Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64009
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳文章(Wen-Chang Chen)
dc.contributor.authorWei-Yao Tungen
dc.contributor.author董維堯zh_TW
dc.date.accessioned2021-06-16T17:26:21Z-
dc.date.available2017-08-19
dc.date.copyright2012-08-19
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citationChapter 1
1. Hergenrother P. M. High Performance Polymers 2003;15:3-45
2. John W. Connell, Joseph G. Smith, Jr., Paul M. Hergenrother, Jim M. Criss
High Performance Polymers 2003 15: 375
3. Mittal KL (ed). Polyimides: synthesis, characterization and application 1985
Plenum, New York.
4. Ghosh MK, Mittal KL. Polyimides – Fundamental and Applications 1996; New
York: Marcel Dekker
5. Bessenov MI, Koton MM, Kudryavtsev VV, and Lauis LA. Polyimides –
Thermally Stable Polymers 1987 New York: Consultants Bureau Div. Plenum
6. Wilson D, Stenzenberger HD, and Hergenrother PM. Polyimides – Chemistry
and Applications 1990 Glasgow: Blackie & Sons
7. Ohya H, Kudryavtsev VV, Semenova SI, editors. Polyimide membranes
applications, fabrications, and properties. Tokyo: Kodansha Ltd.; 1996.
8. Buhler KU. Spezialplaste. Berlin: Academie-Verlag; 1978
9. D.J. Liaw, K.L. Wang, Y.C. Huang, K.R. Lee, J.Y. Lai, C.S. Ha, Progress in Polymer Science Volume 37, Issue 7, 2012, 907–974
10. DuPont™
11. W. Qu, T. Z. Ko, R. H. Vora, and T. S. Chung, Polymer, 42, 6393 (2001).
12. C. P. Yang and H. W. Yang, US Patent 6,093,790 (2000).
13. A. K. S. Clair and W. S. Slemp, SAMPE J., 21, 28 (1985).
14. B. Y. Myung, J. S. Kim, and T. H. Yoon, J. Polym. Sci. Part A: Polym. Chem.,
41, 3361 (2003).
15. C. P. Yang, R. S. Chen, and K. H. Chen, Part A: J. Polym. Sci. Polym. Chem.,
41, 922 (2003).
16. C.-P. Yang and Y. Y. Sue, Polymer, 46, 5778 (2005).
17. S. L. Ma, Y. S. Kim, J. H. Lee, J. S. Kim, I. Kim, and J. C. Won,
Polymer(Korea), 29, 204 (2005).
18. C.-P. Yang and Y.-C. Chen, J. Appl. Polym. Sci., 96, 2399 (2005).
19. J. H. Kim, W. J. Koros, and D. R. Paul, Polymer, 47, 3094 (2006).
20. A. S. Mathews, I. Kim, and C.-S. Ha, Macromol. Res., 15, 114 (2007).
21. K. Higashi and Y. Noda, Eur Pat. 240249 (1986).
22. T. Matsuura, S. Ando, S. Sasaki, and F. Yamamoto, Electron. Lett., 29, 2107
(1993).
23. Liaw, D. J.; Hsu, P. N.; Chen, W. H.; Lin, S. L. Macromolecules 2002, 35, 4669.
24. Liaw, D. J.; Liaw, B. Y.; Hsu, P. N.; Hwang, C. Y. Chem Mater 2001, 13, 1811.
25. Liou, G. S.; Hsiao, S. H. J Polym Sci Part A: Polym Chem 2002, 40, 2564.
26. Yong, S. K.; Jin, C. J. J Polym Sci Part A: Polym Chem 2002, 40, 1764.
27. Spiliopoulos, I. K.; Mikroyannidis, J. A.; Tsivgoulis, G. M. Macromolecules 1998, 31, 522.
28. Liaw, D. J.; Liaw, B. Y.; Tseng, J. M. J Polym Sci Part A: Polym Chem 1999, 37, 2629.
29. Liaw, D. J.; Liaw, B. Y.; Jeng, M. Q. Polymer 1998, 39, 1597.
30. Liaw, D. J.; Chen, W. H.; Huang, C. C. Polyimides and Other High Temperature Polymers; Mittal, K. L., Ed.; VSP Publisher: Zeist, 2003; Vol. 2; pp. 47–70.
31. Banerjee, S.; Madhra, M. K.; Salunke, A. K.; Maier, G. J Polym Sci Part A: Polym Chem 2002, 40, 1016.
32. Yang, C. P.; Chen, R. S.; Wang, M. J Polym Sci Part A: Polym Chem 2002, 40, 1092.
33. Yang, C. P.; Hsiao, S. H.; Hsu, M. F. J Polym Sci Part A: Polym Chem 2002, 40, 524.
34. Hsiao, S. H.; Yang, C. P.; Chung, C. L. J Polym Sci Part A: Polym Chem 2003, 41, 2001.
35. Yang, C. P.; Chen, R. S.; Chen, K. H. J Polym Sci Part A: Polym Chem 2003, 41, 922.
36. Vora, R. H.; Goh, S. H.; Chung, T. S. Adv Funct Mater 2001, 11, 361.
37. Liaw, D. J.; Chang, F.C. J Polym Sci Part A: Polym Chem 2004, 42, 22.
38. Y.Y. Chen, C. P. Yang, S.H. Hsiao European Polymer Journal 42 (2006) 1705–1715
39. C.P. Yang, Y.Y. Su Polymer 46 (2005) 5778–5788
40. Dine-Hart RA, Wright WW, J Appl Polym Sci, 11, 609-627, 1967.
41. Sroog CE, J Polym Sci Macromol Rev, 11, 161-208, 1976.
42. Brandom DK, Wilkes GL, Polymer, 35, 5672-5677,1994.
43. Woodard MH, Rogers ME, Brandom DK, Wilkes GL, McGRath JE, Polym
Prepr, 33, 333-240, 1992.
44. Sek D, Pijet P, Wanic A, Schab-Balkerzak E, J Polym Sci A Polym Chem, 33,
547-554, 1995.
45. Sek D, Pijet P, Wanic A, Polymer, 33, 90-97, 1992.
46. Mehdipour-Ataei S, Bahri-Laleh N, Amirshaghaghi A, Polym Degrad Stab, 91,
2622-2631, 2006.
47. S. Mehdipour-Ataei* and N. Bahri-Laleh Iranian Polymer Journal 17 (2), 2008, 95-124
48. Brian D. Mather, Kalpana Viswanathan, Kevin M. Miller, Timothy E.
Long Prog. Polym. Sci.31(2006) 487-531
49. H. Ma, A. K. Y. Jen and L. R. Dalton, Adv. Mater., 2002, 14, 1339.
50. T. W. Kelly, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, M. A. Haase, D.
E. Vogel and S. D. Theiss, Chem. Mater., 2004, 16, 4413.
51. M. C. Choi, Y. K. Kim and C. S. Ha, Prog. Polym. Sci., 2008, 33, 581.
52. T. Nakamura, H. Fujii, N. Juni and N. Tsutsumi, Opt. Rev., 2006, 13, 104.
53. D. W. Mosley, K. Auld, D. Conner, J. Gregory, X. Q. Liu, A. Pedicini, D.
Thorsen, M. Wills, G. Khanarian and E. S. Simon, Proc. SPIE, 2008, 6910,
691017.
54. K. C. Krogman, T. Druffel and M. K. Sunkara, Nanotechnology, 2005, 16,
S338.
55. R. D. Allen, G. M. Wallraff, D. C. Hofer and R. R. Kunz, IBM Res. Develop.,
1997, 41, 95.
56. J. L. Regolini, D. Benoit and P. Morin, Microelectron. Reliab., 2007, 47, 739.
57. J. Brandrup, E. H. Immergut, E. A. Gruike, A. Abe and D. R. Bloch, Polymer
Handbook, 4th ed.; John Wiley & Sons, New York, 2005.
58. N. Sadayori and Y. Hotta, US Pat., 20040158021, 2004.
59. T. Matsuda, Y. Funae, M. Yoshida, T. Yamamoto and T. Takaya, J. Appl.
Polym. Sci., 2000, 76, 50.
60. J. C. Seferis, in: J. Brandrup, E. H. Immergut (Eds.), Polymer Handbook,
3rd Edition, Wiley, New York, 1989.
61. J. G. Speight, Lange’s Handbook of Chemistry, McGraw-Hill, 2005.
62. J.G. Liu and M. Ueda, J. Mater. Chem., 2009,19, 8907-8919
63. J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando and M. Ueda, Macromolecules, 2007, 40, 4614.
64. J. G. Liu, Y. Nakamura, Y. Suzuki, Y. Shibasaki, S. Ando and M. Ueda, Macromolecules, 2007, 40, 7902.
65. J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando and M. Ueda, Polym. J., 2007, 39, 543.
66. J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando and M. Ueda, J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 5606.
67. Y. Suzuki, J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando and M. Ueda, Polym. J., 2008, 40, 414.
68. J. G. Liu, Y. Nakamura, T. Ogura, Y. Shibasaki, S. Ando and M. Ueda, Macromol. Chem. Phys., 2008, 209, 195.
69. C. A. Terraza, J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando and M. Ueda, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 1510.
70. N. H. You, Y. Suzuki, D. Yorifuji, S. Ando and M. Ueda, Macromolecules, 2008, 41, 6361.
71. N. H. You, Y. Suzuki, T. Higashihara, S. Ando and M. Ueda, Polymer, 2009, 50, 789.
72. S. Ando, J. G. Liu and M. Ueda, J. Jpn. Soc. Polym. Process, 2008, 3, 170 (in Japanese).
73. T. Matsuda, Y. Funae, M. Yoshida and T. Takata, J.M.S.-Pure Appl. Chem., 1999, A36, 1271.
74. R. Okutsu, Y. Suzuki, A. Shinji, and M. Ueda, Macromolecules, 41, 6165 (2008).
75. Y. Suzuki, T. Higashihara, S. Ando, M. Ueda, European Polymer Journal 46 (2010) 34–41
76. R. Okutsu, S. Ando, and M. Ueda, Chem. Mater. 2008, 20, 4017–4023
77. Wilkes, G. L.; Orler, B.; Huang, H. Polym. Prep. 1985, 26(2), 300.
78. Huang, H.; Orler, B.; Wilkes, G. L. Polym. Bull. 1985, 14(6), 557.
79. Mark, J. E.; Lee, C. Y.-C.; Bianconi, P. A. Hybrid Organic-Inorganic
Composites; ACS Symposium Series 585; American Chemical Society,
Washington, DC, 1995.
80. Schmidt, H. Macromol Symp 2000, 159, 43.
81. Kickelbick, G. Prog Polym Sci 2003, 28, 83.
82. Kioul, A.; Mascia, L. J Non-Cryst Solids 1994, 175, 169.
83. Mascia, L.; Kioul, A. Polymer 1995, 36, 3649.
84. Wen, J.; Wilkes, G. L. Chem Mater 1996, 8, 1667.
85. Schrotter, J. C.; Smaı‥hi, M.; Guizard, C. J Appl Polym Sci 1996, 61, 2137.
86. Beecroft, L. L.; Johnen, N. A.; Ober, C. K. Polym Adv Technol 1997, 8, 289.
87. Kim, Y.; Lee, W. K.; Cho, W. J.; Ha, C. S.; Ree, M.; Chang, T. Polym Int 1997,
43, 129.
88. Chen, Y.; Iroh, J. O. Chem Mater 1999, 11, 1218.
89. Zhu, Z. K.; Yin, J.; Cao, F.; Shang, X. Y.; Lu, Q. H. Adv Mater 2000, 12, 1055.
90. Hsiue, G. H.; Chen, J. K.; Liu, Y. L. J Appl Polym Sci 2000, 76, 1609.
91. Ahmad, Z.; Mark, J. E. Chem Mater 2001, 13, 3320.
92. Shang, X. Y.; Zhu Z. K.; Yin, J.; Ma, X. D. Chem Mater 2002, 14, 71.
93. Cornelius C. J.; Marand, E. Polymer 2002, 43, 2385.
94. Huang, Y.; Gu, Y. J Appl Polym Sci 2003, 88, 2210.
95. A. Morikawa, Y. lyoku, M. Kakimoto and Y. lmai. J. MATER. CHEM.,
1992, 2(7), 679-690
96. K. H. Wu., T. C. Chang, Y. T. Wang, Y. S. Chiu J Polym Sci A Polym Chem 1999, 37, 43
97. H.S. Jin, J.H. Chang, J.C. Kim Macromolecular Research, Vol. 16, No. 6, pp 503-509 (2008)
Chapter 2
1. J. M. Young, Opt. World, 18(124), 10 (1989).
2. H. Dislich, Angew. Chem. Int. Ed. Engl., 18, 49(1979).
3. C. Hofmann, Feingerätetechnik (Berl.), 39, 124(1990).
4. Gao, C.; Yang, B.; Shen, J. J. Appl. Polym. Sci. 2000, 75, 1474–1479.
5. T. Matsuda, Y. Funae, M. Yoshida, T. Yamamoto, and T. Takaya, J. Appl. Polym. Sci., 76, 50 (2000).
6. Yang, C.-J.; Jenekhe, S. A. Chem. Mater. 1995, 7, 1276–1285.
7. J. C. Seferis, in: J. Brandrup, E. H. Immergut (Eds.), Polymer Handbook, 3rd Edition, Wiley, New York, 1989.
8. J. G. Speight, Lange’s Handbook of Chemistry (16th Edition), McGraw-Hill, 2005.
9. J. G. Liu and M. Ueda J. Mater. Chem., 2009, 19, 8907-8919
10. J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando and M. Ueda, Macromolecules, 2007, 40, 4614.
11. J. G. Liu, Y. Nakamura, Y. Suzuki, Y. Shibasaki, S. Ando and M. Ueda, Macromolecules, 2007, 40, 7902.
12. J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando and M. Ueda, Polym. J., 2007, 39, 543.
13. J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando and M. Ueda, J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 5606.
14. Y. Suzuki, J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando and M. Ueda, Polym. J., 2008, 40, 414.
15. J. G. Liu, Y. Nakamura, T. Ogura, Y. Shibasaki, S. Ando and M. Ueda, Macromol. Chem. Phys., 2008, 209, 195.
16. C. A. Terraza, J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando and M. Ueda, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 1510.
17. N. H. You, Y. Suzuki, D. Yorifuji, S. Ando and M. Ueda, Macromolecules, 2008, 41, 6361.
18. N. H. You, Y. Suzuki, T. Higashihara, S. Ando and M. Ueda, Polymer, 2009, 50, 789.
19. S. Ando, J. G. Liu and M. Ueda, J. Jpn. Soc. Polym. Process, 2008, 3, 170 (in Japanese).
20. T. Matsuda, Y. Funae, M. Yoshida and T. Takata, J.M.S.-Pure Appl. Chem., 1999, A36, 1271.
21. R. Okutsu, Y. Suzuki, A. Shinji, and M. Ueda, Macromolecules, 41, 6165 (2008).
22. Y. Suzuki, T. Higashihara, S. Ando, M. Ueda, European Polymer Journal 46 (2010) 34–41
23. R. Okutsu, S. Ando, and M. Ueda, Chem. Mater. 2008, 20, 4017–4023
24. B. D. Mathera; K. Viswanathana; K. M. Millerb; T. E. Longa, Prog. Polym. Sci.31(2006) 487-531
25. H.J. Yen and G.S. Liou, J. Mater. Chem., 2010, 20, 4080–4084
26. T. Okubo, S. Kohmoto, and M. Yamomoto, J. Appl. Polym. Sci., 68,1791 (1998).
27. W. A. Thaler and P. E. Butler, J. Org. Chem., 34, 3389 (1969).
Chapter 3
1. Mark J. E., Lee C. Y. C., Bianconi P. A.: Hybrids organic-inorganic composites. ACS Symposium Series, Washington (1995).
2. Kioul A., Mascia L.: Compatibility of polyimide-silicate ceramers induced by alkoxysilane coupling agents. Journal of Non-Crystalline Solids, 175, 169–186 (1994).
3. Mascia L.: Developments in organic-inorganic polymeric hybrids: Ceramers. Trends in Polymer Science, 3, 61–66 (1995)..
4. Morikawa A., Iyoku Y., Kakimoto M., Imal Y.: Preparation of a new class of polyimide-silica hybrid films by sol-gel process. Polymer Journal, 24, 107–113 (1992).
5. G. Ragosta, P. Musto : EXPRESS Polymer Letters Vol.3, No.7 (2009) 413–428
6. G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, W. C. Chen : J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 1433-1440
7. G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, T. W. Tsai, W. C. Chen, J. Mater. Chem. 2010, 20, 531-536
8. Ghosh M. K., Mittal K. L.: Polyimides: Fundamental and applications. Marcel Dekker, New York (1996).
9. V. Ratta POLYIMIDES: chemistry & structure-property relationships. DLA, (1996).
10. Althues, H.; Henle, J.; Kaskel, S. Chem Soc Rev 2007, 36, 1454–1465.
11. Y.W. Wang, W.C. Chen Composites Science and Technology 70 (2010) 769–775
12. C.P. Yang, S.H. Hsiao, H.W. Yang: Macromol. Chem. Phys. 201, 409–418 (2000)
13. S. Cheng a, D. Shen, X. Zhu, X. Tian a, D. Zhou a, L.J. Fan: European Polymer Journal 45 (2009) 2767–2778
14. Jung JC, Lee KK, Jhon MS : The dispersion of polymethylsilsesquinoxane into polyimide. Polym Bull 1996;36(1):67–72.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64009-
dc.description.abstract聚醯亞胺為傳統高性能高分子,已經被廣泛運用在各個產業之中。然而開發具有高折射率、高透明性和優良熱機械性質之高分子基材仍具挑戰性。本論文藉由分子設計以及有機無機混摻進而合成出兼具高折射率及良好穿透度的光學膜,茲敘述如下:
本研究利用合成出來的兩種高含硫量二硫醇單體,藉由麥可聚加成反應,和雙馬來醯亞胺獲得色淡的聚醯亞胺硫醚,PITEDT跟PITEMD。透過低溫聚合反應避免黃化,可以合成出白色的高分子;同時,導入大量的硫以及聚醯亞胺官能基在高分子中,可用於提高折射率卻又不會導致阿貝數降到太低造成色散。這兩種高分子所製備的光學薄膜,具有高折射率(> 1.71 )、高穿透度(> 95% at 400nm)以及不低的阿貝數(> 22)。
其次合成一系列色淡含羥基聚醯亞胺,以及氧化矽混成材料所的合成製備出可彎曲的光學膜。 本研究透過含六氟異丙烯官能基的雙胺以及含醚基、六氟異丙烯基、叔丁基的雙酸酐合成一系列聚醯亞胺,6FOXPI、6F6FPI、6FDBPI;導入這類官能基,可增加聚醯亞胺自由體積,以提高光穿透度、溶解度和膜的可彎曲性。同時聚醯亞胺內的羥基和矽酸四甲基酯型成共價鍵,使混成氧化矽顆粒可均勻分散在聚醯亞胺內。藉由穿透式電子顯微鏡照片可以得知本研究製備之混成材料,氧化矽顆粒在8~12奈米可將光散射損失降至最低。由於奈米等級分散的氧化矽顆粒與聚醯亞胺分子內耦合形成類似交聯結構,可進一步提升聚醯亞胺的熱性質與機械性質,隨著混摻氧化矽的比例上升,可使聚醯亞胺光學膜的熱膨脹係數大幅下降到55 ppm/oC 以下,玻璃轉換溫度提升到300 oC以上,熱裂解溫度提升到400 oC以上,以及在厚膜(> 25 μm)的狀況下保有良好的穿透度(> 80% at 400nm)。
zh_TW
dc.description.abstractPolyimides are high performance and functional polymers used in different fields. However, the development of polimides with high refractive index, optical transmittance, and superior thermal-mechanical properties remain challenges. In this thesis, high refractive index and high optical transparency polyimides and their optical films were synthesized by molecular design and hybrid technology as following:
In this study, we synthesized the two dithiol monomers and then polymerized with bismaleimide by Michael addition under low temperature to get the colorless polyimidothioether, PITEDT and PITEMD.The materials have high refractive index and moderate Abbe’s number because of the high sulfur content and aromatic imide functional group in these polyimidothioether. The prepared optical thin films of these two polymers have high refractive index (> 1.71), excellent transparency (> 95% at 400nm) and moderate Abbe’s number (> 22).
Secondly, three colorless polyimides with hydroxyl group, 6FOXPI, 6F6FPI and 6FDBPI. The hybrid optical flexible optical films of these polyimides with different silica oxide content have successfully synthesized.In this study, hexafluoroisopropylidene, ether and t-butyl groups are used to increase the free volume of the polyimides, thereby improving the optical transparency, organic solubility and flexibility. Tetramethyl orthosilicate was used to form a covalent bond between silicon oxide and the hydroxyl group of the polyimides. By this method, it was found that the particle were well dispersed and the size of silicon oxide is 8~12nm which can avoid the light scattering. By forming the intramolecular coupling crosslink bond between the silica and polyimides, these hybrid films have better thermal and mechanical properties. These hybrid optical films have much lower coefficient of thermal expansion (< 55 ppm/oC), high TS (> 300 oC) and high Td (> 400 oC) and good optical transparency (> 80% at 400nm, thickness > 25 μm ).
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:26:21Z (GMT). No. of bitstreams: 1
ntu-101-R99549004-1.pdf: 2490831 bytes, checksum: 67207104e7c3230a76915935fbe9bf2b (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsTable of Contents
中文摘要......................................................................................................................I
Abstract....................................................................................................................III
Table of Contents.................................................................................................. V
List of Tables...................................................................................................... VIII
List of Schemes..................................................................................................... IX
List of Figures……………………………………………………...……….…..... X
Chapter 1 General Introduction……………………………………………....1
1.1 High Performance Polymers…………………………………………………1
1.1.1 Polyimide…………………………………………………...………3
1.1.2 High Optical Transparency Polyimide………………...……………5
1.1.3 Synthesis of Polyimide………………………………..…..………10
1.2 High Refractive Index Polymer……………………………….……………14
1.2.1 Methodologies for Developing High Refractive Index Polymers...16
1.2.2 Sulfur-Containing High Refractive Index Polyimides.………..….18
1.3 Organic/Inorganic Poly(imide–silica) Hybrid Materials …………………..22
1.3.1 High Optical Transparency Poly(imide–silica) Hybrid Material.....24
1.4. Research Objectives………………………………………………………27
Reference………………………………………………………………………29
Chapter 2 Synthesis and Properties of High Refractive Index
Colorless Polyimidothioethers ……………….………..………37
2.1 Introduction……………………………………………………...…………37
2.2 Experimental Section………………………………………………….……40
2.2.1 Materials……………………………………………………….……40
2.2.2 Synthesis of Monomer………………………………………………40
2.2.2.1 Synthesis of 2,5-Disulfanyl-1,4-dithiane (DSDT monomer) .40
2.2.2.2 Synthesis of 2,5-bis(mercaptomethyl)-1,4-dithiane (BMMD
monomer) …………………………………………………....42
2.2.3 Synthesis of Polyimidothioethers by Michael Polyaddition…….......44
2.2.4 Preparation of Polyimide Films…………………………………..…44
2.3 Characterization.……………………………………………………………46
2.4. Results and Discussion……………………………………………….……48
2.4.1 Chemical Structure Characterization………………………..………48
2.4.2 Polymer properties………………………………………………..…52
2.4.2.1 Thermal properties……...……………………………………52
2.4.2.2 Optical properties……………………………………………54
2.5. Conclusion……………………………………………………………...…57
Reference………………………………………………………………………58
Chapter 3 Polyimides-Silica Hybrid Optical Films………………..……60
3.1 Introduction…………………………………………………………...……60
3.2 Experimental Section…………………………………………………….…63
3.2.1 Materials………………………………………………………….…63
3.2.2 Synthesis of monomer
5,5'-((2,5-di-tert-butyl-1,4-phenylene)bis(oxy))bis(isobenzofuran-1,3-dione) (DDBBDA monomer) ………………………………….……64
3.2.3 Synthesis of Poly(hydroxy-imide) by One-Step Method………...…65
3.2.4 Preparation of Polyimide Films…………………………………..…68
3.2.5 Preparation of Polyimide-Silica Hybrid Films………….………..…68
3.3 Characterization.……………………………………………………………70
3.4. Results and Discussion………………………………………………….…71
3.4.1 Chemical Structure Characterization……..…………………………71
3.4.2 Polymer and hybrid properties…………………………………...…84
3.4.2.1 Thermal properties……...……………………………………84
3.4.3.2 Optical properties……………………………………………88
3.5. Conclusion……………………………………………………………...…92
Reference………………………………………………………………………93
Chapter 4 Conclusion and Future Work………………………………..…95
dc.language.isoen
dc.subject聚醯亞胺/氧化矽混成材料zh_TW
dc.subject光學膜zh_TW
dc.subject硫醚聚醯亞胺zh_TW
dc.subject聚醯亞胺zh_TW
dc.subjectPolyimideen
dc.subjectPolyimidothioetheren
dc.subjectOptical filmsen
dc.subjectPolyimide-Silica hybriden
dc.title硫醚聚醯亞胺材料及聚醯亞胺/氧化矽混成材料光學膜之合成與性質鑑定zh_TW
dc.titleSynthesis and Properties of Polyimidothioether and
Polyimide-Silica Hybrid Optical Films
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉貴生(Guey-Sheng Liou),游洋雁(Yang-Yen Yu)
dc.subject.keyword硫醚聚醯亞胺,聚醯亞胺,光學膜,聚醯亞胺/氧化矽混成材料,zh_TW
dc.subject.keywordPolyimidothioether,Polyimide,Optical films,Polyimide-Silica hybrid,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved