Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63988Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 謝宏昀(Hung-Yun Hsieh) | |
| dc.contributor.author | Yao-Pang Chiang | en |
| dc.contributor.author | 江耀邦 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:25:27Z | - |
| dc.date.available | 2013-08-17 | |
| dc.date.copyright | 2012-08-17 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-16 | |
| dc.identifier.citation | [1] R. T. R. Berezdivin, R.; Breinig, Next-generation wireless communications
concepts and technologies, in IEEE Communications Magazine, vol.40, no.3, pp.108-116, Mar 2002. [2] D. Bertsekas and R. Gallagar, Data Networks. Englewood Cli s, NJ: Prentice- Hall 1992. [3] R. Knopp and P. Humlet, Information capacity and power control in single cell multiuser communications, in IEEE ICC?95 in Proc., 1995, pp. 331- 225, 1995. [4] I. NTT DOCOMO, Investigation on coordinated multipoint transmission schemes in LTE-Advanced downlink, 3GPP TSG-RAN WG1 55 R1-090314, 2009/01. [5] R. G. J. P. P. V. G. Dai, Z.; Fracchia, Vertical handover criteria and algorithm in IEEE802.11 and 802.16 hybrid networks, in IEEE International Conference on Communications, 2008. ICC '08., vol., no., pp.2480-2484, 19- 23 May 2008. [6] Y. Wooseok Nam; Woohyuk Chang; Sae-Young Chung; Lee, Transmit optimization for relay-based cellular OFDMA systems, in IEEE International Conference on Communications, 2007. ICC '07. , vol., no., pp.5714-5719, 24-28 June 2007. [7] O. Oyman, Opportunistic scheduling and spectrum reuse in relay-based cellular networks, in IEEE Transactions on Wireless Communications , vol.9, no.3, pp.1074-1085, March 2010. [8] H. F.-D. Sreng, V.; Yanikomeroglu, Relayer selection strategies in cellular networks with peer-to-peer relaying, in Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th , vol.3, no., pp. 1949- 1953 Vol.3 , 6-9 Oct. 2003. [9] J. L. S. P. H. W. D. Hong, QoS-guaranteed transmission scheme selection for OFDMA multi-hop cellular networks, in IEEE International Conference on Communications, 2007. ICC '07, 24-28 June 2007. 79 REFERENCES 80 [10] A. L. V. Haoming Li; Hajipour, J.; Attar, E cient HetNet implementation using broadband wireless access with ber-connected massively distributed antennas architecture, in IEEE Wireless Communications, vol.18, no.3, pp.72-78,, June 2011. [11] J. J. C. H. J. J. Y. P. Z. Damnjanovic, A.; Montojo, UE's role in LTE advanced heterogeneous networks, in IEEE Communications Magazine, vol.50, no.2, pp.164-176, February 2012. [12] 3GPP TR36.819 V11.0.0. [13] Y. M. A. N. D. T. M. Sawahashi, M.; Kishiyama, Coordinated multipoint transmission/reception techniques for LTE-advanced [Coordinated and Distributed MIMO], in IEEE Wireless Communications , vol.17, no.3, pp.26-34, June 2010. [14] L. Hu Wang, Huawei Technologies Co., LTE-Advanced development progress, TTA IMT-Advanced Workshop, September 11th2009, Korea. [15] S. N. Chuang, J., Beyond 3G: wideband wireless data access based on OFDM and dynamic packet assignment, in IEEE Communications Magazine, vol.38, no.7,pp.78-87, Jul 2000. [16] N. Ye Li, Sollenberger, Adaptive antenna arrays for OFDM systems with cochannel interference, in IEEE Transactions on Communications, vol.47, no.2, pp.217-229, Feb 1999. [17] R. T. Eli Sofer, Yossi Segal, Tutorial on multi access OFDM (OFDMA) technology, IEEE P802.22 Wireless RANs, 2005-01-04. [18] R. P. R. Jalali, A.; Padovani, Data throughput of CDMA-HDR a high e ciency-high data rate personal communication wireless system, in Vehicular Technology Conference Proceedings, 2000. VTC 2000-Spring Tokyo. 2000 IEEE 51st , vol.3, no., pp.1854-1858 vol.3, 2000. [19] P. Knopp, R.; Humblet, Information capacity and power control in singlecell multiuser communications, in IEEE International Conference on Communications, 1995. ICC '95 Seattle, 'Gateway to Globalization' , vol.1, no., pp.331-335 vol.1, 18-22 Jun 1995. [20] A. Tassiulas, L.; Ephremides, Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks, in IEEE Transactions on Automatic Control , vol.37, no.12, pp.1936-1948, Dec 1992. REFERENCES 81 [21] P. C. P. H. W. Ksairi, N.; Bianchi, Resource allocation for downlink cellular OFDMA systems綞part ii: Practical algorithms and optimal reuse factor, in IEEE Transactions on Signal Processing , vol.58, no.2, pp.735-749, Feb. 2010. [22] P. C. P. H. W. Ksairi, N.; Bianchi, Resource allocation for downlink cellular OFDMA systems: Part i綞optimal allocation, in IEEE Transactions on Signal Processing , vol.58, no.2, pp.720-734, Feb. 2010. [23] P. X. P. G. J. H. P. D. P. D. K. Kim;, Radio resource management with proportional rate constraint in the heterogeneous networks, in IEEE Transactions on Wireless Communications, vol.11, no.3, pp.1066-1075, March 2012. [24] D. X. C. Lopez-Perez, Inter-cell interference coordination for expanded region picocells in heterogeneous networks, in 2011 Proceedings of 20th International Conference on Computer Communications and Networks (ICCCN), vol., no., pp.1-6, July 31 2011-Aug. 4 2011. [25] G. Pietrzyk, S.; Janssen, Radio resource allocation for cellular networks based on OFDMA with QoS guarantees, in IEEE Global Telecommunications Conference, 2004. GLOBECOM '04 , vol.4, no., pp. 2694- 2699 Vol.4 , 29 Nov.-3 Dec. 2004. [26] P. M. P. Lengoumbi, C.; Godlewski, Dynamic subcarrier reuse with rate guaranty in a downlink multicell OFDMA system, in IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, 2006, vol., no., pp.1-5, 11-14, 11-14 Sept. 2006. [27] A. Zaki, A.N.; Fapojuwo, Optimal and e cient graph-based resource allocation algorithms for multiservice frame-based OFDMA networks, in IEEE Transactions on Mobile Computing, vol.10, no.8, pp.1175-1186, Aug. 2011. [28] M. D. M. S. X. Mehrjoo, M.; Awad, Design of fair weights for heterogeneous tra c scheduling in multichannel wireless networks, in IEEE Transactions on Communications, vol.58, no.10, pp.2892-2902, October 2010. [29] C. Fattah, H.; Leung, An overview of scheduling algorithms in wireless multimedia networks, in IEEE Wireless Communications, vol.9, no.5, pp. 76- 83, Oct. 2002. [30] J. Kim, T.; Lim, Quality of service supporting downlink scheduling scheme in worldwide interoperability for microwave access wireless access systems, in IET Communications, vol.4, no.1, pp.32-38, January 5 2010. REFERENCES 82 [31] L. B. G. F. R. C. P. Piro, G.; Grieco, Two-level downlink scheduling for real-time multimedia services in LTE networks, in IEEE Transactions on Multimedia, vol.13, no.5, pp.1052-1065, Oct. 2011. [32] W. Torabzadeh, M.; Ajib, Packet scheduling and fairness for multiuser MIMO systems, in Vehicular Technology, IEEE Transactions on , vol.59, no.3, pp.1330-1340, March 2010. [33] A. R. M. Y. H. F. D. Y.-D. K. Salem, M.; Adinoyi, Fairness-aware radio resource management in downlink OFDMA cellular relay networks, in IEEE Transactions on Wireless Communications, vol.9, no.5, pp.1628-1639, May 2010. [34] M. Shadmand, Amir; Shikh-Bahaei, Multi-user time-frequency downlink scheduling and resource allocation for LTE cellular systems, in 2010 IEEE on Wireless Communications and Networking Conference (WCNC), vol., no., pp.1-6, 18-21, April 2010. [35] C. L. L. Qiu, QoS-aware scheduling and resource allocation for video streams in e-MBMS towards LTE-A system, in 2011 IEEE on Vehicular Technology Conference (VTC Fall), vol., no., pp.1-5, 5-8, Sept. 2011. [36] Y. Y. A. L. Harada, Enhanced downlink control channel resource allocation algorithm for cross-carrier scheduling in LTE-Advanced carrier aggregation system, in 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), vol., no., pp.1-5, 15-18, May 2011. [37] X. P. D. G. M. S. J. Song, On the study of resource scheduling in next generation heterogeneous wireless networks, in 2008. World Automation Congress. WAC, vol., no., pp.1-5, Sept. 28 2008-Oct. 2 2008. [38] P. S. Rony Kumer Saha, Novel resource scheduling for spectral e ciency in LTE-Advanced systems with macrocells and femtocells, in 2011 8th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 17-19 May 2011. [39] V. A. R. B. R. Huang, J.; Subramanian, Joint scheduling and resource allocation in uplink OFDM systems for broadband wireless access networks, in IEEE Journal on Selected Areas in Communications, vol.27, no.2, pp.226- 234, February 2009. [40] L. K. K. Tian Lan; Sinkar, K.; Kant, Resource allocation and performance study for LTE networks integrated with femtocells, in 2010 IEEE Global REFERENCES 83 Telecommunications Conference (GLOBECOM 2010), vol., no., pp.1-6, 6- 10, Dec. 2010. [41] H. W. L. D. P. W. Z. P. N. L. X. You, Dynamic load balancing in 3GPP LTE multi-cell networks with heterogenous services, in 2010 5th International ICST Conference on Communications and Networking in China (CHINACOM), vol., no., pp.1-5, 25-27, Aug. 2010. [42] D. Tse, Multiuser diversity in wireless networks. http://www.eecs.berkly.edu/dtse/stanford416.ps, Apr. 2001. [43] M. A. et al., Providing qulaity of service over a shared wireless link, in IEEE Commun. Mag., vol. 39, pp. 150-154,, Feb. 2001. [44] E. K. P. C. X. Liu and N. B. Shro , Optimistic transmission scheduling with resource-sharing constaints in wireless networks, in IEEE J. Sel. Areas Commun., vol. 19, pp. 2053-2064, Oct. 2001. [45] A. K. M. F. P. Kelly and D. K. H. Tan., Rate control in communication networks: shadow prices, proportional fairness and stability, in J. of the Operational Research Society, vol. 49, pp. 237-252, Apr. 1998. [46] Y. H. Hoon Kim, A proportional fair scheduling for multicarrier transmission systems, in IEEE COMMUNICATIONS LETTERS, VOL. 9, NO. 3, MARCH 2005. [47] X. S. L. C. Mingju Li, Juejia Zhou; Liu Liu, Secondary serving cell selection for heterogeneous network with RRH deployment, in IEEE International Conference on Communications Workshops (ICC) , vol., no., pp.1-5, 5-9 June 2011. [48] Q. Europe, Importance of serving cell selection in HetNets, vol. 3GPP TSGRAN WG1 59 R1-094882, November 9th, 13th 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63988 | - |
| dc.description.abstract | 在下一代通訊網路下,資源分配及排程是兩個關鍵性的議題。不像過去的相
關研究多半注重在同質性無線通訊系統下進行資源分配及排程,在本論文裡,我 們考慮一個包含傳統大型基地台以及數個低功率遠端射頻收發裝置的異質性無 線通訊系統,並研究如何經由各異質傳輸點之間的協同排程及資源分配,以提供 所有使用者公平而有效率的服務。為了設計出最佳之資源分配以及排程,我們首 先將問題抽象化成一個最佳化問題,藉由綜合考慮各個排程時間及傳輸點頻譜資 源以達到一個對所有使用者公平而最佳的分配。然而,由於這個方法的搜尋複雜 度太高,因此我們接著將問題近似成一個疊代式的排程問題,此方法將原先的聯 合最佳化問題拆解成若干個子問題,並將目標函數經過適當轉化以降低數學運算 的複雜度。疊代式的排程雖然在在最初的排程效能有一些損失,但隨著排程時間 的推展,其解法可極度趨近於原先的問題,達到公平而有效率的資源分配。基於 最佳化的資源分配及協同排程求解,我們最後提出一個低複雜度的演算法,藉由 觀察各個使用者的效能高低以及通道環境的變動,動態進行資源分配,確保在達 到公平的前提下能伴隨著最少的通道容量損失。電腦模擬結果顯示,不管就使用 者公平性或通道效能而言,此演算法都明顯優於相關文獻的作法;與前述最佳化 問題之最佳解比較,此演算法也僅需極短的時間即可趨近於最佳解,達到異質性 無線通訊系統下協同排程與資源分配之目的。 | zh_TW |
| dc.description.abstract | Resource allocation and transmission scheduling are two key issues in the next-generation communication system. Unlike related work that focuses mostly on homogeneous networks, we consider in this thesis a heterogeneous network with macro BSs and several low-power remote radio heads (RRHs). The goal is to perform coordinated scheduling among heterogeneous transmission points through proper resource allocation for all users in the OFDMA-based system. To proceed, we first formulate an optimization problem that takes into consideration resource allocation and transmission scheduling across all scheduling slots.
Since the computation complexity is prohibitive, we then transform the one-shot optimization problem into an iterative scheduling problem. While the transformed problem exhibits some performance degradation initially, as the amount of scheduling slots increases, its performance improves and closely tracks the original formulation with significantly lower complexity. Based on insights from solving the optimization problem, we then propose a coordinated scheduling algorithm to dynamically allocate resources of all transmission points to users based on the perceived performance and channel variation. Through proper control of fairness and aggregate capacity, the algorithm can achieved the desired performance and outperforms approaches proposed in related work. We thus motivate further investigation for joint coordinated scheduling and resource allocation across heterogeneous transmission points in the next-generation wireless system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:25:27Z (GMT). No. of bitstreams: 1 ntu-101-R99942055-1.pdf: 3839175 bytes, checksum: 114807a2b4c276989d7313af1010f509 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1 CHAPTER 2 BACKGROUND AND RELATED WORK . . . . . 4 2.1 Heterogeneous Networks . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Coordinated Multi-Point Transmission . . . . . . . . . . . . . . . . 7 2.3 Orthogonal Frequency Division Multiple Access . . . . . . . . . . . 9 2.4 Packet Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4.1 C-T MaxMin . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.2 Round Robin . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.3 Max-C/I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.4 MWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.5 MLWDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.6 PF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5.1 Resource Allocation . . . . . . . . . . . . . . . . . . . . . . 12 2.5.2 Coordinated Scheduling . . . . . . . . . . . . . . . . . . . . 13 2.5.3 Joint Resource Allocation and Scheduling . . . . . . . . . . 14 CHAPTER 3 PROBLEM FORMULATION . . . . . . . . . . . . . 15 3.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Denition of Proportional Fair Scheduler . . . . . . . . . . . . . . 17 3.4 Formulation for One-shot Scheduling Method . . . . . . . . . . . 17 3.5 Formulation for Iterative Scheduling Method . . . . . . . . . . . . 21 3.6 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 CHAPTER 4 APPROXIMATION METHOD . . . . . . . . . . . . 30 4.1 Evolution of Proportional Fair Scheduling (PF) . . . . . . . . . . . 30 iii CONTENTS iv 4.2 Iterative Scheduling Using Approximation Method . . . . . . . . . 34 4.3 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 CHAPTER 5 DESIGN OF NOVEL ALGORITHMS . . . . . . . 43 5.1 Resource Allocation and Scheduling Issue in Heterogeneous Network 43 5.1.1 Simple User Association Rule . . . . . . . . . . . . . . . . . 44 5.2 Interference Management in Heterogeneous Networks . . . . . . . . 45 5.2.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . 45 5.3 Novel Algorithms Design . . . . . . . . . . . . . . . . . . . . . . . 49 5.3.1 Capacity Aware Algorithm Design . . . . . . . . . . . . . . 50 5.3.2 Fairness Aware Algorithm Design . . . . . . . . . . . . . . 58 CHAPTER 6 PERFORMANCE ANALYSIS . . . . . . . . . . . . . 64 6.1 Simulation Assumption . . . . . . . . . . . . . . . . . . . . . . . . 64 6.2 Impact of Algorithm Parameter . . . . . . . . . . . . . . . . . . . 66 6.3 UEs Uniformly Distributed in The Network . . . . . . . . . . . . . 68 6.4 UE Uniformly Distributed in The Network Center . . . . . . . . . 71 6.5 UE Uniformly Distributed in The Network Edge . . . . . . . . . . 73 CHAPTER 7 CONCLUSION AND FUTURE WORK . . . . . . 76 7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 | |
| dc.language.iso | en | |
| dc.subject | 資源分配 | zh_TW |
| dc.subject | 協同排程 | zh_TW |
| dc.subject | coordinated scheduling | en |
| dc.subject | resource allocation | en |
| dc.title | LTE-A 異質網路下協同排程與資源分配之聯合最佳化 | zh_TW |
| dc.title | Joint Optimization of Coordinated Scheduling and Resource
Allocation in LTE-Advanced Heterogeneous Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林風(Phone Lin),魏宏宇(Hung-Yu Wei),高榮鴻(Rung-Hung Gau) | |
| dc.subject.keyword | 協同排程,資源分配, | zh_TW |
| dc.subject.keyword | coordinated scheduling,resource allocation, | en |
| dc.relation.page | 83 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| Appears in Collections: | 電信工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-101-1.pdf Restricted Access | 3.75 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
