請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64002完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪宏基(Hong-Ki Hong) | |
| dc.contributor.author | Yu-Ting Wu | en |
| dc.contributor.author | 吳昱霆 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:26:05Z | - |
| dc.date.available | 2014-08-20 | |
| dc.date.copyright | 2012-08-20 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-16 | |
| dc.identifier.citation | [1] Borkowski, A., On dual approach to piecewise-linear elasto-plasticity. Part I: Continuum
models, Bulletin of the Polish Academy of Sciences, Vol.52, No.4, pp.329-343, 2004. [2] Borkowski, A., On dual approach to piecewise-linear elasto-plasticity. Part II: Discrete models, Bulletin of the Polish Academy of Sciences, Vol.52, No.4, pp.345-352, 2004. [3] Bremner, D., Fukuda, K., and Marzetta, A., Primal-Dual Methods for Vertex and Facet Enumeration, Discrete & Computational Geometry, Vol.20, No.3, pp.333-357, 1998. [4] Chen, W. F. and Han, D. J., Plasticity for Structural Engineers, Springer-Verlag, New York, 1988. [5] Chen, H. F. and Shu, D. W., A numerical method for lower bound limit analysis of 3- D structures with multi-loading systems, International Journal of Pressure Vessels and Piping, Vol.76, No.2 pp.105-112, 1999. [6] Chen, H. F., Liu, Y. H., Cen, Z. Z. and Xu, B. Y., On the solution of limit load and reference stress of 3-D structures under multi-loading systems, Engineering Structures, Vol.21, No.6, pp.530-537, 1999. [7] Cocchetti, G. and Maier, G., Elatic-plastic and limit-state analyses of frames with soften- ing plastic-hinge models by mathematical programming, International Journal of Solids and Strucures, Vol.40, No.25, pp.7219-7244, 2003. [8] Cohn, M. Z. and Maier, G., eds., Engineering Plasticity by Mathematical Programming - Proceedings of the NATO Advanced Study Institute, Pergamon Press, New York, 1977. [9] Hodge, P. G., Limit analysis with multiple load parameters, International Journal of Solids and Structures, Vol.6, No.5, pp.661-675, 1970. [10] Jir’asek, M. and Baˇzant, Z.P., Inelastic Analysis of Structures, Wiley, England, 2002. [11] Kaneko, I., A parametric linear complementarity problem involving derivatives, Mathe- matical Programming, Vol.15, No.1, pp.146-154, 1978. [12] Kaneko, I., Piecewise linear elastic-plastic analysis, International Journal for Numerical Methods in Engineering, Vol.14, No.5, pp.757-767, 1979. [13] Kaneko, I., Complete solutions for a class of elastic-plastic structures, Computer Methods in Applied Mechanics and Engineering, Vol.21, No.2, pp.193-209, 1980. [14] Lloyd-Smith, D. ed., Mathematical Programming Methods in Structural Plasticity, CISM Courses and Lectures No.299, International Centre for Mechanical Sciences, Springer- Verlag, Wien, 1990. [15] Maier, G., A quadratic programming approach for certain classes of non linear structural problems, Meccanica, Vol.3, No.2, pp.121-130, 1968. [16] Maier, G., A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes, Meccanica, Vol.1, No.5, pp.54-66, 1970. [17] Maier, G., Grierson, D.E. and Best, M.J., Mathematical programming methods for de- formation analysis at plastic collapse, Computers & Structures, Vol.7, No.5, pp.599-612, 1977. [18] Maier, G. and Munro, J., Mathematical programming methods in engineering plastic analysis, Applied Mechanics Reviews, ASME, Vol.35, No.12, pp.1631-1643, 1982. [19] Maier, G., Lloyd-Smith, D., Mathematical programming applications to engineering plas- tic analysis: update to November 1985, Applied Mechanics Update 1986, C.R. Steele and G.S. Springer eds., ASME, New York, pp.377-383, 1986. [20] Maier, G., Garvelli, V. and Cocchetti, G., On direct methods for shakedown and limit analysis, European Journal of Mechanics - A/Solids, Vol.19, pp.79-100, 2000. [21] Matlab, MATLAB R2009b documentation. MA: The MathWorks, Inc.; 2009. [22] Muscat, M., Mackenzie, D. and Hamilton, R., A work criterion for plastic collapse, In- ternational Journal of Pressure Vessels and Piping, Vol.80, No.1, pp.49-58, 2003. [23] Nafday, A. M., Corotis, R. B. and Cohon, J. L., Multiparametric limit analysis of frames. I: model, Journal of Engineering Mechanics, Vol.114, No.3, pp.377-386, 1988. [24] Nafday, A. M., Corotis, R. B. and Cohon, J. L., Multiparametric limit analysis of frames. II: computations, Journal of Engineering Mechanics, Vol.114, No.3, pp.387-403, 1988. [25] Reinicke, K. M., Ralston, T. D., Plastic limit analysis with an anisotropic, parabolic yield function, International Journal of Rock Mechanics and Mining Sciences, Vol.14, No.3, pp.147-154, 1977. [26] Staat, M. and Heitzer, M., LISA - a European project for FEM-based limit and shakedown analysis, Nuclear Engineering and Design, Vol.206, No.2-3, pp.151-166, 2001. [27] Sewell, M. J., Maximum and Minimum Principles - a Unified Approach, with Application, Cambridge University Press, Cambridge, England, 1986. [28] Tangaramvong, S. and Tin-Loi, F., Limit analysis of strain softening steel frames under pure bending, Journal of Constructional Steel Research, Vol.63, No.9, pp.1151-1159, 2007. [29] Tangaramvong, S. and Tin-Loi, F., A complementarity approach for elastoplastic analysis of strain softening frames under combined bending and axial force, Engineering Struc- tures, Vol.29, No.5, pp.742-753, 2007. [30] Tangaramvong, S. and Tin-Loi, F., Simultaneous ultimate load and deformation analysis of strain softening frames under combined stresses, Engineering Structures, Vol.30, No.3, pp.664-674, 2008. [31] Tangaramvong, S. and Tin-Loi, F., Limit analysis of elastoplastic frames considering 2nd-order geometric nonlinearity and displacment constraints, International Journal of Mechanical Sciences, Vol.51, No.3, pp.179-191, 2009. [32] Tin-Loi, F., and Lo, Y. F., Collapse limit surface generation for multiparametric loading, Applied Mathematical Modelling , Vol.16, pp.491-497, 1992. [33] Tin-Loi, F. and Xia, S. H., Nonholonomic elastoplastic analysis involving unilateral fric- tionless contact as a mixed complementarity problem, Computer Methods in Applied Mechanics and Engineering, Vol.190, No.35-36, pp.4551-4568, 2001. [34] Tin-Loi, F. and Xia, S. H., Holonomic softening: Models and analysis, Mechanics Based Design of Structures and Machines, Vol.29, No.1, pp.65-84, 2001. [35] Yang, W. H., A duality theorem for plastic torsion, International Journal of Solids and Structures, Vol.27, No.15, pp.1981-1989, 1991. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64002 | - |
| dc.description.abstract | 傳統的極限分析有許多的限制,其中在載重形式上會給定單一比例載重,等於將多維的載重空間特化為一維來處理而且限制要單調加載,不能卸載或反覆循環;另外在組成律方面則必須限於剛塑性或完全彈塑性。然而在真實情況中,作用在結構上的載重往往沒有比例關係,為各自獨立的載重,且硬化、軟化的材料在結構物中也比比皆是。因此,在本文中會放鬆以上限制,以處理更接近真實狀況的問題。
極限分析最大的好處為,可以在不需給定路徑的情況下,直接快速地求得崩塌載重。在極限分析的領域中,最常見的作法是結合數學規劃法,列出最佳化問題來求解彈塑性結構的崩塌載重。在高維載重空間中,崩塌載重即是以崩塌面的型式存在,本文認為崩塌面不單單只是最佳化後的數值結果,而是在結構喪失靜不定性後具有跟降伏面對應的模式,意即崩塌面是載重空間的多面體,它的每一個面代表一種崩塌模式, 不但是一種崩塌機構,而且也同時滿足平衡條件與廣義應力允許條件,因此可以由參與該機構的各個桿件的降伏面合成出來。本文即利用此種載重空間中降伏面與崩塌面的關係,定義具有數學、物理意義的機構向量條件式並給出證明,藉由搜索崩塌機構的方式直接求解崩塌面的模式,建立出結構在載重空間中的安全區域,並由硬化、 軟化桁架的數值實例來說明本文的方法。 | zh_TW |
| dc.description.abstract | There are some severe restrictions in the traditional limit analysis. For the load type, the load space is one-dimensional and monotonic by imposing the restriction of uni-directional proportional loading. On the other hand,
only can the constitutive law be perfectly elastic, either rigid-perfectly plastic or elastic-perfectly plastic. However, the load space is usually high dimensional in true situation, and the hardening/softening behavior prevails in almost all engineering structures. To deal with these problems, it is important to loose the above restrictions. The greatest advantage of limit analysis is that it can obtain collapse loads directly without giving loading paths. In the field of limit analysis, the most common approach is applying mathematical programming to calculating the collapse loads of elastoplastic structures, and the problem becomes an optimization problem of maximizing the collapse load. Collapse loads form a collapse surface in high dimensional load space; we deem a collapse surface to be not merely numerical results of optimization, but an equivalent model of yield surfaces once the structure in equilibrium loses its static indeterminancy and forms mechanisms. That is, we observe that each piece of a collapse surface represents a collapse mode of the structure and is corresponding to the yield surfaces of those structural members that form a collapse mechanism.Therefore, by using the relationship between the collapse surface and the yield surface in load space, we define the conditions of mechanism vectors which have mathematical and physical meaning. After searching each mechanism, the model of collapse surface can be constructed, and then we can construct the safety region in load space. Finally, some examples for truss structures with hardening and softening are given to verify this method. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:26:05Z (GMT). No. of bitstreams: 1 ntu-101-R99521247-1.pdf: 6407755 bytes, checksum: 4d0077f9d5111e4323c0b789e742dc4b (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 iv 表目錄 vii 圖目錄 viii 1 導論 1 1.1 研究動機與目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 本文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 符號說明與假設 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.1 符號說明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.2 假設 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 桁架結構之模式 6 2.1 片段線性多面形降伏面模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 桿件層次模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 完全彈塑性模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 完全彈塑性元件並聯模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 結構層次模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 硬化桁架崩塌面 15 3.1 硬化桁架崩塌面之模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.1 崩塌載重的定義 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.2 硬化結構的崩塌載重 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.3 載重空間中的崩塌點與崩塌面 . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.4 崩塌面與初始降伏面的相似性 . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.5 定義崩塌面模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 硬化桁架崩塌面之求解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.1 硬化桿件前處理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.2 定義機構向量與機構陣 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.3 機構向量的條件式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.4 崩塌面定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 提早剔除無實現可能之機構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 軟化桁架崩塌面 28 4.1 軟化桁架崩塌面之模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.1.1 軟化桿件的極限狀態 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.1.2 軟化結構的崩塌載重 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.3 定義軟化結構的安全載重區域 . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.4 定義軟化桁架崩塌面模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 軟化桁架崩塌面之求解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.1 軟化桿件前處理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.2 降伏面與安定理論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.3 減少降伏面對歷程的相依性 . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5 桁架崩塌面的數值實例 39 5.1 例一、 三桿桁架 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1.1 例一之硬化桁架 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1.2 例一之軟化桁架 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2 例二、 橋形桁架 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2.1 例二之硬化桁架 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2.2 例二之軟化桁架 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.3 例三、 塔狀桁架 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6 結論與未來展望 47 6.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 參考文獻 49 附錄 77 | |
| dc.language.iso | zh-TW | |
| dc.subject | 崩塌面 | zh_TW |
| dc.subject | 軟化 | zh_TW |
| dc.subject | 崩塌載重 | zh_TW |
| dc.subject | 桁架 | zh_TW |
| dc.subject | 線性不等式 | zh_TW |
| dc.subject | 硬化 | zh_TW |
| dc.subject | 極限分析 | zh_TW |
| dc.subject | truss | en |
| dc.subject | collapse surface | en |
| dc.subject | limit analysis | en |
| dc.subject | hardening | en |
| dc.subject | softening | en |
| dc.subject | collapse load | en |
| dc.subject | linear inequalities | en |
| dc.title | 硬軟化桁架崩塌面分析 | zh_TW |
| dc.title | Analysis of Collapse Surfaces for
Trusses with Hardening and Softening | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡克銓,張國鎮,呂學育 | |
| dc.subject.keyword | 崩塌載重,崩塌面,極限分析,硬化,軟化,桁架,線性不等式, | zh_TW |
| dc.subject.keyword | collapse load,collapse surface,limit analysis,hardening,softening,truss,linear inequalities, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 6.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
