請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63997完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳敏慧 | |
| dc.contributor.author | Miao-E Huang | en |
| dc.contributor.author | 黃妙娥 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:25:54Z | - |
| dc.date.available | 2017-09-17 | |
| dc.date.copyright | 2012-09-17 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-16 | |
| dc.identifier.citation | Armour AD, Fish JS, Woodhouse KA, et al. A comparison of human and porcine acellularized dermis: interactions with human fibroblasts in vitro. Plast Reconstr Surg. 2006 Mar;117(3):845-56.
Bourke KA, Haase H, Li H, Daley T, et al. Distribution and synthesis of elastin in porcine gingiva and alveolar mucosa. J Periodontal Res. 2000 Dec;35(6):361-8. Babu HM, Gujjari SK, Prasad D, et al. Comparative evaluation of a bioabsorbable collagen membrane and connective tissue graft in the treatment of localized gingival recession: A clinical study. J Indian Soc Periodontol. 2011 Oct;15(4):353-8. Barnes MJ, Morton LF, Bennett RC, et al. Presence of type III collagen in guinea-pig dermal scar. Biochem J. 1976 Jul 1;157(1):263-6. Cooper LJ, Kinoshita S, German M, et al. An investigation into the composition of amniotic membrane used for ocular surface reconstruction. Cornea. 2005 Aug;24(6):722-9. Chengdong, Nasim Annabi, Aki Khademhosseini, Fariba Dehghani. Fabrication of porous chitosan scaffold for soft tissue engineering using dense gas CO2. Dec. 2010 Acta Biomater.Page 12. DeSagun EZ, Botts JL, Srivastava A, et al. Long-term outcome of xenogenic dermal matrix implantation in immunocompetent rats. J Surg Res. 2001 Mar;96(1):96-106. Eberli D, et al. Tissue engineering. 2010, p.125-130. Gottlow J, Nyman S, Karring T, et al. Treatment of localized gingival recessions with coronally displaced flaps and citric acid. An experimental study in the dog. J Clin Periodontol. 1986 Jan;13(1):57-63. Guinard EA, Caffesse RG. Treatment of localized gingival recessions. Part I. Lateral sliding flap. J Periodontol. 1978 Jul;49(7):351-6. Guinard EA, Caffesse RG. Treatment of localized gingival recessions. Part III. Comparison of results obtained with lateral sliding and coronally repositioned flaps. J Periodontol. 1978 Sep;49(9):457-61. Guo F, Carter DE, Mukhopadhyay A, et al. Gingival fibroblasts display reduced adhesion and spreading on extracellular matrix: a possible basis for scarless tissue repair? PLoS One. 2011;6(11):e27097. Guo J, Wang Y, Cao C, Dziak R, et al. Human periodontal ligament cells reaction on a novel hydroxyapatite-collagen scaffold. Dent Traumatol. 2012 Jun 8. Ge L, Zheng S, Wei H. Comparison of histological structure and biocompatibility between human acellular dermal matrix (ADM) and porcine ADM. Burns. 2009 Feb;35(1):46-50. Huang LH, Neiva RE, Wang HL. Factors affecting the outcomes of coronally advanced flap root coverage procedure. J Periodontol. 2005 Oct;76(10):1729-34. Jung RE, Hurzeler MB, Thoma DS, Khraisat A. et al.,Local Tolerance and efficiency of two prototype collagen matrices to increase the width of keratinized tissue. J Clin. Periodontal 2011; 38:173-179. Kassab MM, Cohen RE. The etiology and prevalence of gingival recession. J Am Dent Assoc. 2003 Feb;134(2):220-5. Kinikoglu B, Hemar J, Hasirci V, et al. Feasibility of a porcine oral mucosa equivalent: A preclinical study. Artif Cells Blood Substit Immobil Biotechnol. 2012 Feb 6. Koepsell L, Remund T, Bao J, et al. Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers. J Biomed Mater Res A. 2011 Dec 15;99(4):564-75. Krishnan R, Rajeswari R, Venugopal J, et al. Polysaccharide nanofibrous scaffolds as a model for in vitro skin tissue regeneration. J Mater Sci Mater Med. 2012 Jun;23(6):1511-9. Luiz CJ, et al. Basic Histology. 2005, p.282. Moharamzadeh K, Brook IM, Van Noort R, et al. Tissue-engineered oral mucosa: a review of the scientific literature. J Dent Res. 2007 Feb;86(2):115-24. Moslemi N, Mousavi Jazi M, Haghighati F, et al. Acellular dermal matrix allograft versus subepithelial connective tissue graft in treatment of gingival recessions: a 5-year randomized clinical study. J Clin Periodontol. 2011 Dec;38(12):1122-9. Marco C. Bottino, Vinoy Thomas, Moncy V. Jose, Derrick R. Dean, Gregg M. Janowski. Acellular dermal matrix graft: Synergistic effect of rehydration and natural crosslinking on mechanical properties. 2010 Sept. 14; Wiley on line library. Naujoks C, Gerges C, Meyer U, et al. Evidence-based evaluation of publications on tissue engineering and regenerative medicine. In Vivo. 2011 Nov-Dec;25(6):923-8. Narang S, Gupta R. Evaluation of resorbable membrane in treatment of human gingival isolated buccal recession. Indian J Dent Res. 2011 Nov-Dec;22(6):749-54. Ouellet G, Dubé J, Gauvin R, et al. Production of an optimized tissue-engineered pig connective tissue for the reconstruction of the urinary tract. Tissue Eng Part A. 2011 Jun;17(11-12):1625-33. Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med. 2008 Feb;14(2):213-21. Pini-Prato G. The Miller classification of gingival recession: limits and drawbacks. J Clin Periodontol. 2011 Mar;38(3):243-5. Peña I, Junquera LM, Meana A, et al. In vitro engineering of complete autologous oral mucosa equivalents: characterization of a novel scaffold. J Periodontal Res. 2010 Jun;45(3):375-80. Pandit N, Malik R, Philips D. Tissue engineering: A new vista in periodontal regeneration. J Indian Soc Periodontol. 2011 Oct;15(4):328-37. Palaiologou AA, Yukna RA, Moses R, et al. Gingival, dermal, and periodontal ligament fibroblasts express different extracellular matrix receptors. J Periodontol. 2001 Jun;72(6):798-807. Pan YC, Xu JQ, Chen YK, et al. The clinical application on composite graft of acellular allo-dermal matrix and auto-microskin on escharectomy after deep burns. Zhonghua Wai Ke Za Zhi. 2004 Apr 7;42(7):410-2. Parry, S., and Strauss, J.F., III, Premature rupture of the fetal membranes. N. Engl.1998, J. Med.338, 663-670 Rutsatz C, Baumhardt SG, Feldens CA,et al. Response of pulp sensibility test is strongly influenced by periodontal attachment loss and gingival recession. J Endod. 2012 May;38(5):580-3. Ravikanth M, Soujanya P, Manjunath K, et al. Heterogenecity of fibroblasts. J Oral Maxillofac Pathol. 2011 May;15(2):247-50. Sung-Pei T, Chien-Yang H, Chung-Yu H, et al. Preparation and cell compatibility evaluation of chitosan/collagen composite scaffolds using amino acids as crosslinking bridges. Journal of Applied Polymer Science. 2007. Steele MH, Seagle MB. Palatal fistula repair using acellular dermal matrix: the University of Florida experience. Ann Plast Surg. 2006 Jan;56(1):50-3; discussion 53. Srivastava A, DeSagun EZ, Jennings LJ, et al. Use of porcine acellular dermal matrix as a dermal substitute in rats. Ann Surg. 2001 Mar;233(3):400-8. Sanchez-Quevedo MC, Alaminos M, Capitan LM, et al. Histological and histochemical evaluation of human oral mucosa constructs developed by tissue engineering. Histol Histopathol. 2007 Jun;22(6):631-40. Trombelli L, Minenna L, Farina R, et al. Guided tissue regeneration in human gingival recessions. A 10-year follow-up study. J Clin Periodontol. 2005 Jan;32(1):16-20. Takami Y, Matsuda T, Yoshitake M, et al. Dispase/detergent treated dermal matrix as a dermal substitute. Burns. 1996 May;22(3):182-90. Ueda M, Tohnai I, Nakai H. Et al. Tissue Engineering Research in Oral Implant Surgery. Artif Organs. 2001 Mar;25(3):164-71. Wang B, Tedder ME, Perez CE, et al. Structural and biomechanical characterizations of porcine myocardial extracellular matrix. J Mater Sci Mater Med. 2012 May 15. Xu H, Wan H, Zuo W, et al. A porcine-derived acellular dermal scaffold that supports soft tissue regeneration: removal of terminal galactose-alpha-(1,3)-galactose and retention of matrix structure. Tissue Eng Part A. 2009 Jul;15(7):1807-19. Zhong X, Ji C, Chan AK, et al. Fabrication of chitosan/poly(ε-caprolactone) composite hydrogels for tissue engineering applications. J Mater Sci Mater Med. 2011 Feb;22(2):279-88. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63997 | - |
| dc.description.abstract | 牙齦組織覆蓋在牙根、齒槽骨、直至齒頸部。由於牙齒周圍的牙齦組織皆為角化牙齦,因此可以保護牙根及其周圍組織。諸多因素都有可能會造成牙齦組織的萎縮與缺損,進而影響牙齦與齒槽骨的高度。在臨床上,對於大面積牙齦組織的萎縮與缺損,會應用口腔黏膜組織再生工程的技術來做填補與修復。
目的 目前臨床上用來修補口腔黏膜缺損的材料中,無論是化合物組成的再生膜、或是自體組織移植的方式,都會有無法避免的困難。然而,豬與人類在形態學與免疫學上相近。因此將去細胞後的豬牙齦組織製作成牙齦基底後,若可成功培養細胞,將可成為施行牙根覆蓋術的理想選擇材料之一。因此,本研究之目的是探討纖維母細胞在去細胞化之豬牙齦組織上的生長性,以做為未來發展與利用去細胞之豬牙齦組織做為口腔黏膜再生工程之支架材料。 材料及方法 本實驗使用1周大的ICR ( Institute of Cancer Research ) 品種小鼠來培養牙齦纖維母細胞。豬牙齦去細胞的處理方法則是參考Tasaki Y.處理去細胞皮膚基底的方式。之後,將牙齦纖維母細胞培養於豬牙齦組織塊以觀察生長情況。 另一方面,以紫木蘇與伊紅染色法對細胞核與細胞質染色,以便觀察和比較豬牙齦組織在未經去細胞、去細胞後豬牙齦組織、以及去細胞後豬牙齦基底烘乾後細胞殘存的情形。 將繼代培養的牙齦纖維母細胞分別培養至去細胞豬牙齦基底上,在4、8、16、24、與32小時的時間點,分別觀察細胞的生長型態。利用MTT ( 3-(4, 5-cimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide ) 來測量細胞在細胞外基質上的存活率與活性。 另外,以電子顯微鏡觀察未經處理的豬牙齦組織、經去細胞後處理的豬牙齦基底組織、以及牙齦纖維母細胞等標本在不同時間的型態。並且用梅生三色染色劑來區別在周圍結締組織的細胞類型及組成。 結果與結論 本實驗利用Trypsin和EDTA加上Triton X-100對全皮層的豬牙齦組織進行去細胞的方式雖然可以明顯去除上皮細胞,但對於殘存的細胞殘骸仍須藉由烘乾並以PBS沖洗後才能完整的去除。在去細胞的豬牙齦基底上培養的牙齦纖維母細胞,也能維持好的活性與細胞的型態,並利用纖維母細胞可促進完整基底膜生成的特性,以增加上皮細胞的生長。另外,在去細胞處理後可以觀察到牙齦基底因絲狀的不規則排列所產生的孔洞,其孔洞大小可利於細胞直接穿入內部。豬牙齦組織適合培養上皮細胞的生長,並且適用於需要大面積修補的牙齦缺損,對於應用於臨床牙周再生的材料中提供了另一種選擇。 | zh_TW |
| dc.description.abstract | The extent of the coverage of gingival tissue is over the root of tooth, alveolar bone, and the cervical portion of the tooth. Because all of the periodontal gingival tissue is keratinized gingiva, therefore, they can protect the root of tooth and the peripheral tissue. Many factors would be likely to cause the recession and defect of the gingival tissue, and this will affect the height of the gingiva and alveolar bone. Clinically, with regard to large area of the recession and defect of the gingival tissue, the tissue engineering of oral mucosa will be applied for the filling and repair.
Aim The present materials, whether regeneration membrane composed of chemical compound or autologous graft, for the repair of the defect of oral mucosa both have unavoidable difficulties. However, the pig are similar with human beings in morphology and immunology. Hence, if the culture of the cells could be successful in the gingival matrix made from acellular porcine gingival tissue, it could be one ideal choice of material for the root coverage. Therefore, the aim of this study is to discuss the growth of the fibroblast in acellular porcine gingival tissue, and the development and application of the acellular porcine gingival tissue as scaffold and material for the tissue engineering of oral mucosa in the future. Materials and Methods The one-week-old ICR ( Institute of Cancer Research ) mice was used for the culture of the gingival fibroblasts, and the method of acellularization of the porcine gingiva was referred to the management of acellularization of the dermal matrix by Tasaki Y.. Thereafter, the growth of the gingival fibroblasts cultured in porcine gingival sheets were observed. On the other hand, the Hematoxylin & Eosin stain applied to the nucleus and cytoplasm was used for observation and comparison of the residual cells in the porcine gingival tissue with the condition of pre-acellularization, post-acellularization, and dried post-acellularized matrix. The subcultured gingival fibroblasts was cultured in the acellular porcine gingival matrix, and the growth and state were observed at the time after 4, 8, 16, 24, and 32 hours. The MTT ( 3-(4, 5-cimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide ) was applied for the detection of the survival rate and activity of the cells in the extracellular matrix. In addition, the morphology of the pre-acellular porcine gingival tissue, post-acellular porcine gingival matrix, and gingival fibroblast were observed by the scanning electronic microscope. The Masson’s Trichrome Staining was used for the differentiation of the cellular types and composition in peripheral connective tissue. Results and Conclusion This study used trypsin and EDTA with Triton X-100 for acellularization of the full-thickness porcine gingival tissue, although this method definitely clear the epidermal cells, the residual cellular debris was still needed drying as well as washing with PBS for the purpose of complete clearance. Fibroblasts cultured in the acellular porcine gingival tissue maintained a good activities and cellular morphology, and the character of promoting complete development of the basement membrane of these fibroblasts can be used for increasing growth of the epithelial cells. After acellularization, filamentous and irregular arrangement of the gingival matrix would show some holes, which facilitated cells entering the inner site directly. Porcine gingival tissue is suitable for the growth of the epithelial cells, and it can be applied to the big-size gingival recession. Therefore, it provides an alternative choice of matrix of the clinical periodontal tissue engineering. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:25:54Z (GMT). No. of bitstreams: 1 ntu-101-R95422027-1.pdf: 903114304 bytes, checksum: 51171debb3eda9f313eeff0a07c79341 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目 錄
口試委員會審定書…………………………………………………………i 誌謝……………………………………………………...…………………ii 表次目錄…………………..………………………………………………vi 圖次目錄……………….…………………………………………………vii 中文摘要…………...………………………………………………………x 英文摘要………………………………………………….………………xii 第一章 文獻回顧…………………………………………………….…..1 1-1口腔黏膜 ( oral mucosa )及其缺損……….…………………………1 1-2 牙齦萎縮與其治療方式……………………………..………………2 1-3 組織支架的種類與應用……………………………..………………4 1-4 口腔黏膜組織的再生工程與應用…………………..………………6 1-5 牙齦纖維母細胞簡介……………………………..…………………8 1-6 豬牙齦組織型態與簡介………………………..……………………8 第二章 實驗的背景與目的……………………………………...………10 第三章 實驗的材料與方法……………...………………………………11 3-1 牙齦纖維母細胞的培養……………………………………………11 3-2 豬去細胞牙齦基底之製作…………………………………………11 3-3 組織切片與H&E染色……………..………………………………12 3-4 觀察牙齦纖維母細胞在培養盤(TCPS)上與去細胞之豬牙齦基底上的型態……………………...……………………………………12 3-5 MTT測試……………………………………………………………12 3-6 掃描式電子顯微鏡(SEM)的觀察………………….………………13 3-7 Masson’s Trichrome Staining ( 梅生三色染色劑 ) 染色…………14 實驗的儀器………….……………………………………………………15 第四章 實驗的結果 ……….……………………………………………19 4-1豬牙齦的去細胞處理結果……….…………………………………19 4-2組織切片與H&E染色………………………………………………19 4-3牙齦纖維母細胞培養於TCPS上的觀察..………………………… 20 4-4 MTT的測試…………………………………………………………20 4-5 掃描式電子顯微鏡的觀察…………………………………………20 4-6 Masson’s Trichrome Staining……………………..…………………21 第五章 討論…………………………………………...…………………23 5-1 豬牙齦組織塊與去細胞處理之豬牙齦基底………………………23 5-2 豬去細胞牙齦基底…………………………………………………23 5-3 牙齦纖維母細胞在豬去細胞牙齦基底上的活性與型態…………24 第六章 結論………………...……………………………………………27 第七章 未來的研究方向…………………………………..……….……28 參考文獻…………………………………………………….……………53 表次目錄 表一 實驗流程表…………………………………………...……………29 圖次目錄 圖 1 ( a ) 豬的下顎牙齦, ( b ) 從豬下顎所取下的牙齦組塊…….……30 圖 2 ( a ) 經過去細胞處理後的豬牙齦組織 ( b ) 經過烘乾的去細胞豬 牙齦組織……………………………………………………...……31 圖 3 利用工具將牙齦組織基底切割成96well大………………...……32 圖 4 H&E染色,未去細胞之豬牙齦 ( a ) 10X ( b ) 40X………………33 圖 5 H&E染色 ( a ) 經去細胞處理後之豬牙齦基底 ( b ) 烘乾處理後之去細胞後豬牙齦基底,10X…………..…………………………34 圖6 牙齦纖維母細胞培養於去細胞之豬牙齦基底4小時 ( a ) 100X ( b ) 200X………………..………………………………………………35 圖 7 牙齦纖維母細胞培養於去細胞之豬牙齦基底16小時 ( a ) 100X ( b ) 200X……..……………………………………………………36 圖 8 牙齦纖維母細胞培養於去細胞之豬牙齦基底32小時 ( a ) 100X ( b ) 200X…………………………………………………………37 圖 9 MTT 活性測試,纖維母細胞培養於去細胞後豬牙齦基底,細胞種 植密度為5X103cells/cm2……………………………………………38 圖10 SEM 未經去細胞處理之豬牙齦組織塊 ( a ) 10K ( b ) 15K….…39 圖11 SEM 經去細胞處理後之豬牙齦基底,烘乾處理前 15K….…..…40 圖12去細胞處理後之豬牙齦基底,烘乾處理後 ( a ) 20k ( b ) 30K…41 圖13 SEM 牙銀纖維母細胞培養於 ( a ) TCPS 上,1.5K ( b ) 豬去細胞之牙齦基質上,1.5K; 4小時,細胞種植密度為5 X 103 cells/cm2,第四代……………………………...………………………………42 圖14 SEM 牙銀纖維母細胞培養於 ( a ) TCPS 上,1.5K ( b ) 豬去細胞之牙齦基質上,5K;8小時,細胞種植密度為5X103cells/cm2, 第四代………………...………………………………………………43 圖15 SEM 牙銀纖維母細胞培養於 ( a ) TCPS 上,1.5K ( b ) 豬去細胞 之牙齦基質上,5K;16小時,細胞種植密度為5X103cells/cm2, 第 四代………….……………..………………………………………44 圖16 SEM 牙銀纖維母細胞培養於 ( a ) TCPS 上,1.5K ( b ) 豬去細胞之牙齦基質上,1.5K;24小時,細胞種植密度為5 X 103 cells/cm2,第四代…………………………………………...…………………45 圖17 SEM 牙銀纖維母細胞培養於 ( a ) TCPS 上,1.5K ( b ) 豬去細胞之牙齦基質上,1.5K;32小時,細胞種植密度為5 X 103 cells/cm2,第四代……………………………………...………………………46 圖18 Masson’s 染色,去細胞處理後之豬牙齦組織塊…………………47 圖19 Masson’s 染色,牙齦纖維母細胞培養於 ( a ) TCPS ( b ) 去細胞 豬牙齦基底,4小時,細胞種植密度為5X103cells/cm2 ,第四代……………………………………………………...……………48 圖20 Masson’s 染色,牙齦纖維母細胞培養於 ( a ) TCPS ( b ) 去細胞豬牙齦基底,8小時,細胞種植密度為5 X 103 cells/cm2 ,第四代………………………………………………………………...…49 圖21 Masson’s 染色,牙齦纖維母細胞培養於 ( a ) TCPS ( b ) 去細胞豬牙齦基底,16小時,細胞種植密度為5 X 103 cells/cm2 ,第四代……………………...……………………………………………50 圖22 Masson’s 染色,牙齦纖維母細胞培養於 ( a ) TCPS ( b ) 去細胞 豬牙齦基底,24小時,細胞種植密度為5 X 103 cells/cm2 ,第四 代…………………………...………………………………………51 圖23 Masson’s 染色,牙齦纖維母細胞培養於 ( a ) TCPS ( b ) 去細胞豬牙齦基底,32小時,細胞種植密度為5 X 103 cells/cm2 ,第四代……………...……………………………………………………52 | |
| dc.language.iso | zh-TW | |
| dc.subject | 牙齦萎縮 | zh_TW |
| dc.subject | 異種組織 | zh_TW |
| dc.subject | 纖維母細胞 | zh_TW |
| dc.subject | 豬牙齦組織 | zh_TW |
| dc.subject | 去細胞 | zh_TW |
| dc.subject | Gingival recession | en |
| dc.subject | Xenograft | en |
| dc.subject | Fibroblast | en |
| dc.subject | Porcine gingival tissue | en |
| dc.subject | Acellular | en |
| dc.title | 牙齦纖維母細胞在去細胞化之豬牙齦基質之生長與貼附 | zh_TW |
| dc.title | Growth and Attachment of Gingival Fibroblasts on
Decellulized Porcine Gingival Matrix | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊台鴻,陳羿貞 | |
| dc.subject.keyword | 牙齦萎縮,異種組織,纖維母細胞,豬牙齦組織,去細胞, | zh_TW |
| dc.subject.keyword | Gingival recession,Xenograft,Fibroblast,Porcine gingival tissue,Acellular, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 881.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
