, vol. 4, no. 12, pp. 6409-6416, 2016.
[38] C. Gebald, J. A. Wurzbacher, P. Tingaut, T. Zimmermann, and A. Steinfeld, 'Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air,' Environmental science & technology, vol. 45, no. 20, pp. 9101-9108, 2011.
[39] R. J. Wade and J. A. Burdick, 'Advances in nanofibrous scaffolds for biomedical applications: From electrospinning to self-assembly,' Nano Today, vol. 9, no. 6, pp. 722-742, Dec 2014.
[40] K. P. Y. Shak, Y. L. Pang, and S. K. Mah, 'Nanocellulose: Recent advances and its prospects in environmental remediation,' Beilstein J Nanotechnol, vol. 9, pp. 2479-2498, 2018.
[41] W. Qi, W. Yuan, J. Yan, and H. Wang, 'Growth and accelerated differentiation of mesenchymal stem cells on graphene oxide/poly-L-lysine composite films,' J Mater Chem B, vol. 2, no. 33, pp. 5461-5467, 2014.
[42] N. Masruchin, B.-D. Park, V. Causin, and I. C. Um, 'Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties,' Cellulose, vol. 22, no. 3, pp. 1993-2010, 2015.
[43] J. Yang, X. M. Zhang, M. G. Ma, and F. Xu, 'Modulation of Assembly and Dynamics in Colloidal Hydrogels via Ionic Bridge from Cellulose Nanofibrils and Poly(ethylene glycol),' Acs Macro Lett, vol. 4, no. 8, pp. 829-833, Aug 2015.
[44] H. Dong, J. F. Snyder, K. S. Williams, and J. W. Andzelm, 'Cation-Induced Hydrogels of Cellulose Nanofibrils with Tunable Moduli,' Biomacromolecules, vol. 14, no. 9, pp. 3338-3345, Sep 2013.
[45] N. E. Zander, H. Dong, J. Steele, and J. T. Grant, 'Metal Cation Cross-Linked Nanocellulose Hydrogels as Tissue Engineering Substrates,' (in English), Acs Appl Mater Inter, vol. 6, no. 21, pp. 18502-18510, Nov 12 2014.
[46] D. S. Poché, M. J. Moore, and J. L. Bowles, 'An Unconventional Method for Purifying the N-carboxyanhydride Derivatives of γ-alkyl-L-glutamates,' Synthetic Commun, vol. 29, no. 5, pp. 843-854, 1999.
[47] G. J. M. Habraken, K. H. R. M. Wilsens, C. E. Koning, and A. Heise, 'Optimization of N-carboxyanhydride (NCA) polymerization by variation of reaction temperature and pressure,' Polymer Chemistry, vol. 2, no. 6, 2011, doi: 10.1039/c1py00079a.
[48] G. D. Fasman, M. Idelson, and E. R. Blout, 'Synthesis and Conformation of High Molecular Weight Poly-Epsilon-Carbobenzyloxy-L-Lysine and Poly-L-Lysine.Hcl,' J Am Chem Soc, vol. 83, no. 3, pp. 709-&, 1961.
[49] E. T. Pashuck, H. G. Cui, and S. I. Stupp, 'Tuning Supramolecular Rigidity of Peptide Fibers through Molecular Structure,' J Am Chem Soc, vol. 132, no. 17, pp. 6041-6046, May 5 2010.
[50] J. Rodriguez-Hernandez and S. Lecommandoux, 'Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers,' J Am Chem Soc, vol. 127, no. 7, pp. 2026-2027, Feb 23 2005.
[51] E. R. Blout and M. Idelson, 'Polypeptides .22. Compositional Effects on the Configuration of Water-Soluble Polypeptide Copolymers of L-Glutamic Acid and L-Lysine,' J Am Chem Soc, vol. 80, no. 18, pp. 4909-4913, 1958.
[52] C. Deng, X. S. Chen, H. J. Yu, J. Sun, T. C. Lu, and X. B. Jing, 'A biodegradable triblock copolymer poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-lysine): Synthesis, self-assembly and RGD peptide modification,' Polymer, vol. 48, no. 1, pp. 139-149, Jan 5 2007.
[53] G. J. M. Habraken, M. Peeters, C. H. J. T. Dietz, C. E. Koning, and A. Heise, 'How controlled and versatile is N-carboxy anhydride (NCA) polymerization at 0 °C? Effect of temperature on homo-, block- and graft (co)polymerization,' Polymer Chemistry, vol. 1, no. 4, 2010, doi: 10.1039/b9py00337a.
[54] S. Nimesh, R. Chandra, and N. Gupta, Advances in nanomedicine for the delivery of therapeutic nucleic acids. Woodhead Publishing, 2017.
[55] W. C. Johnson, Jr., 'Protein secondary structure and circular dichroism: a practical guide,' Proteins, vol. 7, no. 3, pp. 205-14, 1990.
[56] H. Lu et al., 'Ionic polypeptides with unusual helical stability,' Nat Commun, vol. 2, Feb 2011, doi: 10.1038/ncomms1209.
[57] F. Martoia et al., 'Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear,' Soft Matter, vol. 11, no. 24, pp. 4742-55, Jun 28 2015.
[58] A. Karppinen, T. Saarinen, J. Salmela, A. Laukkanen, M. Nuopponen, and J. Seppälä, 'Flocculation of microfibrillated cellulose in shear flow,' Cellulose, vol. 19, no. 6, pp. 1807-1819, 2012.
[59] E. Saarikoski, T. Saarinen, J. Salmela, and J. Seppälä, 'Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour,' Cellulose, vol. 19, no. 3, pp. 647-659, 2012.
[60] M. A. Meyers and K. K. Chawla, Mechanical behavior of materials. Cambridge university press, 2008.
[61] O. Okay and S. Durmaz, 'Charge density dependence of elastic modulus of strong polyelectrolyte hydrogels,' Polymer, vol. 43, no. 4, pp. 1215-1221, 2002.
[62] O. Okay, 'General properties of hydrogels,' in Hydrogel sensors and actuators: Springer, 2009, pp. 1-14.
[63] S. Fusco, V. Panzetta, V. Embrione, and P. A. Netti, 'Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions,' Acta Biomater, vol. 23, pp. 63-71, Sep 2015.
[64] J. W. Gunn, S. D. Turner, and B. K. Mann, 'Adhesive and mechanical properties of hydrogels influence neurite extension,' J Biomed Mater Res A, vol. 72a, no. 1, pp. 91-97, Jan 1 2005.
[65] S. K. Seidlits et al., 'The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation,' Biomaterials, vol. 31, no. 14, pp. 3930-3940, May 2010.
[66] A. Banerjee et al., 'The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells,' Biomaterials, vol. 30, no. 27, pp. 4695-9, Sep 2009.
[67] L. Bian, C. Hou, E. Tous, R. Rai, R. L. Mauck, and J. A. Burdick, 'The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy,' Biomaterials, vol. 34, no. 2, pp. 413-21, Jan 2013.
[68] L. Geng et al., 'Understanding the Mechanistic Behavior of Highly Charged Cellulose Nanofibers in Aqueous Systems,' Macromolecules, vol. 51, no. 4, pp. 1498-1506, 2018.
[69] A. Paul, C.-J. Eun, and J. M. Song, 'Cytotoxicity mechanism of non-viral carriers polyethylenimine and poly-l-lysine using real time high-content cellular assay,' Polymer, vol. 55, no. 20, pp. 5178-5188, 2014.
[70] L. J. Arnold, Jr., A. Dagan, J. Gutheil, and N. O. Kaplan, 'Antineoplastic activity of poly(L-lysine) with some ascites tumor cells,' Proc Natl Acad Sci U S A, vol. 76, no. 7, pp. 3246-50, Jul 1979.
[71] K. M. Hakansson et al., 'Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments,' Nat Commun, vol. 5, p. 4018, Jun 2 2014.
[72] R. M. Parker et al., 'Hierarchical Self-Assembly of Cellulose Nanocrystals in a Confined Geometry,' ACS Nano, vol. 10, no. 9, pp. 8443-9, Sep 27 2016.
[73] L. Maggini, M. Liu, Y. Ishida, and D. Bonifazi, 'Anisotropically Luminescent Hydrogels Containing Magnetically‐Aligned MWCNTs‐Eu (III) Hybrids,' Adv Mater, vol. 25, no. 17, pp. 2462-2467, 2013.
[74] M. Liu et al., 'An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets,' Nature, vol. 517, no. 7532, pp. 68-72, 2015.
[75] K. Hu et al., 'A novel magnetic hydrogel with aligned magnetic colloidal assemblies showing controllable enhancement of magnetothermal effect in the presence of alternating magnetic field,' Adv Mater, vol. 27, no. 15, pp. 2507-2514, 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64016-
dc.description.abstract隨著行動裝置的普及,人們長時間注視螢幕的時間逐漸增長,使罹患視神經相關疾病機率提高。有別於其他組織,視神經並沒辦法自我修復。近年來有許多學者投入視神經相關的組織工程研究,在體外細胞實驗有豐碩的成果,但礙於手術執行的困難性以及材料的成本,這些生醫材料仍無法大規模製造及應用於臨床治療。
因此,我們利用纖維素奈米纖維及水溶性聚胜肽製備一種可注射、低生物毒性且合成成本相對低的水膠材料。我們預期注射時的剪應力能促使纖維素奈米纖維在成膠時形成有方向性的排列,並藉此引導神經軸突生長。為了最佳化材料參數以達到上述目標,我們系統性地研究前驅水溶液濃度、膠聯劑種類及製備方式對水膠材料的微結構與其性質之影響。
綜合實驗結果,雖然以注射製備水膠並沒辦法達到長程的方向性排列,但在偏光顯微鏡下能觀察到局部區域有明顯的雙折射性,證明纖維素奈米纖維在這些區域可能有規整且密集的排列。我們發現使用前驅水溶液的濃度與水膠機械強度有正向關係,但與含水量為負相關。此外,低濃度的聚胜肽前驅溶液就可以大幅提升水膠的機械性質並維持水膠含水量在90%以上。這個結果證明聚生態與纖維素奈米纖維間有非常強的交互作用,因此聚胜肽是非常有效的交聯劑。但目前無法斷言除了氫鍵及粒徑的影響之外,是否還有其他機制促成兩者之間的強交互作用。在生物活性試驗中,由高濃度聚胜肽水溶液製備的水膠對PC12細胞有明顯毒性,而鈣離子膠聯的纖維素奈米纖維水膠則沒有細胞毒性。有許多文獻提到高濃度聚胜肽的細胞及生物毒性,並且提出細胞生理學的機制作為解釋。藉由這些實驗數據,後續研究者可以更容易調控纖維素奈米纖維與聚胜肽混摻水膠的性質以符合實驗或應用之需要。
zh_TW
dc.description.abstractIn the Information Age, people spend more time reading screens and suffer from ophthalmological diseases. Optical nerves cannot be regenerated once they are damaged. Though researchers employed stem cells and biomaterials for tissue engineering and achieved some success of nerve regeneration in the lab, the cost of biomaterials and the difficulty of surgery in ophthalmology hinder these biomaterials from mass-production and applications in clinic.
By using cellulose nanofibers and polypeptides, we fabricated injectable hydrogels with low cost in synthesis. After extrusion, these CNFs hydrogels are expected to be low-cytotoxic and exhibit anisotropic microstructure to guide neurite growth. We systematically studied the effect of crosslinker types, concentration of precursors, and fabrication methods on their microstructures and properties.
Polypeptides significantly enhance the complex modulus of their CNFs hydrogels. The strong interaction between polypeptides and CNFs might due to the size of polypeptides particles and hydrogen bonds between the two macromolecules. Also, the CNFs self-assemble into a compact microstructure with birefringence due to the diffusion of polypeptides. The concentration of precursors has a positive correlation with the mechanical strength but a negative correlation with the water content of their CNFs hydrogels. In the cell viability test, the CNFs hydrogels crosslinked by calcium or low concentration of polypeptides are non-toxic to PC12 cells. The extrusion process slightly promotes the CNFs orientation in the hydrogels, but overall the microstructures of CNFs hydrogels have no specific direction.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:26:39Z (GMT). No. of bitstreams: 1
ntu-109-R05527079-1.pdf: 7093235 bytes, checksum: d9e5278126dd04fc7a0cde36d81a2327 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsCONTENTS
摘要 I
ABSTRACT II
CONTENTS IV
LIST OF FIGURES VIII
LIST OF TABLES XI
Chapter 1 Introduction 1
1.1 Nerve Regeneration 1
1.2 Hydrogels 2
1.2.1 Introduction to Hydrogels and Their Properties 2
1.2.2 Characterization of Hydrogels 5
1.2.3 Applications of Hydrogels 6
1.2.4 Anisotropic Hydrogels 8
1.3 Cellulose Nanofibers (CNFs) 15
1.4 Motivation 18
1.5 Objective and Experimental Design 19
Chapter 2 Chemicals, Instruments and Experimental Methods 24
2.1 Chemicals and Instruments 24
2.2 Nomenclature 33
2.2.1 Ingredients 33
2.2.2 Hydrogels 34
2.3 Polypeptide Synthesis 35
2.4 Hydrogel Fabrication Methods 43
2.4.1 Dropped Method 44
2.4.2 Extruded Method 46
2.4.3 Co-extruded Method 47
2.5 Chemicals and Solution Characterization 48
2.5.1 Nuclear Magnetic Resonance (1H-NMR) 48
2.5.2 Fourier-Transform Infrared Spectroscopy (FTIR) 48
2.5.3 Gel Permeation Chromatography (GPC) 48
2.5.4 Dynamic Light Scattering (DLS) and Zeta Potential 49
2.5.5 Circular Dichroism (CD) 49
2.6 Hydrogel Characterization 50
2.6.1 Mechanical Properties (Rheology) Characterization 50
2.6.2 Water Content Characterization 50
2.6.3 Polarized Optical Microscopy (POM) 51
2.6.4 Small Angle X-ray Scattering (SAXS) 51
2.6.5 Scanning Electron Microscopy (SEM) 52
2.6.6 PC 12 Cell Culture 52
2.6.7 Live/Dead Cell Viability Test 55
2.6.8 alamarBlue Cell Viability Test 57
Chapter 3 Results and Discussion 60
3.1 Characterization of Peptide Monomers and Polypeptides 60
3.1.1 Chemical Structure of Peptide Monomers and Polypeptides 60
3.1.2 Molecular Weight of Polypeptides 70
3.2 Characterization of Polypeptides and CNFs in Aqueous Solution 73
3.2.1 Particle Size and Zeta Potential of Polypeptides and CNFs in Solution 73
3.2.2 Polypeptides Conformations in Aqueous Solution 75
3.3 Characterization of CNFs Hydrogels 77
3.3.1 Microstructure of CNFs Hydrogels 77
3.3.2 Gel Behaviors of CNFs Hydrogels 89
3.3.3 Cell Toxicity of CNFs Hydrogels 108
Chapter 4 Conclusion 116
Chapter 5 Recommendations 118
5.1. Optimization of Fabrication Parameter for Anisotropic Microstructure 118
5.2. Composition Analysis of CNFs Hydrogels 121
5.3 Hydrogel Network Analysis by SAXS 1D Integral Fitting 121
REFERENCE 122
APPENDIX 134
dc.language.isoen
dc.subject纖維素奈米纖維zh_TW
dc.subject聚胜?zh_TW
dc.subject奈米混摻zh_TW
dc.subject水膠zh_TW
dc.subject自組裝zh_TW
dc.subjecthydrogelsen
dc.subjectpolypeptideen
dc.subjectnanocompositeen
dc.subjectcellulose nanofibersen
dc.subjectself-assembleen
dc.title纖維素奈米纖維與聚胜肽之奈米混摻水膠:合成、製備、微結構與性質研究zh_TW
dc.titleCellulose-Nanofibers/Polypeptides nanocomposite hydrogels: synthesis, fabrication, microstructure and propertiesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅世強(Shyh-Chyang Luo),游佳欣(Jia-Shing Yu),吳明忠(Ming-Chung Wu),陳達慶(Ta-Ching Chen)
dc.subject.keyword纖維素奈米纖維,聚胜?,奈米混摻,水膠,自組裝,zh_TW
dc.subject.keywordcellulose nanofibers,polypeptide,nanocomposite,hydrogels,self-assemble,en
dc.relation.page133
dc.identifier.doi10.6342/NTU202000675
dc.rights.note有償授權
dc.date.accepted2020-03-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
6.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved