Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6400
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政忠
dc.contributor.authorTing-Wei Liuen
dc.contributor.author劉庭瑋zh_TW
dc.date.accessioned2021-05-16T16:28:16Z-
dc.date.available2014-03-08
dc.date.available2021-05-16T16:28:16Z-
dc.date.copyright2014-03-08
dc.date.issued2013
dc.date.submitted2014-02-07
dc.identifier.citation[1] X. D. Zhang, Z. Y. Liu, “Negative refraction of acoustic waves in two-dimensional phononic crystals,” Appl. Phys. Lett. 85, 341-343, 2004.
[2] S. X. Yang, J. H. Page, Z. Y. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Fo-cusing of sound in a 3D phononic crystal,” Phys. Rev. Lett.93, 024301, 2004.
[3] K. Imamura and S. Tamura, “Negative refraction of phonons and acoustic lensing effect of a crystalline slab,” Phys. Rev. B 70, 174308, 2004.
[4] L. Feng, X. P Liu, M. H Lu, Y. B Chen, Y. F Chen, Y. W Mao, J. Zi, Y. Y Zhu, S. N Zhu, and N. B Ming, “Acoustic Backward-Wave Negative Refractions in the Second Band of a Sonic Crystal,” Phys. Rev. Lett. 96, 014301, 2006.
[5] M. H. Lu, C. Zhang, L. Feng, J. Zhao, Y. F. Chen, Y. W. Mao, J. Zi, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Negative birefraction of acoustic waves in a sonic crys-tal,” Nature materials 6, 744-748, 2007.
[6] J. C. Hsu and T. T. Wu, “Lamb waves in binary locally resonant phononic plates with two-dimensional lattices,” Appl. Phys. Lett. 90, 201904, 2007.
[7] T. T. Wu, W. S Wang, J. H Sun, J. C Hsu, and Y. Y Chen, “Utilization of phono-nic-crystal reflective gratings in a layered surface acoustic wave device,” Appl. Phys. Lett. 94, 101913, 2009.
[8] J. H Sun and T. T Wu, “A Lamb wave source based on the resonant cavity of phononic-crystal plates,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 121-128, 2009.
[9] S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, “High-Q microme-chanical resonators in a two-dimensional phononic crystal slab,” Appl. Phys. Lett. 94,051906, 2009.
[10] C. Y. Huang, J. H. Sun, and T. T. Wu, “A two-port ZnO/silicon Lamb wave reso-nator using phononic crystals,” Appl. Phys. Lett. 97, 031913, 2010.
[11] S. Benchabane, A. Khelif, J.-Y. Rauch, L. Robert, and V. Laude, “Evidence for complete surface wave band gap in a piezoelectric phononic crystal,” Physical Review E 73, 065601, 2006
[12] Saeed Mohammadi, et al. “High-Q micromechanical resonators in a two-dimensional phononic crystal slab,” Applied Physics Letters 94 (5), pp. 051906-051906, 2009.
1.2
[13] A. E. H. Love, Some Problems of Geodynamics, Chapter XI, London: Cambridge University Press, 1911, pp. 144-178.
[14] Jeffrey L. Bleustein, “A new surface wave in piezoelectric materials,” Applied Physics Letters, Vol.13, No. 12, 1968, pp. 412-413.
[15] Y. V. Gulyaev, “Electroacoustic Surface Waves in Solids,” JETP Letters, Vol.9, 1969, p. 37.
[16] Kiyoshi Nakamura, “Shear-horizontal piezoelectric surface acoustic waves,” Japanese Journal of Applied Physics, Vol.46, No. 7B, 2007, pp. 4421-4427.
[17] M. F. Lewis, “Surface Skimming Bulk Waves, SSBW”, in Proceedings of IEEE Ultrasonic Symposium, 1977, pp. 744-752.
[18] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic Band Structure of Periodic Elastic Composites,” Physical Review Letters Vol. 71, No. 13, pp. 2022-2025, 1993
[19] T. T. Wu, Z. G. Huang, and S. Lin, “Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotro-py,” Phys. Rev. B 69, 094301, 2004.
[20] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Lo-cally resonant sonic materials,” Science 289, 1734-1736, 2000.
[21] G. Wang, X. Wen, J. Wen, L. Shao, and Y. Liu, “Two-dimensional locally reso-nant phononic crystals with binary structures,” Phys. Rev. Lett.93, 154302, 2004.
[22] Y. Tanaka and S. Tamura, “Surface acoustic waves in two-dimensional periodic elastic structures,” Phys. Rev. B 58, 7958-7965, 1998.
[23] T. T Wu, Z. C. Hsu, and Z. G. Huang, “Band gaps and the electromechanical cou-pling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal,” Phys. Rev. B 71, 064303, 2005.
[24] S. Benchabane, A. Khelif, J.-Y. Rauch, L. Robert, and V. Laude, “Evidence for complete surface wave band gap in a piezoelectric phononic crystal,” Phys. Rev. E 73, 065601, 2006.
[25] J. H. Sun and T. T. Wu, “Propagation of surface acoustic waves through sharply bent two-dimensional phononic crystal waveguides using a finite-difference time-domain method,” Phys. Rev. B 74, 174305, 2006.
[26] J. C. Hsu and T. T. Wu, “Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates,” Phys. Rev. B 74, 144303, 2006.
[27] A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude, ” Complete band gaps in two-dimensional phononic crystal slabs,” Phys. Rev. E 74, 046610, 2006.
[28] J. H. Sun and T. T. Wu, “Propagation of acoustic waves in phononic-crystal plates and waveguides using a finite-difference time-domain method,” Phys. Rev. B 76, 104304, 2007.
[29] S. Mohammadi, A. A. Eftekhar, A. Khelif, W. D. Hunt, and A. Adibi, “Evidence of large high frequency complete phononic band gaps in silicon phononic crystal plates,” Appl. Phys. Lett. 92, 221905, 2008.
[30] Z. Liu, C. T. Chan, and P. Sheng, “Elastic wave scattering by periodic structures of spherical objects: Theory and experiment,” Phys. Rev. B 62, 2446-2457, 2000.
[31] B. A. Auld, J. J. Gagnepain, and M. Tan, “Horizontal Shear Surface Waves on Corrugated Surfaces,” Electron. Lett, 12, 650, 1976
[32] Daniel F. Thompson and B. A. Auld, “Surface Wave Propagation under Metal Strip Gratings,” in Proceedings of IEEE Ultrasonic Symposium, 1986, pp. 261-266.
[33] K. Hashimoto, Hiroki Asano, Tatsuya Omori and Masatsune Yamaguchi, “Ultra Wideband Love Wave Devices Employing Cu-Grating/Rotated YX LiNbO3 Sub-strate Structure,” in Proceedings of IEEE Ultrasonic Symposium, 2004, pp. 917-920.
[34] A. Isobe, M. Hitaka, K. Asai, and A. Sumioka, “Grating-Mode-Type Wide-Band SAW Resonators for VCOs,” in Proceedings of IEEE Ultrasonic Symposium, 1998, pp. 111-114
[35] M. Kadota, et al., “SAW substrate for Duplexer with Excellent Temperature Characteristics and Large Reflection Coefficient realized by using Flattened SiO2 Film and Thick Heavy Metal Film,” In Microwave Symposium Digest, 2006, IEEE MTT-S International. IEEE, 2006. pp. 382-385.
[36] Toshiki Yasue, Tomoya Komatsu, Nobuyuki Nakamura, Ken-ya Hashimoto, Hideki Hirano, Masayoshi Esashi, Shuji Tanaka, “Wideband Tunable Love Wave Filter Using Electrostatically Actuated MEMS Variable Capacitors Integrated on Lithium Niobate, ” Sensors and Actuators A, Vol. 188, Amsterdam: Elsevier, 2012, pp. 456-462.
[37] Waldemar Soluch, “STW In-Line Acoustically Coupled Resonator Filter on Quartz,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Con-trol, Vol. 55, No. 4, 2008, pp. 879-882.
[38] A. E. H. Love, Some Problems of Geodynamics, Chapter XI, London: Cambridge University Press, 1911, pp. 144-178.
[39] Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society, IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176-1987, Sep. 7, 1987
[40] J. D. Achenbach, Wave Propagation in Elastic Solids, Amsterdam: North-Holland, 1973, pp. 218-220.
[41] Daniel Royer, Eugene Dieulesaint, and D.P. Morgan (Translator), Elastic Waves in Solid, Vol. I, Berlin: Springer, 2000, pp. 305-308.
[42] C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Com-munications, San Diego: Academic Press, 1996, pp. 45, 50.
[43] R. Bechmann, A. D. Ballato, and T. J. Lukaszek, “Higher Order Temperature Co-efficients of the Elastic Stiffness and Compliances of Alpha-Quartz,” United States Army Electronics Research and Development Laboratory, Fort Monmouth, New Jersey, USAELRDL Tech. Rep. Nr. 2261, Sep. 1963.
[44] Leon Brillouin, Wave Propagation in Periodic Structures, 2nd ed., New York: Dover Publications, 1953, pp. 156, 131.
[45] Gaston Floquet, “Sur les equations differentielles lineaires a coefficients pe-riodiques,” Annales scientifiques de l'Ecole Normale Superieure, Ser. 2, 12, 1883, pp. 47-88.
[46] Felix Bloch, “Uber die Quantenmechanik der Elektronen in Kristallgittern,” Zeitschrift fur Physik, Vol. 52, Issue 7-8, Berlin: Springer, 1929, pp. 555¬¬-¬600.
[47] J. D. Achenbach, Wave Propagation in Elastic Solids, Amsterdam: North-Holland, 1973, pp. 228-229.
[48] Y.-Y. Chen, “層狀表面聲波元件之理論、實驗及其應用,” Ph.D. dissertation, National Taiwan University, Taipei, Taiwan, 1992.
[49] K. Hashimoto, Surface Acoustic Wave Devices in Telecommunications Modelling and Simulation, Berlin: Springer, 2000.
[50] T. Thorvaldsson and B. P. Abbot, “Low Loss SAW Filters Utilizing the Natural Phase Unidirectional Transducer (NSPUDT),” in Proceedings of IEEE Ultrasonic Symposium, 1990, pp. 43-48
[51] Daniel Royer, Eugene Dieulesaint, and D.P. Morgan (Translator), Elastic Waves in Solid, Vol. II, Berlin: Springer, 2000, p. 27.
[52] PECVD thin-film TEOS glass on gallium arsenide using SAW techniques.” in Proceedings of IEEE Ultrasonic Symposium, 1994, pp.381-384.
[53] Z. Wang and J. D. N. Cheeke, and C. K. Jen. “Sensitivity analysis for Love mode acoustic gravimetric sensors,” Applied physics letters Vol. 64, No. 22, New York: AIP Publishing, 1994, pp. 2940-2942.
[54] Kovacs, G., et al. “Love waves for (bio)-chemical sensing in liquids,” in Pro-ceedings of IEEE Ultrasonic Symposium, 1992, pp. 281-285.
[55] T. Nishida, M. Notomi, R. Iga, and T. Tamamura, “Quantum Wire Fabrication by E-Beam Elithography Using High-Resolution and High-Sensitivity E-Beam Re-sist ZEP-520, Japanese Journal of Applied Physics, Vol. 31, 1992, pp. 4508-4514
[56] M. A. McCord, M. J. Rooks, Handbook of Microlithography, Micro¬machining and Microfabrication, Vol. 1: Microlithography, Bellingham: SPIE Press, 1997, pp. 139-250
[57] J.L. Murray, H. Okamoto and T. B. Massalski, “The Aluminum-Gold System,” Phase Diagrams of Binary Gold Alloys, Russell Township: ASM Intl., 1987, pp. 20-30.
[58] K. Hashimoto, Surface Acoustic Wave Devices in Telecommunications Modelling and Simulation, Berlin: Springer, 2000, pp. 123-125.
[59] T.-T. Wu, Y.-Y.Chen, G.-T. Huang, P.-Z. Chang, “Evaluation of elastic properties of submicrometer thin films using slanted finger interdigital transducers,” Journal of applied physics, Vol. 97, No. 7, New York: AIP Publishing, 2005, pp. 073510-073510-5
[60] G. Carlotti, L. Doucet, and M. Dupeux. “Elastic properties of silicon dioxide films deposited by chemical vapour deposition from tetraethylorthosilicate,” Thin Solid Films, Vol. 296, No.1, Amsterdam: Elsevier, 1997, pp. 102-105.
[61] F. S. Kickernell, T. S. Hickernell, and H. M. Liaw. “The characterization of PECVD thin-film TEOS glass on gallium arsenide using SAW techniques.” in Proceedings of IEEE Ultrasonic Symposium, 1994, pp.381-384.
[62] Z. Wang and J. D. N. Cheeke, and C. K. Jen. “Sensitivity analysis for Love mode acoustic gravimetric sensors,” Applied physics letters Vol. 64, No. 22, New York: AIP Publishing, 1994, pp. 2940-2942.
[63] Kovacs, G., et al. “Love waves for (bio)-chemical sensing in liquids,” in Pro-ceedings of IEEE Ultrasonic Symposium, 1992, pp. 281-285.
[64] Kalantar-Zadeh, K., Wlodarski, W., Galatsis, K., & Holland, A., “Study of novel Love mode surface acoustic wave filters.” In IEEE Frequency Control Symposium and PDA Exhibition, 2002, pp. 74-77.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6400-
dc.description.abstract聲子晶體泛指材料性質或幾何形狀週期排列之彈性結構。近二十年,由於聲子晶體具有特殊波傳效應,如完全頻隙、負折射、聲波聚焦等,已引起相當多學者的興趣與投入。由於壓電晶圓較難進行精密蝕刻,目前文獻大都以矽基聲子晶體元件為主,但矽不具壓電特性,須將氧化鋅或氮化鋁等壓電薄膜鍍於叉指電極部分以激發表面波或板波,元件插入損失較高
另一方面,在層狀介質的表面波研究中,除了偏振方向與波傳矢狀平面(sagittal plane)平行的雷利表面波外,亦存在有偏振方向與矢狀平面垂直的拉福波(Love wave)。拉福波存在於表面鍍上橫波波速小於基底材料橫波波速材料之層狀半無限域結構,大部分波的能量局限於表面的薄層中,形成一理想的橫波波導。在壓電晶體表面亦存在各類偏振方向與矢狀平面垂直的水平剪切式表面聲波,其發生原理與拉福波相似,可歸類為廣義拉福波。此類聲波常具有較雷利波為高的機電耦合係數及波速,因此廣泛用於高頻、寬頻濾波器用途。
基於拉福波之特性,如能於不易蝕刻的壓電基板鍍上一具聲子晶體結構之薄層,除具有高激發效率之波源外,亦可經由聲子晶體之頻隙特性製做高效能之濾波器或感測器。有鑒於此,本文提出具聲子晶體薄鍍層於壓電基材上之結構,使用有限元素法搭配布洛赫理論(Bloch theorem),分析此類結構之頻散特性,證實此類結構具有拉福波的可傳頻帶及頻隙,並藉由複數波數頻散關係進一步分析頻隙內聲波之衰減現象。此外,本文也探討頻隙內聲波由均勻介質進入聲子晶體介面之反射、透射及散射現象,並設計一聲子晶體共振器結構。
實驗部分則是以奈米機電系統製程,利用電子束微影系統產生次微米級之叉指電極及聲子晶體圖案,並以反應離子蝕刻法製作出聲子晶體結構。使用斜叉指電極激發及接收寬頻聲波驗證聲子晶體之頻溝,發現在頻溝處有超過40分貝之插入損失,且其頻率範圍與理論之預測相當吻合。而設計於1.25 GHz之共振器也實現,並具有約400之Q值。
zh_TW
dc.description.abstractA phononic crystal (PC) is a structure whose mechanical properties are periodical-ly arranged. 2-D PCs started to attract great attentions two decades ago. A lot of concern has been focused on their acoustic reflecting phenomenon due to the band gap. However the PC can also be an acoustic conductor, which its conductance is determined by the band structure. Novel properties such as negative refraction or acoustic lensing effect can be achieved with PCs.
Among the many applications, in the area of ultra-high frequency (UHF) acoustic wave devices, complete or partial band gap of air/silicon PC was utilized as the reflec-tive gratings to reduce the devices’ size. In those devices, a piezoelectric thin film has to be deposited on the silicon substrate to generate acoustic waves for silicon is non-piezoelectric. Although the fabrication process of the silicon based phononic device has the CMOS compatible advantage, the insertion loss of such a device is high rela-tively. The other more straightforward way of making a phononic acoustic wave device is to construct periodically micro-holes directly on a piezoelectric substrate. Although the electro-acoustic conversion is higher, it suffered from the anisotropic nature of lith-ium niobate that lead to a complicated fabrication process.
On the other hand, SH-type SAWs have several advantages compared to conven-tional Rayleigh-type SAWs. For example SH-type SAWs possess larger piezoelectricity than Rayleigh-type SAWs on the same substrate material. Also they are faster than Rayleigh-type SAWs therefore desirable for high frequency applications. And in liquids, SH-type SAWs lose less energy than Rayleigh-type SAWs do due to their polarization, also they are sensitive to surface loadings, so they are desirable for (bio-) sensing appli-cations. Love wave, being one of the SH-type SAWs, shares similar physical character-istics with other SH-type SAWs. Investigating the propagating of Love waves in PCs will expand the PC applications to SH-type SAWs that have bright outlook.
In this study, we investigate Love waves propagating in a piezoelectric substrate coated with a phononic guiding layer. The phononic layer is consisted of a thin layer with periodic machined holes. It is worth noting that the thin phononic layer can be non-piezoelectric which makes the fabrication process relatively simple. And since most energy is trapped in the guiding layer it may serve as efficient reflective gratings in Love wave devices. The method proposed in this study is suitable for other SH-type SAWs also.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:28:16Z (GMT). No. of bitstreams: 1
ntu-102-R00543020-1.pdf: 51446208 bytes, checksum: ca2936b0181fef8eb0740f25f3956e59 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xiv
Chapter 1 Introduction 15
1.1 Motivation 15
1.2 Literature Review 17
1.3 Contents of the Chapters 18
Chapter 2 Love Wave Dispersions of a Phononic SiO2/Quartz Layered Structure 19
2.1 The Mathematical Model of Acoustic Waves in Piezoelectric solids 20
2.1.1 Piezoelectric acoustic wave equations 20
2.1.2 Coordinate transformation for material constants 22
2.1.3 Materials 23
2.2 Waves in periodic structures 25
2.2.1 Direct and reciprocal lattices 25
2.2.2 Bloch’s theorem 28
2.3 Love wave dispersion of a layered half-space 29
2.3.1 Numerical methods 30
2.3.2 Determination of the SiO2 film thickness 34
2.4 Love wave dispersion in a SiO2/IDT/quartz structure. 36
2.4.1 Background 36
2.4.2 Dispersion relation 37
2.4.3 Frequency-pitch relation 38
2.5 Love wave dispersion in phononic layered structures 38
2.5.1 Geometries 38
2.5.2 M-Y-Γ-X-M-Γ band structures 39
2.5.3 More on the Γ-X band structures 43
Chapter 3 Design of a One-port Resonator 65
3.1 Design parameters of a one-port resonator 65
3.2 Reflection on the PC border 66
3.3 Optimization for the delay distance 68
3.4 Resonator evaluation 69
3.5 Experiment setup 70
Chapter 4 Fabrications 83
4.1 Brief of EB lithography 83
4.1.1 Why EB lithography 84
4.1.2 Anti-charging 84
4.1.3 Dose determination and the proximity effect 84
4.2 Making the alignment marks for EB lithography 86
4.2.1 Background 86
4.2.2 Process and parameters 87
4.3 Fabrication of the aluminum IDT 90
4.4 Fabrication of the aluminum wire 90
4.4.1 Background 90
4.4.2 Process and parameters 92
4.5 Deposition of SiO2 film 93
4.6 Revealing of the contact pad 94
4.7 Fabrication of the PC structure 96
Chapter 5 Experiment Results 131
5.1 Transmission of PCs 131
5.1.1 SFIT without PC —verification of SFIT designs 131
5.1.2 SFIT with PC 133
5.2 One-port resonator 133
Chapter 6 Conclusions and Future Works 150
6.1 Conclusions 150
6.2 Future works 151
Appendix Determination of the Elastic Stiffness of the PECVD SiO2 152
REFERENCE 163
dc.language.isoen
dc.title拉福波於聲子晶體之波傳現象研究與應用zh_TW
dc.titleA Study of Love Waves in a Phononic Structureen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳永裕,孫嘉宏
dc.subject.keyword聲子晶體,拉福波,奈米機電系統製程,共振器,zh_TW
dc.subject.keywordPhononic crystal,Love wave,NEMS,Resonator,en
dc.relation.page169
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-02-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf50.24 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved