請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64010完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟 | |
| dc.contributor.author | Ying-Sian Chen | en |
| dc.contributor.author | 陳映先 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:26:23Z | - |
| dc.date.available | 2014-08-19 | |
| dc.date.copyright | 2012-08-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-16 | |
| dc.identifier.citation | 1. Acosta FL, Jr., Quinones-Hinojosa A, Gadkary CA, et al. Frameless stereotactic image-guided C1-C2 transarticular screw fixation for atlantoaxial instability: review of 20 patients. J Spinal Disord Tech 2005;18:385-91.
2. Chung SS, Lee CS, Chung HW, et al. CT analysis of the axis for transarticular screw fixation of rheumatoid atlantoaxial instability. Skeletal Radiol 2006;35:679-83. 3. Cybulski GR, Stone JL, Crowell RM, et al. Use of Halifax interlaminar clamps for posterior C1-C2 arthrodesis. Neurosurgery 1988;22:429-31. 4. Dickman CA, Sonntag VK. Posterior C1-C2 transarticular screw fixation for atlantoaxial arthrodesis. Neurosurgery 1998;43:275-80; discussion 80-1. 5. Elgafy H, Potluri T, Goel VK, et al. Biomechanical analysis comparing three C1-C2 transarticular screw salvaging fixation techniques. Spine (Phila Pa 1976) 2010;35:378-85. 6. Estillore RP, Buchowski JM, Minh do V, et al. Risk of internal carotid artery injury during C1 screw placement: analysis of 160 computed tomography angiograms. Spine J 2011;11:316-23. 7. Fielding JW, Cochran GB, Lawsing JF, 3rd, et al. Tears of the transverse ligament of the atlas. A clinical and biomechanical study. J Bone Joint Surg Am 1974;56:1683-91. 8. Finn MA, Apfelbaum RI. Atlantoaxial transarticular screw fixation: update on technique and outcomes in 269 patients. Neurosurgery 2010;66:184-92. 9. Gluf WM, Schmidt MH, Apfelbaum RI. Atlantoaxial transarticular screw fixation: a review of surgical indications, fusion rate, complications, and lessons learned in 191 adult patients. J Neurosurg Spine 2005;2:155-63. 10. Goel A, Desai KI, Muzumdar DP. Atlantoaxial fixation using plate and screw method: a report of 160 treated patients. Neurosurgery 2002;51:1351-6; discussion 6-7. 11. Griswold DM, Albright JA, Schiffman E, et al. Atlanto-axial fusion for instability. J Bone Joint Surg Am 1978;60:285-92. 12. Grob D, Crisco JJ, 3rd, Panjabi MM, et al. Biomechanical evaluation of four different posterior atlantoaxial fixation techniques. Spine (Phila Pa 1976) 1992;17:480-90. 13. Grob D, Jeanneret B, Aebi M, et al. Atlanto-axial fusion with transarticular screw fixation. J Bone Joint Surg Br 1991;73:972-6. 14. Grob D, Magerl F. [Surgical stabilization of C1 and C2 fractures]. Orthopade 1987;16:46-54. 15. Haid RW, Jr. C1-C2 transarticular screw fixation: technical aspects. Neurosurgery 2001;49:71-4. 16. Hanley EN, Jr., Harvell JC, Jr. Immediate postoperative stability of the atlantoaxial articulation: a biomechanical study comparing simple midline wiring, and the Gallie and Brooks procedures. J Spinal Disord 1992;5:306-10. 17. Hanson PB, Montesano PX, Sharkey NA, et al. Anatomic and biomechanical assessment of transarticular screw fixation for atlantoaxial instability. Spine (Phila Pa 1976) 1991;16:1141-5. 18. Hong JT, Kim TH, Kim IS, et al. The effect of patient age on the internal carotid artery location around the atlas. J Neurosurg Spine 2010;12:613-8. 19. Jeanneret B, Magerl F. Primary posterior fusion C1/2 in odontoid fractures: indications, technique, and results of transarticular screw fixation. J Spinal Disord 1992;5:464-75. 20. Jun BY. Anatomic study for ideal and safe posterior C1-C2 transarticular screw fixation. Spine (Phila Pa 1976) 1998;23:1703-7. 21. Kato A, Yoshimine T, Hayakawa T, et al. A frameless, armless navigational system for computer-assisted neurosurgery. Technical note. J Neurosurg 1991;74:845-9. 22. Kelleher MO, McEvoy L, Nagaria J, et al. Image-guided transarticular atlanto-axial screw fixation. Int J Med Robot 2006;2:154-60. 23. Madawi AA, Casey AT, Solanki GA, et al. Radiological and anatomical evaluation of the atlantoaxial transarticular screw fixation technique. J Neurosurg 1997;86:961-8. 24. Mixter SJ, Osgood RB. IV. Traumatic Lesions of the Atlas and Axis. Ann Surg 1910;51:193-207. 25. Moskovich R, Crockard HA. Atlantoaxial arthrodesis using interlaminar clamps. An improved technique. Spine (Phila Pa 1976) 1992;17:261-7. 26. Naderi S, Crawford NR, Song GS, et al. Biomechanical comparison of C1-C2 posterior fixations. Cable, graft, and screw combinations. Spine (Phila Pa 1976) 1998;23:1946-55; discussion 55-6. 27. Neo M, Matsushita M, Iwashita Y, et al. Atlantoaxial transarticular screw fixation for a high-riding vertebral artery. Spine (Phila Pa 1976) 2003;28:666-70. 28. Neo M, Sakamoto T, Fujibayashi S, et al. A safe screw trajectory for atlantoaxial transarticular fixation achieved using an aiming device. Spine (Phila Pa 1976) 2005;30:E236-42. 29. Panjabi MM, Crisco JJ, Vasavada A, et al. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Spine (Phila Pa 1976) 2001;26:2692-700. 30. Paramore CG, Dickman CA, Sonntag VK. The anatomical suitability of the C1-2 complex for transarticular screw fixation. J Neurosurg 1996;85:221-4. 31. Richter M, Schmidt R, Claes L, et al. Posterior atlantoaxial fixation: biomechanical in vitro comparison of six different techniques. Spine (Phila Pa 1976) 2002;27:1724-32. 32. Senoglu M, Safavi-Abbasi S, Theodore N, et al. Feasible and accurate occipitoatlantal transarticular fixation: an anatomic study. Neurosurgery 2010;66:173-7; discussion 7. 33. Sim HB, Lee JW, Park JT, et al. Biomechanical evaluations of various c1-c2 posterior fixation techniques. Spine (Phila Pa 1976) 2011;36:E401-7. 34. Solanki GA, Crockard HA. Peroperative determination of safe superior transarticular screw trajectory through the lateral mass. Spine (Phila Pa 1976) 1999;24:1477-82. 35. Weidner A, Wahler M, Chiu ST, et al. Modification of C1-C2 transarticular screw fixation by image-guided surgery. Spine (Phila Pa 1976) 2000;25:2668-73; discussion 74. 36. White AA, 3rd, Panjabi MM. The basic kinematics of the human spine. A review of past and current knowledge. Spine (Phila Pa 1976) 1978;3:12-20. 37. Wigfield C, Bolger C. A technique for frameless stereotaxy and placement of transarticular screws for atlanto-axial instability in rheumatoid arthritis. Eur Spine J 2001;10:264-8. 38. Wright NM, Lauryssen C. Vertebral artery injury in C1-2 transarticular screw fixation: results of a survey of the AANS/CNS section on disorders of the spine and peripheral nerves. American Association of Neurological Surgeons/Congress of Neurological Surgeons. J Neurosurg 1998;88:634-40. 39. Yoshida M, Neo M, Fujibayashi S, et al. Comparison of the anatomical risk for vertebral artery injury associated with the C2-pedicle screw and atlantoaxial transarticular screw. Spine (Phila Pa 1976) 2006;31:E513-7. 40. Yoshimoto H, Ito M, Abumi K, et al. A retrospective radiographic analysis of subaxial sagittal alignment after posterior C1-C2 fusion. Spine (Phila Pa 1976) 2004;29:175-81. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64010 | - |
| dc.description.abstract | 簡介:寰樞椎生理結構特殊且活動度大,相較其他節頸椎更容易因外力與疾病導致滑脫進而壓迫神經與脊髓,臨床針對輕微患者透過復位調整、配戴頸圈來治療,嚴重者則需透過復位調整加上內固定手術進行治療。後側經寰樞椎關節固定術是用於治療寰樞椎不穩定患者之手術方法,能提供良好的穩定度,是現今治療寰樞椎不穩定患者之黃金準則。但該手術伴隨高併發症比率,可能導致神經麻痺、癱瘓甚至出血、死亡等情況。故近年來許多學者提倡透過術前規劃或定位巡航以降低術中併發症。
目的:術後實際路徑應符合規劃路徑以達規劃之最大成效,故本研究首先將分析術前規劃路徑與術後實際路徑之一致性,並分析施打路徑之參數間關聯性。此外,術中骨釘之施打將穿越寰樞椎以達固定效果;然而骨釘在施打時,可能對寰樞椎造成關節間緊迫或因植釘時施加之外力被推遠,甚至旋轉與側彎等改變,故本研究也將針對病患術前術後寰樞椎相對位置做分析探討。最後我們將分析不同骨釘施打路徑對於術後寰樞椎之相對運動是否有相關性。 材料與方法:本研究回顧了19位進行後側寰樞椎經關節固定術病患之術前術後影像資訊,病患平均年齡為61.1歲。病患術前先接受寰樞椎位置復位調整,接著拍攝斷層掃描並進行術前路徑規劃,且於術後再次進行斷層掃描拍攝。測量路徑一致性透過規劃路徑與實際路徑的斷層掃描影像進行量測,量測參數包含:進入點、垂直角、水平角、骨釘長度與目標點。在寰樞椎術後位置與角度改變量測則透過軟體分別於寰椎與樞椎上建立參考座標軸,再計算出距離與角度變化。 結果:術前術後結果顯示進入點不論在水平或垂直之差異都未達顯著,水平角及骨釘長度亦有同樣結果,但垂直角術後比起術前有顯著變大,術後目標點相較術前有分布於較接近顱側且較後方區域之趨勢。相關性探討發現進入點與角度具有關聯性,當進入點較接近顱側時垂直角會有變小之現象,而當進入點較外側時水平角會有向心旋轉之改變。在術後寰樞椎位置與角度結果顯示,術後病患寰樞椎相對位置與角度顯示當病患寰樞椎垂直距離改變時,將伴隨前彎後仰之趨勢。另外本研究發現,當術中垂直角與規劃路徑有所差異時,病患寰樞椎距離會具有相對應改變,針對此結果我們認為當骨釘進入角度改變時,會伴隨骨釘施力之水平分量與垂直分量改變,使病患寰樞椎術後相對距離受到影響。 結論:透過電腦輔助路徑規劃系統進行手術,相較以往能有效施打骨釘且降低併發症發生率,透過本研究分析規劃路徑與實際路徑間存在之差異,能提供術前規劃時加入與實際路徑差異之考量,且在手術操作時了解術前規劃路徑輔助與實際路徑存在多大之差異。而實際路徑與規劃路徑之垂直角不同,將影響寰樞椎相對距離,這結果將成為醫師進行後側經寰樞椎關節固定術時施打垂直角之考量。 | zh_TW |
| dc.description.abstract | Objective: To evaluate the feasibility of preoperative computer-assisted trajectory planning for posterior atlantoaxial transarticular screw fixation with surgical outcomes.
Introduction: Cervical C1-C2 instability or dislocation, usually caused by trauma or rheumatoid arthritis, results in nerve compression and assorted disorders. Most of patients can be cured by reduction treatment with the use of neck collar. The patients who suffer from severe symptoms may need surgical treatment. Posterior atlantoaxial fixation with transarticular screw (TAS) is a common treatment for atlantoaxial joint instability due to good stabilization efficacy. However, high complication rates were reported. Complications resulted from screw malposition and neurovascular deficit are catastrophic and fatal. Therefore, constructing patient’s individual 3D cervical images and planning TAS trajectory with a computer program prior to surgery are suggested to avoid fetal complications. Ideally, the TAS should penetrate four articular surfaces of C1-C2, and the screw tip should reach anterior surface of C1 arch without crashing the nerve and vertebral artery. The feasibility of preoperative planning of screw trajectory depends on whether the intra-surgical screw pathway follows the planned route or not. In addition, the change of C1-C2 relative position after surgery remains unclear. The purpose of this study is in two-fold. The first one is to evaluate the consistency between the virtually-planned and intra-surgical screw trajectory. The second one is to find the correlations between the parameters of screw insertion and the change of C1-C2 relative position after surgery. Material and Method: Nineteen patients (average age: 61.1 years; range: 35-71 years) in need of posterior atlantoaxial transarticular fixation based on diagnosis of experienced neurosurgeons were recruited. Prior to surgery, all patients underwent computer tomography (CT) scan for screw trajectory planning. A trajectory planning computer program was self-designed to reconstruct a patient’s 3D cervical images with functions of multi-planar section display. The program allowed the evaluation of surface anatomy of cervical spine, which helped surgeons to determine the screw entry point, the horizontal and vertical insertion angle, and the screw size. The patients underwent another CT scan at follow up examination. The following parameters were measured to analyze the deviations between the virtually-planned and intra-surgical screw trajectory: entry point, vertical angle, horizontal angle, and screw length and target point. The pre and post-operative position of C1 and C2 were measured. Result: (a). Surgical outcome. Overall, 32 transarticular screws were inserted. No massive bleeding and major complications were found. (b). Deviation of screw trajectory. The vertical angle of intra-surgical screw insertion was significantly larger than that of virtually-planned one (p<0.05). Other parameters of screw insertion were similar between the virtually-planned and the intra-surgical screw trajectory. (c). Correlation between parameters. Moderate negative correlation was found between vertical entry point and vertical angle (R=0.567, p=0.01), and moderate positive correlation was found between horizontal entry point and horizontal angle (R=0.378, p=0.039). The increase of intraoperative vertical angle decreased the distance between C1 and C2 along X-axis direction but increased the distance along Y-axis direction. Conclusion: This study indicates that surgeon can learn the individual stereotactic characteristics of patient’s cervical structures during preoperative screw trajectory planning, and thus insert screw more precisely without injuring soft tissue duirng surgery. This study also indicates that higher vertical angle of screw insertion will shorten the distance of C1-C2 after fixation, which may release the pain and the nerve compression resulted from C1-C2 dislocation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:26:23Z (GMT). No. of bitstreams: 1 ntu-101-R99548022-1.pdf: 2107501 bytes, checksum: 1cad3abb517e4e038fd0a74b76ba317c (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目錄
誌謝 i 中文摘要 iv 英文摘要 vi 目錄 ix 圖目錄 xi 表目錄 xiii 第一章 序論 1 1.1頸椎構造簡介 1 1.2寰樞椎不穩定病患族群與診斷治療 3 1.3寰樞椎不穩定固定術 4 1.4寰樞椎不穩定固定術之生物力學測試 5 1.5後側經寰樞椎關節固定術傳統手術方法簡介 6 1.6後側經寰樞椎關節骨釘固定術之術中併發症與後遺症 6 1.7路徑規劃與影像輔助系統 8 1.8電腦輔助規劃路徑系統與研究背景介紹 10 1.8.1軟體簡介 10 1.8.2研究背景 11 1.8.3 規劃簡介 11 1.8.4 手術流程介紹 11 1.9研究動機與目的 13 1.10實驗假說 13 第二章 材料與方法 14 2.1病患資訊 14 2.2術前術後病患影像參數量測 14 2.2.1術前術後病患影像量測參數簡介 14 2.2.2參數定義與量測方法 15 2.3術前術後寰樞椎相對位置 19 2.3.1術前術後寰樞椎相對位置量測方法 19 2.3.2尤拉角 20 2.3.3座標軸建立 21 2.3.4距離量測方法 23 2.3.5角度量測方法 23 2.3.6量測誤差分析 24 2.4數據呈現與統計方法 24 第三章 實驗結果 25 3.1術前術後量測之影像參數 25 3.1.1垂直進入點 25 3.1.2水平進入點 25 3.1.3垂直角 26 3.1.4水平角 26 3.1.5骨釘長度 27 3.1.6目標點 28 3.2相對位置量測 31 3.2.1寰樞椎相對距離 32 3.2.2寰樞椎相對角度 33 3.3量測誤差 34 3.4相互關連性 34 3.4.1術前術後量測參數相互關連性 34 3.4.2寰樞椎術前術後相對位置之距離與角度間相互關連性 36 3.4.3術前術後骨釘路徑參數改變量與寰樞椎相對位置之相互關連性 37 第四章 討論 40 4.1手術成功率與併發症比率 40 4.2個案討論 41 4.3骨釘路徑參數討論 42 4.4 電腦輔助路徑規劃系統與傳統手術及定位系統之綜合討論 44 4.5寰樞椎相對位置 45 4.6骨釘路徑參數與寰樞椎相對位置相互關連性 45 第五章 結論 47 第六章 研究限制與未來展望 48 6.1研究限制 48 6.2未來展望 48 參考文獻 49 圖目錄 圖 1. 1寰椎橫斷面構造 1 圖 1. 2樞椎橫斷面構造 1 圖 1. 3樞椎矢狀面構造 1 圖 1. 4脊動脈示意圖 2 圖 1. 5脊動脈高置示意圖 2 圖 1. 6 PunchMax軟體操作介面 10 圖 1. 7後側三維影像之規畫路徑 12 圖 1. 8橫斷面規畫路徑之影像 12 圖 1. 9矢狀切面之規畫路徑 12 圖 1. 10側向X光之規畫路徑 12 圖 2. 1進入點之參考點示意圖 15 圖 2. 2進入點量測圖 15 圖 2. 3垂直角 16 圖 2. 4沿骨釘路徑之橫斷面 17 圖 2. 5水平角 17 圖 2. 6骨釘尺寸量測 18 圖 2. 7骨釘實際路徑量測 18 圖 2. 8目標點定義 18 圖 2. 9於寰椎與樞椎建立之兩獨立座標系示意圖 19 圖 2. 10寰樞椎六個自由度移動示意圖 19 圖 2. 11尤拉角 20 圖 2. 12樞椎X軸之建立示意圖 22 圖 2. 13樞椎沿X軸建立Y軸與Z軸示意圖 22 圖 2. 14寰椎Y軸之建立示意圖 22 圖 2. 15沿寰椎Y軸建立X軸與Z軸示意圖 22 圖 2. 16寰樞椎運動方向示意圖(距離) 23 圖 2. 17寰樞椎運動方向示意圖(角度) 24 圖 3. 1垂直進入點與水平進入點 25 圖 3. 2垂直角與水平角 26 圖 3. 3規劃路徑長度與選用骨釘尺寸 27 圖 3. 4規劃路徑長度與實際施打長度 28 圖 3. 5目標點 29 圖 3. 6骨釘施打錯位病患之側向X光片圖 29 圖 3. 7骨釘施打錯位病患之橫斷面斷層掃描圖 30 圖 3. 8骨釘施打錯位病患之斷層掃描矢狀切面圖 30 圖 3. 9骨釘錯位病患之術前規劃路徑(側向X光片穿透影像) 30 圖 3. 10骨釘錯位病患之術前規劃路徑(沿骨釘路徑之橫斷面斷層掃描影像) 31 圖 3. 11骨釘錯位病患之術前規劃路徑(沿骨釘之矢狀面斷層掃描影像) 31 圖 3. 12垂直角與垂直進入點之相關性 35 圖 3. 13垂直角與垂直進入點趨勢示意圖 35 圖 3. 14水平角與水平進入點之相關性 36 圖 3. 15水平角與水平進入點相關性示意圖 36 圖 3. 16寰樞椎之Y軸距離變化與前彎後仰之關聯性 37 圖 3. 17寰樞椎Y軸距離改變與前彎後仰相關性示意圖 37 圖 3. 18寰樞椎X軸距離改變量與術後垂直角改變量之相關性 38 圖 3. 19寰椎X軸距離改變與垂直角改變相關性示意圖 38 圖 3. 20寰樞椎Y軸距離改變量與術後垂直角改變量之相關性 39 圖 3. 21寰樞椎Y軸距離改變與垂直角改變之關聯性示意圖 39 圖 4. 1在斷層掃描之橫斷面觀察到骨釘打穿寰椎前椎弓之現象 42 圖 4. 2在X光側向影像中無法觀測到骨釘打穿寰椎前椎弓之現象 43 圖 4. 3三維影像中規劃路徑之骨釘施打路徑 46 圖 4. 4不同角度對於骨釘施力於水平與垂直分量之影響 46 表目錄 表 1術後寰樞椎相對術前之距離改變 32 表 2術後寰樞椎相對術前之角度改變 33 表 3量測誤差 34 | |
| dc.language.iso | zh-TW | |
| dc.subject | 後側經寰樞椎關節固定術 | zh_TW |
| dc.subject | 電腦輔助路徑規劃 | zh_TW |
| dc.subject | 寰樞椎相對位置角度 | zh_TW |
| dc.subject | Posterior atlantoaxial transarticular screw fixation | en |
| dc.subject | computer assisted trajectory planning system | en |
| dc.subject | relative position of C1 and C2 | en |
| dc.title | 後側經寰樞椎關節骨釘固定術之電腦輔助路徑規劃及其成效分析 | zh_TW |
| dc.title | Computer Assisted Trajectory Planning and Its Surgical Outcome for Posterior Atlantoaxial Transarticular Screw Fixation Surgery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴達明,王淑芬,蘇芳慶,王堯弘 | |
| dc.subject.keyword | 後側經寰樞椎關節固定術,電腦輔助路徑規劃,寰樞椎相對位置角度, | zh_TW |
| dc.subject.keyword | Posterior atlantoaxial transarticular screw fixation,computer assisted trajectory planning system,relative position of C1 and C2, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
