Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63982
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蔡懷楨(Huai-Jen Tsai)
dc.contributor.authorYi-Lin Chenen
dc.contributor.author陳怡伶zh_TW
dc.date.accessioned2021-06-16T17:25:14Z-
dc.date.available2022-08-14
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citationAndresen, M., Wahl, M.C., Stiel, A.C., Grater,F., Schafer, L.V., Trowitzsch, S.,Weber G., Eggeling, C., Grubmuller, H., Hell, S.W. and Jakobs, S. (2005). Structure and mechanismof the reversible photoswitch of a fluorescent protein. Proc. Nat.l Acad. Sci. USA., 102,13070–4.
Barondeau, D.P., Putnam, C.D., Kassmann, C.J., Tainer, J.A. and Getzoff, E.D. (2003). Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures. Proc. Natl. Acad. Sci. USA, 100(12), 111-2.
Beddoe, T., Ling, M., Dove S., Hoegh-Guldberg, O., Devenish, R.J., Prescott, M., and Rossjohn, J. (2003).The production, purification and crystallization of a pocilloporin pigment from a reef-forming coral. Acta. Crystallogr., Sect. D: Biol. Crystallogr., 59, 597-9.
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. (2000) The Protein Data Bank. Nucleic Acids Res., 28(1), 235-42.

Bevis, B.J.and Glick, B.S. (2002). Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat. Biotechnol., 20(1), 83-7.
Bravaya, K.B., Subach, O.M., Korovina, N., Verkhusha, V.V. and Krylov, A.I. (2012). Insight into the common mechanism of the chromophore formation in the red fluorescent proteins: the elusive blue intermediate revealed. J. Am. Chem. Soc., 134(5), 2807-14.
Bulina, M.E., Chudakov, D.M., Mudrik, N.N.and Lukyanov, K.A. (2002). Interconversion of Anthozoa GFP-like fluorescent and non-fluorescent proteins by mutagenesis. BMC Biochem., 3, 7.
Campbell, R.E., Tour, O., Palmer, A. E., Steinbach, P.A., Baird, G.S., Zacharias, D. A.and Tsien, R. Y. (2002).A monomeric red fluorescent protein.Proc. Natl. Acad. Sci. USA, 99(12), 7877-82.
Chalfie,M., Tu, Y., Euskirchen, G., Ward,W.W.and Prasher,D.C. (1994). Green fluorescent protein as a marker for gene expression. Science, 263(5148), 802-5.
Chan, M.C., Karasawa, S., Mizuno, H., Bosanac, I., Ho, D., Prive, G.G., Miyawaki, A. and Ikura, M. (2006). Structural characterization of a blue chromoprotein and its yellow mutant from the sea anemone Cnidopus japonicus.
J. Biol. Chem., 281, 37813-9.
Chudakov, D.M., Belousov, V.V, Zaraisky, A.G, Novoselov, V.V, Staroverov, D.B, Zorov, D.B, Lukyanov, S. and Lukyanov, K. A. (2003a). Kindling fluorescent proteins for precise in vivo photolabeling. Nat. Biotechnol., 21(2), 191-4.
Chudakov, D.M., Feofanov, A.V., Mudrik, N.N., Lukyanov, S. and Lukyanov, K.A. (2003b). Chromophore environment provides clue to ‘‘kindling fluorescent protein’’ riddle. J. Biol. Chem., 278, 7215–9.
Chan, M.C., Karasawa, S., Mizuno, H., Bosanac, I., Ho, D., Prive, G.G.,Miyawaki, A. and Ikura, M. (2006). Structural characterization of a blue chromoprotein and its yellow mutant from the sea anemone Cnidopus japonicus.
J. Biol. Chem., 281, 37813–19.
Chiu, W., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H. and Sheen, J. (1996). Engineered GFP as a vital reporter in plants. Curr. Biol., 6(3), 325-30.
Cubitt, A.B., Heim, R., Adams, SR., Boyd, A.E., Gross, L.A. and Tsien, R.Y., (1995). Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci., 20(11), 448-55.
Cubitt, A. B., Woollenweber, L. A. and Heim, R. (1997). Understanding structure-function relationships in the Aequorea victoria green fluorescent protein, in
Green Fluorescent Proteins. Academic. Press., 58, 19–30.
Ehrig, T., O'Kane, D.J. and Prendergast, F.G. (1995). Green-fluorescent protein mutants with altered fluorescence excitation spectra. FEBS Lett., 367(2), 163-6.
Ormo, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y.and Remington, S.J. (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science, 273, 1392–5.
Giepmans, B.N., Adams, S.R., Ellisman, M.H. and Tsien, R.Y. (2006). The fluorescent toolbox for assessing protein location and function. Science, 312, 217–24.
Goedhart, J., von Stetten, D., Noirclerc-Savoye, M., Lelimousin, M., Joosen, L., Hink, M.A., van Weeren, L., Gadella, T.W.Jr. and Royant, A. (2012). Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat. Commun., 20(3), 751.
Gross, L.A., Baird, G.S., Hoffman, R.C., Baldridge, K.K. and Tsien, R.Y. (2000). The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. USA, 97, 11990–95.
Gurskaya, N.G., Fradkov, A.F., Terskikh, A., Matz, M.V., Labas, Y.A., Martynov, V.I., Yanushevich, Y.G., Lukyanov, K.A. and Lukyanov, S.A. (2001). GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett., 507, 16–20.
He, X., Bell, A.F. and Tonge, P.J. (2002). Synthesis and spectroscopic studies of model red fluorescent protein chromophores. Org. Lett., 4, 1523-6.
Heim, R., Prasher, D. C. and Tsien, R. Y. (1994). Wavelength mutations and post-
translational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA,
91(26), 12501-4.
Heim, R. and Tsien, R.Y. (1996). Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol., 6(2), 178-82.
Henderson, J.N. and Remington, S.J. (2006). The kindling fluorescent protein: a transient photoswitchable marker. Physiology (Bethesda), 21, 162–70.
Henderson, J.N., Ai, H.W., Campbell, R.E. and Remington, S.J. (2007). Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc. Natl. Acad. Sci. USA, 104, 6672–7.
Kredel, S., Nienhaus, K., Oswald, F., Wolff, M., Ivanchenko, S., Cymer, F., Jeromin, A., Michel, F.J., Spindler, K.D. and Heilker, R., et al. (2008). Optimized and far-red-emitting variants of fluorescent protein eqFP611. Chem. Biol., 15, 224–33.
Karasawa, S., Araki, T., Nagai, T., Mizuno, H. and Miyawaki, A. (2004). Cyan emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem. J., 381, 307–12.
Kremers, G.J., Goedhart, J., van den Heuvel, D.J., Gerritsen, H.C. and Gadella, T.W. Jr. (2007). Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry, 46(12), 3775-83.
Labas, Y.A., Gurskaya, N.G., Yanushevich, Y.G., Fradkov, A.F., Lukyanov, K.A., Lukyanov, S.A. and Matz, M.V. (2002). Diversity and evolution of the green fluorescent protein family. Proc. Natl. Acad. Sci. USA, 99, 4256–61.
Loos, D.C., Habuchi, S., Flors, C., Hotta, J., Wiedenmann, J., Nienhaus, G.U.and Hofkens, J. (2006). Photoconversion in the red fluorescent protein from the sea anemone Entacmaea quadricolor: is cis-trans isomerization involved? J. Am. Chem. Soc., 128, 6270–71.
Lukyanov, K.A., Fradkov, A.F., Gurskaya, N.G., Matz, M.V., Labas, Y.A.,Savitsky, A.P., Markelov, M.L., Zaraisky, A.G., Zhao, X., Fang, Y., Tan, W. and Lukyanov, S.A. (2000). Natural animal coloration can Be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem., 275, 25879-82.
Lukyanov, K.A., Chudakov, D.M., Lukyanov, S. and Verkhusha, V.V. (2005). Innovation: photoactivatable fluorescent proteins. Nat. Rev. Mol. Cell Biol., 6,885–91.
Matz, M.V., Fradkov, A.F., Labas, Y.A, Savitsky, A.P, Zaraisky, A.G, Markelov M.L.and Lukyanov, S.A. (1999). Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol., 17, 969-73.
Martynov, V.I., Savitsky, A.P., Martynova, N.Y., Savitsky, P.A., Lukyanov, K.A. and Lukyanov, S.A. (2001). Alternative cyclization in GFP-like proteins family. The formation and structure of the chromophore of a purple chromoprotein from Anemonia sulcata. J. Biol. Chem., 276(24), 21012-6.
Martynov, V.I., Maksimov, B.I., Martynova, N.Y., Pakhomov, A.A., Gurskaya, N.G. and Lukyanov, S.A. (2003). A purple-blue chromoprotein from Goniopora tenuidens belongs to the DsRed subfamily of GFP-like proteins. J. Biol. Chem., 278, 46288–92.
Mishin, A.S., Subach, F.V., Yampolsky, I.V., King, W., Lukyanov, K.A. and Verkhusha, V.V. (2008). The first mutant of the Aequorea victoria green fluorescent protein that forms a red chromophore. Biochemistry, 47, 4666-73.
Ormo, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y. and Remington,
S.J. (1996). Crystal structure of the Aequorea victoria green fluorescent protein.
Science, 273, 1392–5.
Pakhomov AA, Pletneva, N.V., Balashova, T.A.andMartynov, V.I. (2006). Structure and reactivity of the chromophore of a GFP-like chromoprotein from Condylactis gigantea. Biochemistry, 45, 7256–64.
Pakhomov, A.A.and Martynov, V.I. (2007). Chromophore aspartate oxidation-decarboxylation in the green-to-red conversion of a fluorescent protein from Zoanthus. Biochemistry, 46, 11528–35.
Petersen, J., Wilmann, P.G., Beddoe, T., Oakley, A.J., Devenish, R.J.,Prescott, M. and Rossjohn, J. (2003).The 2.0-A˚crystal structure ofeqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. J. Biol. Chem., 278(45), 44626–31.
Patterson, H.G. (2007). Fluorescent Proteins for Cell Biology. Methods in Molecular Biology, 411, 47-80.
Perozzo, M.A., Ward, K.B., Thompson, R.B. and Ward, W.W. (1998).X-ray diffraction and time-resolved fluorescence analyses of Aequorea green fluorescent protein crystals. J. Biol. Chem., 263, 7713-6.
Pletneva, N., Pletnev, V., Tikhonova, T., Pakhomov, A.A., Popov, V., Martynov, V.I., Wlodawer, A., Dauter, Z. and Pletnev, S. (2007a). Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus. Acta Crystallogr., Sect D: Biol. Crystallogr., 63, 1082–93.
Pletneva, N.V., Pletnev, S.V., Chudakov, D.M., Tikhonova, T.V., Popov, V.O., Martynov, V.I., Wlodawer, A., Dauter, Z. and Pletnev, V.Z. (2007b).Three-dimensional structure of yellow fluorescent protein zYFP538 from Zoanthus sp. at the resolution 1.8 angstrom. Bioorg. Khim., 33, 390–8.
Piatkevich, K. D., Efremenko, E.N., Verkhusha,V.V. and Varfolomeev, S.D. (2010).Red fluorescent proteins and their properties. Russian Chemical Reviews., 79 (3), 243 –58.
Prescott, M., Ling, M., Beddoe, T., Oakley, A.J., Dove, S., Hoegh-Guldberg,
O., Devenish, R.J. and Rossjohn, J. (2003). The 2.2 A˚ crystal structure of a pocilloporin pigment reveals a nonplanar chromophore conformation. Structure,
11, 275–284.
Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. and Cormier,
M. J. (1992). Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 111, 229–33.
Pouwels, L.J., Zhang, L., Chan, N.H., Dorrestein, P.C. and Wachter, R.M. (2008). Kinetic isotope effect studies on the de novo rate of chromophore formation in fast- and slow-maturing GFP variants. Biochemistry, 47(38), 10111-22.
Quillin, M.L., Anstrom, D.M., Shu, X., O’Leary, S., Kallio, K., Chudakov, D.M.and Remington, S.J. (2005). Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 A˚ resolution. Biochemistry, 44, 5774–87.
Remington, S.J., Wachter, R.M., Yarbrough, D.K., Branchaud, B., Anderson, D.C., Kallio, K. and Lukyanov, K.A. (2005). zFP538, a yellow-fluorescent protein from Zoanthus, contains a novel three-ring chromophore. Biochemistry, 44, 202–12.
Remington, S.J. (2006). Fluorescent proteins: maturation, photochemistry and photophysics. Struct. Biol., 16, 714–21.
Rizzo, M.A., Springer, G.H., Granada, B. and Piston, D. W. (2004). An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol., 22, 445–9.
Rosenow, M.A., Huffman, H.A., Phail, M.E. and Wachter, R.M. (2004). The
crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation. Biochemistry, 43, 4464–72.
Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N., Palmer, A.E. andTsien, R.Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol., 22, 1567–72.
Shaner, N.C., Patterson, G.H. and Davidson, M.W. (2007). Advances in fluorescent protein technology. J. Cell Sci., 120, 4247–60.
Shkrob, M.A., Yanushevich, Y.G., Chudakov, D.M., Gurskaya, N.G., Labas, Y.A., Poponov, S.Y., Mudrik, N.N., Lukyanov, S. and Lukyanov, K.A. (2005). Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina. Biochem. J., 392, 649–654.
Shu, X., Shaner, N.C., Yarbrough, C.A., Tsien, R.Y. and Remington, S.J. (2006). Novel chromophores and buried charges control color in mFruits. Biochemistry, 45, 9639–47.
Shimomura, O., Johnson, F.A. and Saiga, Y. (1962). Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol., 59, 223-39.
Sniegowski, J.A., Lappe, J.W., Patel, H.N., Huffman, H.A. and Wachter, R.M. (2005). Base catalysis of chromophore formation in Arg96 and Glu222 variants of green fluorescent protein. J. Biol. Chem., 280(28), 26248-55.
Strack, R.L., Strongin, D.E., Bhattacharyya, D., Tao, W., Berman, A., Broxmeyer, H.E., Keenan, R.J. and Glick, B.S. (2008). A noncytotoxic DsRed variant for whole-cell labeling. Nat. Methods., (11), 955-7.
Strack, R.L., Strongin, D.E., Mets, L., Glick, B.S. and Keenan, R.J. (2012). Chromophore formation in DsRed occurs by a branched pathway. J. Am. Chem. Soc.,132(24), 8496-505.
Strongin, D.E., Bevis, B., Khuong, N., Downing, M.E., Strack, R.L., Sundaram, K., Glick, B.S. and Keenan, R.J. (2007). Structural rearrangements near the chromophore influence the maturation speed and brightness of DsRed variants. Protein Eng. Des. Sel., 20(11), 525-34.
Subach, F.V., Malashkevich, V.N., Zencheck, W.D., Xiao, H., Filonov, G.S., Almo, S.C. and Verkhusha, V.V. (2009). Photoactivation mechanism of PAmCherry based on crystal structures of the protein in the dark and fluorescent states.Proc. Natl. Acad. Sci. USA,106(50), 21097-102.

Tubbs, J. L., Tainer, J. A. and Getzoff, E. D. (2005). Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: Linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation. Biochemistry, 44, 9833–40.
Terskikh, A.V., Fradkov, A.F., Zaraisky, A.G., Kajava, A.V. and Angres, B. (2001). Analysis of DsRed Mutants. Space around the fluorophore accelerates fluorescence development. J. Biol. Chem., 277(10), 7633-6.
Turcic, K., Pettikiriarachchi, A., Battad, J., Wilmann, P.G., Rossjohn, J., Dove, S.G., Devenish, R.J. and Prescott, M. (2006). Amino acid substitutions around the chromophore of the chromoprotein Rtms5 influence polypeptide cleavage. Biochem. Biophys. Res. Commun., 340, 1139–43.
Verkhusha, V.V., Chudakov, D.M., Gurskaya, N.G., Lukyanov, S. and Lukyanov, K.A. (2004). Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. Chem Biol., 11, 845-54.
Wachter, R. M. and Remington, S. J. (1999). Sensitivity of the yellow variant of
green fluorescent protein to halides and nitrate. Curr. Biol., 9, R628–R629.
Wall, M.A., Socolich, M. and Ranganathan, R. (2000). The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat. Struct. Biol., 7, 1133–8.
Wang, L., Jackson, W.C., Steinbach, P.A. and Tsien, R.Y. (2004). Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl. Acad. Sci.USA, 101, 16745–9.
Wiedenmann, J., Elke, C., Spindler, K.D. and Funke, W. (2000). Cracks in the beta-can: fluorescent proteins from Anemonia sulcata (Anthozoa, Actinaria). Proc. Natl. Acad. Sci. USA, 97, 14091-6.
Wiehler, J., von Hummel, J.and Steipe, B. (2001). Mutants of Discosoma red fluorescent protein with a GFP-like chromophore. FEBS Lett., 487, 384-9.
Wilmann, P.G., Petersen, J., Devenish, R.J., Prescott, M. and Rossjohn, J. (2005). Variations on the GFP chromophore: a polypeptide fragmentation within thechromophore revealed in the 2.1-A ˚crystal structure of a nonfluorescent chromoprotein from Anemonia sulcata. J. Biol. Chem., 280, 2401–4.
Yang, T. T., Cheng, L. and Kain, S. R. (1996). Optimized codon usage and chro-
mophore mutations provide enhanced sensitivity with the green fluorescent pro-
tein. Nucleic Acids Res., 24. 4592–3.
Yang, T.T., Sinai, P., Green, G., Kitts, P.A., Chen, Y.T.,Lybarger, L., Chervenak, R., Patterson, G. H., Piston, D. W. and Kain, S. R. (1998). Improved fluorescence and dual color detection with enhanced blue and green variants of the greenfluorescent protein. J. Biol. Chem., 273, 8212-16.
Yanushevich, Y.G., Staroverov, D.B., Savitsky, A.P., Fradkov, A.F., Gurskaya, N.G., Bulina, M.E., Lukyanov, K.A. and Lukyanov, S.A. (2002). A strategy for the generation of non-aggregating mutants of Anthozoa fluorescent proteins. FEBS Lett., 511(1-3), 11-4.
Yarbrough, D., Wachter, R.M., Kallio, K., Matz, M.V. and Remington, S.J. (2001). Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A˚ resolution. Proc. Natl. Acad. Sci. USA, 98, 462–7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63982-
dc.description.abstractGFP-like-protein family由11 β-sheet 所構成的β-can結構,並以一α-helix貫穿,β-can中央α-helix上的residue可形成chromophore結構,為此類蛋白能發出螢光或具有色澤的蛋白質.但多數研究著重於改善此類蛋白質性質,或改變為不同色澤的螢光蛋白,鮮少探討non-fluroescence chromoprotein的性質及其色澤與胺基酸之間的關係.此研究利用色澤蛋白研究胺基酸的突變對於蛋白質色澤的影響.於蛋白質多處進行單點突變,發現將蛋白質chromphore 上第一個胺基酸突變為S、L時,蛋白質由紫紅色變為粉紅色及淺膚色,吸收光譜則有藍移10-60 nm的情形,且突變為L的除色澤上的改變外,在受短波長的光照射會放出青藍色螢光;除chromophore序列外,對胺基酸39的位置由Q改為S時也造成蛋白質改變為橘紅色,吸收光譜藍移60 nm;進行雙點突變時發現突變蛋白質Y64L/I196H為黃色,且在受短波長的光激發後放出螢光.另外利用Random mutation的方式,分別取得I70V及T194I兩藍紫色突變蛋白質,其吸收光譜則有紅移的現象.可知色澤蛋白受胺基酸的所影響.zh_TW
dc.description.abstractThe GFP-like protein family is the proteins that are consisted of an 11-stranded β-can cylinder with a central axis of α-helix. The chromophore is located at the α-helix, which is the main structure to exhibit either fluorescences or colors. Most previous researches were focused on trying to improve the biological properties of the GFP-like proteins such as aggregation, oligomerization, photostability and fluorescent color palette. However, little is known which position and property of amino acid of protein might affect the color appearance. In this study, we attempted to perform mutagenesis to know whether the mutated amino acids can manipulate the color image. We found when the first amino acid of chromophore was replaced by either S or L, the color of protein was changed into to pink or skin color and the maximum absorption peak was blue-shifted. Furthermore, when the amino acid at 39 was replaced by S, the color of protein was changed into orange and the maximum absorption peak was red-shifted. Moreover, using random mutagenesis strategy, we found that amino acids at 70 and 194 were mutated to V and I, respectively, the color of protein was changed into purple blue. Based on the line of evidences, we concluded that the color exhibition of chromoprotein was completely dependent on both the position and the property of amino acid residues located at chromoprotein.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:25:14Z (GMT). No. of bitstreams: 1
ntu-101-R99b43023-1.pdf: 4805006 bytes, checksum: 3c92aba0b63683fb3a70909e94c74dd4 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要-------------------------------------------- 1
英文摘要-------------------------------------------- 2
文獻回顧-------------------------------------------- 3
前言----------------------------------------------- 16
實驗材料與方法------------------------------------- 19
結果----------------------------------------------- 26
討論----------------------------------------------- 34
參考文獻------------------------------------------- 42
圖表----------------------------------------------- 52
dc.language.isozh-TW
dc.subject光譜zh_TW
dc.subject蛋白質zh_TW
dc.subject大腸桿菌zh_TW
dc.subjectEscherichia colien
dc.subjectspectraen
dc.subjectproteinen
dc.title不同吸收波長蛋白在大腸桿菌的表現zh_TW
dc.titleProteins with different spectral properties expressed in Escherichia colien
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高雅婷(Ya-Ting Kao),楊啟伸(Chii-Shen Yang)
dc.subject.keyword大腸桿菌,光譜,蛋白質,zh_TW
dc.subject.keywordEscherichia coli,spectra,protein,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
Appears in Collections:分子與細胞生物學研究所

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
4.69 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved