Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63954
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor吳世雄(Shih-Hsiung Wu)
dc.contributor.authorShiue-Fang Huangen
dc.contributor.author黃雪芳zh_TW
dc.date.accessioned2021-06-16T17:24:15Z-
dc.date.available2014-08-20
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation1. Swamy, K. H., and Goldberg, A. L. (1981) E. coli contains eight soluble proteolytic activities, one being ATP dependent, Nature 292, 652-654.
2. Sauer, R. T., and Baker, T. A. (2011) AAA+ proteases: ATP-fueled machines of protein destruction, Annual review of biochemistry 80, 587-612.
3. Bota, D. A., and Davies, K. J. (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism, Nature cell biology 4, 674-680.
4. Bota, D. A., Ngo, J. K., and Davies, K. J. (2005) Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death, Free radical biology & medicine 38, 665-677.
5. Chung, C. H., and Goldberg, A. L. (1981) The product of the lon (capR) gene in Escherichia coli is the ATP-dependent protease, protease La, Proceedings of the National Academy of Sciences of the United States of America 78, 4931-4935.
6. Chin, D. T., Goff, S. A., Webster, T., Smith, T., and Goldberg, A. L. (1988) Sequence of the lon gene in Escherichia coli. A heat-shock gene which encodes the ATP-dependent protease La, The Journal of biological chemistry 263, 11718-11728.
7. Goldberg, A. L., Moerschell, R. P., Chung, C. H., and Maurizi, M. R. (1994) ATP-dependent protease La (lon) from Escherichia coli, Methods in enzymology 244, 350-375.
8. Vasil'eva, O. V., Martynova, N., Potapenko, N. A., and Ovchinnikova, T. V. (2004) [Isolation and characterization of fragments of ATP-dependent protease Lon from Escherichia coli obtained by limited proteolysis], Bioorganicheskaia khimiia 30, 341-349.
9. Lee, A. Y., Tsay, S. S., Chen, M. Y., and Wu, S. H. (2004) Identification of a gene encoding Lon protease from Brevibacillus thermoruber WR-249 and biochemical characterization of its thermostable recombinant enzyme, European journal of biochemistry / FEBS 271, 834-844.
10. Park, S. C., Jia, B., Yang, J. K., Van, D. L., Shao, Y. G., Han, S. W., Jeon, Y. J., Chung, C. H., and Cheong, G. W. (2006) Oligomeric structure of the ATP-dependent protease La (Lon) of Escherichia coli, Molecules and cells 21, 129-134.
11. Stahlberg, H., Kutejova, E., Suda, K., Wolpensinger, B., Lustig, A., Schatz, G., Engel, A., and Suzuki, C. K. (1999) Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits, Proceedings of the National Academy of Sciences of the United States of America 96, 6787-6790.
12. Vineyard, D., Patterson-Ward, J., Berdis, A. J., and Lee, I. (2005) Monitoring the timing of ATP hydrolysis with activation of peptide cleavage in Escherichia coli Lon by transient kinetics, Biochemistry 44, 1671-1682.
13. Nishii, W., Suzuki, T., Nakada, M., Kim, Y. T., Muramatsu, T., and Takahashi, K. (2005) Cleavage mechanism of ATP-dependent Lon protease toward ribosomal S2 protein, FEBS letters 579, 6846-6850.
14. Cha, S. S., An, Y. J., Lee, C. R., Lee, H. S., Kim, Y. G., Kim, S. J., Kwon, K. K., De Donatis, G. M., Lee, J. H., Maurizi, M. R., and Kang, S. G. (2010) Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber, The EMBO journal 29, 3520-3530.
15. Duman, R. E., and Lowe, J. (2010) Crystal structures of Bacillus subtilis Lon protease, Journal of molecular biology 401, 653-670.
16. Amerik, A., Chistiakov, L. G., Ostroumova, N. I., Gurevich, A. I., and Antonov, V. K. (1988) [Cloning, expression and structure of the functionally active shortened lon gene in Escherichia coli], Bioorganicheskaia khimiia 14, 408-411.
17. Amerik, A., Antonov, V. K., Ostroumova, N. I., Rotanova, T. V., and Chistiakova, L. G. (1990) [Cloning, structure and expression of the full-size lon gene in Escherichia coli coding for ATP-dependent La-proteinase], Bioorganicheskaia khimiia 16, 869-880.
18. Amerik, A., Antonov, V. K., Gorbalenya, A. E., Kotova, S. A., Rotanova, T. V., and Shimbarevich, E. V. (1991) Site-directed mutagenesis of La protease. A catalytically active serine residue, FEBS letters 287, 211-214.
19. Botos, I., Melnikov, E. E., Cherry, S., Tropea, J. E., Khalatova, A. G., Rasulova, F., Dauter, Z., Maurizi, M. R., Rotanova, T. V., Wlodawer, A., and Gustchina, A. (2004) The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site, The Journal of biological chemistry 279, 8140-8148.
20. Rotanova, T. V., Melnikov, E. E., Khalatova, A. G., Makhovskaya, O. V., Botos, I., Wlodawer, A., and Gustchina, A. (2004) Classification of ATP-dependent proteases Lon and comparison of the active sites of their proteolytic domains, European journal of biochemistry / FEBS 271, 4865-4871.
21. Rasulova, F. S., Dergousova, N. I., Mel'nikov, E. E., Ginodman, L. M., and Rotanova, T. V. (1998) [Synthesis and characterisation of ATP-dependent forms of Lon-proteinase with modified N-terminal domain from Escherichia coli], Bioorganicheskaia khimiia 24, 370-375.
22. Lee, A. Y., Hsu, C. H., and Wu, S. H. (2004) Functional domains of Brevibacillus thermoruber lon protease for oligomerization and DNA binding: role of N-terminal and sensor and substrate discrimination domains, The Journal of biological chemistry 279, 34903-34912.
23. Ogura, T., and Wilkinson, A. J. (2001) AAA+ superfamily ATPases: common structure--diverse function, Genes to cells : devoted to molecular & cellular mechanisms 6, 575-597.
24. Suzuki, C. K., Rep, M., van Dijl, J. M., Suda, K., Grivell, L. A., and Schatz, G. (1997) ATP-dependent proteases that also chaperone protein biogenesis, Trends in biochemical sciences 22, 118-123.
25. Rosen, R., Biran, D., Gur, E., Becher, D., Hecker, M., and Ron, E. Z. (2002) Protein aggregation in Escherichia coli: role of proteases, FEMS microbiology letters 207, 9-12.
26. Wickner, S., Maurizi, M. R., and Gottesman, S. (1999) Posttranslational quality control: folding, refolding, and degrading proteins, Science 286, 1888-1893.
27. Rasulova, F. S., Dergousova, N. I., Starkova, N. N., Melnikov, E. E., Rumsh, L. D., Ginodman, L. M., and Rotanova, T. V. (1998) The isolated proteolytic domain of Escherichia coli ATP-dependent protease Lon exhibits the peptidase activity, FEBS letters 432, 179-181.
28. Melnikov, E. E., Andrianova, A. G., Morozkin, A. D., Stepnov, A. A., Makhovskaya, O. V., Botos, I., Gustchina, A., Wlodawer, A., and Rotanova, T. V. (2008) Limited proteolysis of E. coli ATP-dependent protease Lon - a unified view of the subunit architecture and characterization of isolated enzyme fragments, Acta biochimica Polonica 55, 281-296.
29. Withey, J. H., and Friedman, D. I. (2003) A salvage pathway for protein structures: tmRNA and trans-translation, Annual review of microbiology 57, 101-123.
30. Sauer, R. T., Bolon, D. N., Burton, B. M., Burton, R. E., Flynn, J. M., Grant, R. A., Hersch, G. L., Joshi, S. A., Kenniston, J. A., Levchenko, I., Neher, S. B., Oakes, E. S., Siddiqui, S. M., Wah, D. A., and Baker, T. A. (2004) Sculpting the proteome with AAA(+) proteases and disassembly machines, Cell 119, 9-18.
31. Siddiqui, S. M., Sauer, R. T., and Baker, T. A. (2004) Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates, Genes & development 18, 369-374.
32. Hinnerwisch, J., Fenton, W. A., Furtak, K. J., Farr, G. W., and Horwich, A. L. (2005) Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation, Cell 121, 1029-1041.
33. Mizusawa, S., and Gottesman, S. (1983) Protein degradation in Escherichia coli: the lon gene controls the stability of sulA protein, Proceedings of the National Academy of Sciences of the United States of America 80, 358-362.
34. Gonzalez, M., Rasulova, F., Maurizi, M. R., and Woodgate, R. (2000) Subunit-specific degradation of the UmuD/D' heterodimer by the ClpXP protease: the role of trans recognition in UmuD' stability, The EMBO journal 19, 5251-5258.
35. Hoskins, J. R., Kim, S. Y., and Wickner, S. (2000) Substrate recognition by the ClpA chaperone component of ClpAP protease, The Journal of biological chemistry 275, 35361-35367.
36. Ishii, Y., Sonezaki, S., Iwasaki, Y., Miyata, Y., Akita, K., Kato, Y., and Amano, F. (2000) Regulatory role of C-terminal residues of SulA in its degradation by Lon protease in Escherichia coli, Journal of biochemistry 127, 837-844.
37. Burton, R. E., Baker, T. A., and Sauer, R. T. (2005) Nucleotide-dependent substrate recognition by the AAA+ HslUV protease, Nature structural & molecular biology 12, 245-251.
38. Shah, I. M., and Wolf, R. E., Jr. (2006) Sequence requirements for Lon-dependent degradation of the Escherichia coli transcription activator SoxS: identification of the SoxS residues critical to proteolysis and specific inhibition of in vitro degradation by a peptide comprised of the N-terminal 21 amino acid residues, Journal of molecular biology 357, 718-731.
39. Dougan, D. A., Mogk, A., Zeth, K., Turgay, K., and Bukau, B. (2002) AAA+ proteins and substrate recognition, it all depends on their partner in crime, FEBS letters 529, 6-10.
40. Levchenko, I., Seidel, M., Sauer, R. T., and Baker, T. A. (2000) A specificity-enhancing factor for the ClpXP degradation machine, Science 289, 2354-2356.
41. Wah, D. A., Levchenko, I., Rieckhof, G. E., Bolon, D. N., Baker, T. A., and Sauer, R. T. (2003) Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease, Molecular cell 12, 355-363.
42. Levchenko, I., Grant, R. A., Wah, D. A., Sauer, R. T., and Baker, T. A. (2003) Structure of a delivery protein for an AAA+ protease in complex with a peptide degradation tag, Molecular cell 12, 365-372.
43. Levchenko, I., Grant, R. A., Flynn, J. M., Sauer, R. T., and Baker, T. A. (2005) Versatile modes of peptide recognition by the AAA+ adaptor protein SspB, Nature structural & molecular biology 12, 520-525.
44. Hilliard, J. J., Simon, L. D., Van Melderen, L., and Maurizi, M. R. (1998) PinA inhibits ATP hydrolysis and energy-dependent protein degradation by Lon protease, The Journal of biological chemistry 273, 524-527.
45. Tomoyasu, T., Mogk, A., Langen, H., Goloubinoff, P., and Bukau, B. (2001) Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol, Molecular microbiology 40, 397-413.
46. Ishii, Y., and Amano, F. (2001) Regulation of SulA cleavage by Lon protease by the C-terminal amino acid of SulA, histidine, The Biochemical journal 358, 473-480.
47. Griffith, K. L., Shah, I. M., and Wolf, R. E., Jr. (2004) Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons, Molecular microbiology 51, 1801-1816.
48. Liao, J. H., Lin, Y. C., Hsu, J., Lee, A. Y., Chen, T. A., Hsu, C. H., Chir, J. L., Hua, K. F., Wu, T. H., Hong, L. J., Yen, P. W., Chiou, A., and Wu, S. H. (2010) Binding and cleavage of E. coli HUbeta by the E. coli Lon protease, Biophysical journal 98, 129-137.
49. Jubete, Y., Maurizi, M. R., and Gottesman, S. (1996) Role of the heat shock protein DnaJ in the lon-dependent degradation of naturally unstable proteins, The Journal of biological chemistry 271, 30798-30803.
50. Van Melderen, L., Thi, M. H., Lecchi, P., Gottesman, S., Couturier, M., and Maurizi, M. R. (1996) ATP-dependent degradation of CcdA by Lon protease. Effects of secondary structure and heterologous subunit interactions, The Journal of biological chemistry 271, 27730-27738.
51. Gonzalez, M., Frank, E. G., Levine, A. S., and Woodgate, R. (1998) Lon-mediated proteolysis of the Escherichia coli UmuD mutagenesis protein: in vitro degradation and identification of residues required for proteolysis, Genes & development 12, 3889-3899.
52. Gur, E., and Sauer, R. T. (2008) Recognition of misfolded proteins by Lon, a AAA(+) protease, Genes & development 22, 2267-2277.
53. Leffers, G. G., Jr., and Gottesman, S. (1998) Lambda Xis degradation in vivo by Lon and FtsH, Journal of bacteriology 180, 1573-1577.
54. Herman, C., Thevenet, D., D'Ari, R., and Bouloc, P. (1995) Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB, Proceedings of the National Academy of Sciences of the United States of America 92, 3516-3520.
55. Kanemori, M., Nishihara, K., Yanagi, H., and Yura, T. (1997) Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli, Journal of bacteriology 179, 7219-7225.
56. Sutton, M. D., Smith, B. T., Godoy, V. G., and Walker, G. C. (2000) The SOS response: recent insights into umuDC-dependent mutagenesis and DNA damage tolerance, Annual review of genetics 34, 479-497.
57. Wu, W. F., Zhou, Y., and Gottesman, S. (1999) Redundant in vivo proteolytic activities of Escherichia coli Lon and the ClpYQ (HslUV) protease, Journal of bacteriology 181, 3681-3687.
58. Chuang, S. E., and Blattner, F. R. (1993) Characterization of twenty-six new heat shock genes of Escherichia coli, Journal of bacteriology 175, 5242-5252.
59. Munavar, H., Zhou, Y., and Gottesman, S. (2005) Analysis of the Escherichia coli Alp phenotype: heat shock induction in ssrA mutants, Journal of bacteriology 187, 4739-4751.
60. Kuo, M. S., Chen, K. P., and Wu, W. F. (2004) Regulation of RcsA by the ClpYQ (HslUV) protease in Escherichia coli, Microbiology 150, 437-446.
61. Rothschild, L. J., and Mancinelli, R. L. (2001) Life in extreme environments, Nature 409, 1092-1101.
62. Sterner, R., and Liebl, W. (2001) Thermophilic adaptation of proteins, Critical reviews in biochemistry and molecular biology 36, 39-106.
63. Vieille, C., and Zeikus, G. J. (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability, Microbiology and molecular biology reviews : MMBR 65, 1-43.
64. Jaenicke, R., and Bohm, G. (1998) The stability of proteins in extreme environments, Current opinion in structural biology 8, 738-748.
65. Brock, T. D., and Freeze, H. (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile, Journal of bacteriology 98, 289-297.
66. Timothy M. Lapara, J. E. A. (1999) Thermophilic Aerobic Biology Wastewater Treatment, Water research 33, 14.
67. Tindall, K. R., and Kunkel, T. A. (1988) Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase, Biochemistry 27, 6008-6013.
68. Fujiwara, S., Okuyama, S., and Imanaka, T. (1996) The world of archaea: genome analysis, evolution and thermostable enzymes, Gene 179, 165-170.
69. Chen, M. Y., Lin, G. H., Lin, Y. T., and Tsay, S. S. (2002) Meiothermus taiwanensis sp. nov., a novel filamentous, thermophilic species isolated in Taiwan, International journal of systematic and evolutionary microbiology 52, 1647-1654.
70. Gill, R. E., Karlok, M., and Benton, D. (1993) Myxococcus xanthus encodes an ATP-dependent protease which is required for developmental gene transcription and intercellular signaling, Journal of bacteriology 175, 4538-4544.
71. Tojo, N., Inouye, S., and Komano, T. (1993) The lonD gene is homologous to the lon gene encoding an ATP-dependent protease and is essential for the development of Myxococcus xanthus, Journal of bacteriology 175, 4545-4549.
72. Tojo, N., Inouye, S., and Komano, T. (1993) Cloning and nucleotide sequence of the Myxococcus xanthus lon gene: indispensability of lon for vegetative growth, Journal of bacteriology 175, 2271-2277.
73. Maurizi, M. R., Trisler, P., and Gottesman, S. (1985) Insertional mutagenesis of the lon gene in Escherichia coli: lon is dispensable, Journal of bacteriology 164, 1124-1135.
74. Guha, S., Lopez-Maury, L., Shaw, M., Bahler, J., Norbury, C. J., and Agashe, V. R. (2011) Transcriptional and cellular responses to defective mitochondrial proteolysis in fission yeast, Journal of molecular biology 408, 222-237.
75. Riethdorf, S., Volker, U., Gerth, U., Winkler, A., Engelmann, S., and Hecker, M. (1994) Cloning, nucleotide sequence, and expression of the Bacillus subtilis lon gene, Journal of bacteriology 176, 6518-6527.
76. Schmidt, R., Decatur, A. L., Rather, P. N., Moran, C. P., Jr., and Losick, R. (1994) Bacillus subtilis lon protease prevents inappropriate transcription of genes under the control of the sporulation transcription factor sigma G, Journal of bacteriology 176, 6528-6537.
77. Serrano, M., Hovel, S., Moran, C. P., Jr., Henriques, A. O., and Volker, U. (2001) Forespore-specific transcription of the lonB gene during sporulation in Bacillus subtilis, Journal of bacteriology 183, 2995-3003.
78. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., and Gray, T. (1995) How to measure and predict the molar absorption coefficient of a protein, Protein science : a publication of the Protein Society 4, 2411-2423.
79. Schuck, P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling, Biophysical journal 78, 1606-1619.
80. Twining, S. S. (1984) Fluorescein isothiocyanate-labeled casein assay for proteolytic enzymes, Analytical biochemistry 143, 30-34.
81. Lanzetta, P. A., Alvarez, L. J., Reinach, P. S., and Candia, O. A. (1979) An improved assay for nanomole amounts of inorganic phosphate, Analytical biochemistry 100, 95-97.
82. Farahbakhsh, Z. T., Huang, Q. L., Ding, L. L., Altenbach, C., Steinhoff, H. J., Horwitz, J., and Hubbell, W. L. (1995) Interaction of alpha-crystallin with spin-labeled peptides, Biochemistry 34, 509-516.
83. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Molecular biology and evolution 28, 2731-2739.
84. Holt, C., and Sawyer, L. (1988) Primary and predicted secondary structures of the caseins in relation to their biological functions, Protein engineering 2, 251-259.
85. Lo, J. H., Baker, T. A., and Sauer, R. T. (2001) Characterization of the N-terminal repeat domain of Escherichia coli ClpA-A class I Clp/HSP100 ATPase, Protein science : a publication of the Protein Society 10, 551-559.
86. Charette, M. F., Henderson, G. W., Doane, L. L., and Markovitz, A. (1984) DNA-stimulated ATPase activity on the lon (CapR) protein, Journal of bacteriology 158, 195-201.
87. Lin, Y. C., Lee, H. C., Wang, I., Hsu, C. H., Liao, J. H., Lee, A. Y., Chen, C., and Wu, S. H. (2009) DNA-binding specificity of the Lon protease alpha-domain from Brevibacillus thermoruber WR-249, Biochemical and biophysical research communications 388, 62-66.
88. Fu, G. K., Smith, M. J., and Markovitz, D. M. (1997) Bacterial protease Lon is a site-specific DNA-binding protein, The Journal of biological chemistry 272, 534-538.
89. Lu, B., Yadav, S., Shah, P. G., Liu, T., Tian, B., Pukszta, S., Villaluna, N., Kutejova, E., Newlon, C. S., Santos, J. H., and Suzuki, C. K. (2007) Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance, The Journal of biological chemistry 282, 17363-17374.
90. Parsell, D. A., and Lindquist, S. (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins, Annual review of genetics 27, 437-496.
91. Smith, C. K., Baker, T. A., and Sauer, R. T. (1999) Lon and Clp family proteases and chaperones share homologous substrate-recognition domains, Proceedings of the National Academy of Sciences of the United States of America 96, 6678-6682.
92. Wickner, S., and Maurizi, M. R. (1999) Here's the hook: similar substrate binding sites in the chaperone domains of Clp and Lon, Proceedings of the National Academy of Sciences of the United States of America 96, 8318-8320.
93. Tripathi, L. P., and Sowdhamini, R. (2008) Genome-wide survey of prokaryotic serine proteases: analysis of distribution and domain architectures of five serine protease families in prokaryotes, BMC genomics 9, 549.
94. Maehara, T., Hoshino, T., and Nakamura, A. (2008) Characterization of three putative Lon proteases of Thermus thermophilus HB27 and use of their defective mutants as hosts for production of heterologous proteins, Extremophiles : life under extreme conditions 12, 285-296.
95. Coleman, J. L., Katona, L. I., Kuhlow, C., Toledo, A., Okan, N. A., Tokarz, R., and Benach, J. L. (2009) Evidence that two ATP-dependent (Lon) proteases in Borrelia burgdorferi serve different functions, PLoS pathogens 5, e1000676.
96. Botos, I., Melnikov, E. E., Cherry, S., Kozlov, S., Makhovskaya, O. V., Tropea, J. E., Gustchina, A., Rotanova, T. V., and Wlodawer, A. (2005) Atomic-resolution crystal structure of the proteolytic domain of Archaeoglobus fulgidus lon reveals the conformational variability in the active sites of lon proteases, Journal of molecular biology 351, 144-157.
97. Zehnbauer, B. A., Foley, E. C., Henderson, G. W., and Markovitz, A. (1981) Identification and purification of the Lon+ (capR+) gene product, a DNA-binding protein, Proceedings of the National Academy of Sciences of the United States of America 78, 2043-2047.
98. Chung, C. H., and Goldberg, A. L. (1982) DNA stimulates ATP-dependent proteolysis and protein-dependent ATPase activity of protease La from Escherichia coli, Proceedings of the National Academy of Sciences of the United States of America 79, 795-799.
99. Fu, G. K., and Markovitz, D. M. (1998) The human LON protease binds to mitochondrial promoters in a single-stranded, site-specific, strand-specific manner, Biochemistry 37, 1905-1909.
100. Liu, T., Lu, B., Lee, I., Ondrovicova, G., Kutejova, E., and Suzuki, C. K. (2004) DNA and RNA binding by the mitochondrial lon protease is regulated by nucleotide and protein substrate, The Journal of biological chemistry 279, 13902-13910.
101. Garvie, C. W., and Wolberger, C. (2001) Recognition of specific DNA sequences, Molecular cell 8, 937-946.
102. Nomura, K., Kato, J., Takiguchi, N., Ohtake, H., and Kuroda, A. (2004) Effects of inorganic polyphosphate on the proteolytic and DNA-binding activities of Lon in Escherichia coli, The Journal of biological chemistry 279, 34406-34410.
103. Starkova, N. N., Koroleva, E. P., Rumsh, L. D., Ginodman, L. M., and Rotanova, T. V. (1998) Mutations in the proteolytic domain of Escherichia coli protease Lon impair the ATPase activity of the enzyme, FEBS letters 422, 218-220.
104. Rudyak, S. G., Brenowitz, M., and Shrader, T. E. (2001) Mg2+-linked oligomerization modulates the catalytic activity of the Lon (La) protease from Mycobacterium smegmatis, Biochemistry 40, 9317-9323.
105. Cheng, I., Mikita, N., Fishovitz, J., Frase, H., Wintrode, P., and Lee, I. (2012) Identification of a Region in the N-Terminus of Escherichia coli Lon That Affects ATPase, Substrate Translocation and Proteolytic Activity, Journal of molecular biology 418, 208-225.
106. Glover, J. R., and Tkach, J. M. (2001) Crowbars and ratchets: hsp100 chaperones as tools in reversing protein aggregation, Biochemistry and cell biology = Biochimie et biologie cellulaire 79, 557-568.
107. Hoskins, J. R., Sharma, S., Sathyanarayana, B. K., and Wickner, S. (2001) Clp ATPases and their role in protein unfolding and degradation, Advances in protein chemistry 59, 413-429.
108. Lee, I., and Suzuki, C. K. (2008) Functional mechanics of the ATP-dependent Lon protease- lessons from endogenous protein and synthetic peptide substrates, Biochimica et biophysica acta 1784, 727-735.
109. Dixon, N. E., and Kornberg, A. (1984) Protein HU in the enzymatic replication of the chromosomal origin of Escherichia coli, Proceedings of the National Academy of Sciences of the United States of America 81, 424-428.
110. Flashner, Y., and Gralla, J. D. (1988) DNA dynamic flexibility and protein recognition: differential stimulation by bacterial histone-like protein HU, Cell 54, 713-721.
111. Lewis, D. E., Geanacopoulos, M., and Adhya, S. (1999) Role of HU and DNA supercoiling in transcription repression: specialized nucleoprotein repression complex at gal promoters in Escherichia coli, Molecular microbiology 31, 451-461.
112. Balandina, A., Claret, L., Hengge-Aronis, R., and Rouviere-Yaniv, J. (2001) The Escherichia coli histone-like protein HU regulates rpoS translation, Molecular microbiology 39, 1069-1079.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63954-
dc.description.abstractLon蛋白酶是一個單一聚合且多功能的酵素,它被高度的保存在生物種之間。Lon蛋白酶分為兩種亞型,LonA及LonB。它們保有ATPase domain歸屬於AAA+ superfamily之中並利用serine-lysine catalytic dyad 作為酵素的活性位置。LonB不同於LonA其具有N端的區段反而具穿膜區塊使之可鑲嵌在細胞膜上。Lon蛋白酶可調節生物體中新陳代謝的過程,適時降解目標蛋白以維持蛋白質的功能與結構的完整性。本篇論文選擇台灣本土嗜熱菌Meiothermus taiwanensis (WR-220),選殖出兩個Lon蛋白酶MtaLonA1(793 a.a)、MtaLonA2(815 a.a)並建構其特異區塊酵素MtaLonA1N (1-312 a.a)、MtaLonA1A (313-585 a.a)、MtaLonA1α (492-585 a.a)、MtaLonA1C (586-793 a.a)、MtaLonA1NA (1-585 a.a)、MtaLonA1AC (313-793 a.a)、MtaLonA2N (1-320 a.a)、MtaLonA2A (321-601 a.a)、MtaLonA2α (508-601 a.a)、MtaLonA2C (602-815 a.a)、MtaLonA2NA (1-601 a.a)、 MtaLonA2AC (321-815 a.a),透過表現與純化探討其結構與功能的特性,進而比較MtaLonA1及MtaLonA2的差異。
結構方面,利用原二色偏光儀分析呈現,所有蛋白皆以α-螺旋為主要的二級結構並且具有完整的三級結構。進一步利用AUC算得MtaLonA1及MtaLonA2分別形成六聚體及四聚體,於原態膠體電泳實驗中,MtaLonA1N、A1NA、MtaLonA2N、A2NA特異區塊酵素具有多聚體的結構。活性方面,MtaLonA1具有Protease、Peptidase、ATPase、Chaperone-like活性;然而,MtaLonA2具有Protease、ATPase、DNA-binding及較弱的Chaperone-like活性。在MtaLonA2的特異區塊酵素中,只有MtaLonA1N不具有DNA-binding的活性;MtaLonA2α呈現較弱的DNA-binding能力。尤其是MtLonA2AC呈現Protease、Peptidase活性及些許的ATPase活性。所有具有N端的蛋白(MtaLonA1N、A1NA、A2N、A2NA)皆有Chaperone-like活性,藉由此結果推斷出N端的序列對於結構聚合及Chaperone-like活性是必要的。我們並發現MtaHUβ為MtaLonA2特有的目標蛋白。基於這些實驗的結果,我們提出MtaLonA1及MtaLonA2具有不同的功能,更重要的是找出特異性的目標蛋白並結晶出完整長度的Lon蛋白酶,以深入了解MtaLonA1及MtaLonA2在生物體之中所參與的細胞調解。
zh_TW
dc.description.abstractATP-dependent Lon protease has been known as one of the most evolutionarily conserved proteins in living organisms, which is a homo-oligomeric multi-domain enzyme. Lon proteases are divided into two subfamilies, LonA and LonB. Each possesses both ATPase domain, belonging to the AAA+ superfamily and a proteolytic domain (P-domain) with a serine-lysine catalytic dyad. The difference between LonA and LonB is that LonA contains a large N-terminal domain, whereas LonB has a transmembrane domain that anchors the protein to the membrane. Lon proteases are well-known to regulate the metabolic processes and involve in protein quality control system. In this study, we analyzed the primary sequence of MtaLonA1 (793 a.a) and MtaLonA2 (815 a.a) from Meiothermus taiwanensis (WR-220) and constructed the truncated-domain MtaLonA1N (1-312 a.a), MtaLonA1A (313-585 a.a), MtaLonA1α (492-585 a.a), MtaLonA1C (586-793 a.a), MtaLonA1NA (1-585 a.a), MtaLonA1AC (313-793 a.a), MtaLonA2N (1-320 a.a), MtaLonA2A (321-601 a.a), MtaLonA2α (508-601 a.a), MtaLonA2C (602-815 a.a), MtaLonA2NA (1-601 a.a) and MtaLonA2AC (321-815 a.a). MtaLonA1, MtaLonA2 and their truncated proteins are overexpressed and purified to examine the functional and structural properties. The structural characteristic presented by circular dichroism revealed that all constructs were composed of α-helical as the major secondary structures and all possessed well-defined three-dimensional structures. For quaternary structure, MtaLonA1 reveals mainly as hexamer and MtaLonA2 might be as tetramer. In native-PAGE, MtaLonA1N-, A1NA- and MtaLonA2N-, A2NA-domain exhibited polymeric structures. Functional studies demonstrated that MtaLonA1 shows the protease, peptidase, ATPase and chaperone-like activities; whereas MtaLonA2 shows the protease, ATPase, DNA-binding activity and weaker chaperone-like activities than that of MtaLonA1. Among the truncated proteins of MtaLonA2, only MtaLonA2N (N-domain) shows no DNA-binding activity, and the MtaLonA2α-domain) reveals weaker DNA-binding capability compared to MtaLonA1α. Particularly, MtaLonA2AC has peptidase activity, protease activity, but only slight ATPase activity. MtaLonA1N-, MtaLonA1NA-, MtaLonA2N- and MtaLonA2NA domain have chaperone-like activities. These results suggested that N-terminal sequence is essential for oligomerization and chaperone-like activities. We found out the substrate, MtaHU β is specific to the MtaLonA2. Based on these results, we propose that MtaLonA1 and MtaLonA2 may have different functions and it is important to find out the specific natural substrates and crystallize structures of full-length enzymes.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:24:15Z (GMT). No. of bitstreams: 1
ntu-101-R99b46034-1.pdf: 8070222 bytes, checksum: f2d0b28ddd284135a79241c94b92e941 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents謝誌 vii
中文摘要 viii
Abstract x
1. Introduction 1
1.1 Lon protease 1
1.2 The structure of Lon protease 3
1.3 The function of Lon protease 4
1.4 The substrate of Lon protease 6
1.5 Thermophiles 9
1.6 The aim of this study 11
2. Materials and Methods 13
2.1 Sequence alignment 13
2.2 Cloning of MtaLonA1, MtaLonA2 and truncated proteins 13
Table 1. Oligonucleotides used in this study 15
2.3 Expression and purification of MtaLonA1, MtaLonA2 and truncated proteins 16
2.4 Circular Dichroism (CD) spectroscopy 17
2.5 Analytical Ultracentrifugation (AUC) 18
2.6 Native polyacrylamide gel electrophoresis 19
2.7 Transmission Electron Microscopy (TEM) 19
2.8 Dynamic Light Scattering (DLS) 20
2.9 Electrophoresis Mobility Shift Assay 20
2.10 Protease assay 21
2.11 Peptidase assay 22
2.12 ATPase assay 22
2.13 Chaperone activity assay 23
2.14 Phylogenetic analysis of Meiothermus taiwanensis LonA1 and LonA2 24
3. Results 26
3.1 Determination of MtaLonA1, MtaLonA2 and their truncated proteins from M. taiwanesis WR 220 26
Figure 1. Scheme of MtaLonA1, MtaLonA2 and their truncated form 27
Figure 2. Multiple alignments of amino acid sequences of MtaLonA1 and MtaLonA2 with other LonA protease 28
3.2 Expression and purification 29
Figure 3. SDS-PAGE of purified recombinant MtaLonA1, MtaLonA2 and their truncated proteins 30
3.3 Circular dichroism spectra of MtaLonA1, A2 and their truncated proteins 31
Figure 4. Far-ultraviolet circular dichroism spectra of MtaLonA1, MtalonA2 and their truncated proteins 33
Figure 5. Near-ultraviolet circular dichroism spectra of MtaLonA1, MtalonA2 and their truncated proteins-1 34
Figure 6. Near-ultraviolet circular dichroism spectra of MtaLonA1, MtalonA2 and their truncated proteins-2 35
3.4 Oligomerization of MtaLonA1, A2 and their truncated proteins 36
Figure 7. Sedimentation velocity experiment of MtaLonA1 and MtaLonA2 38
Figure 8. Sedimentation equibrium experiment of MtaLonA2 39
Figure 9. Quateruary structure of MtaLonA1, MtaLonA2 and their truncated proteins in Native PAGE 40
Figure 10. Transmission electron microscopy image of MtaLonA1 41
Figure 11. Transmission electron microscopy image of MtaLonA2 42
3.5 Characterization of proteolytic and ATPase activities of MtaLonA1, A2 and their truncated proteins 43
Figure 12. Effect of pH on protease activity of MtaLonA1 and MtaLonA2 45
Figure 13 Protease activity of MtaLonA1, MtaLonA2 and their truncated proteins 46
Figure 14. Peptidase activity of MtaLonA1, MtaLonA2 and their truncated proteins 47
Figure 15. ATPase activity of MtaLonA1, MtaLonA2 and their truncated proteins 48
3.6 Characterization of DNA-binding activity of MtaLonA1, A2 and their truncated proteins 49
Figure 16. Electrophoretic mobility shift assay of MtaLonA1 and their truncated proteins. 50
Figure 17. Electrophoretic mobility shift assay of MtaLonA2 and their truncated proteins. 51
3.7 Characterization of chaperone-like activity of MtaLonA1, A2 and their truncated proteins 52
Figure 18. Chaperone-like activity of MtaLonA1 S678A mutant and MtaLonA2 S694A mutant under chemical stress 55
Figure 19. Chaperone-like activity of MtaLonA1N and MtaLonA2N under chemical stress 56
Figure 20. Chaperone-like activity of MtaLonA1α under chemical stress 57
Figure 21. Chaperone-like activity of MtaLonA1C and MtaLonA2C under chemical stress 58
Figure 22. Chaperone-like activity of MtaLonA1NA and MtaLonA2NA under chemical stress 59
Figure 23. Chaperone-like activity of MtaLonA2AC under chemical stress 60
Figure 24. Chaperone-like activity of MtaLonA1 S678A mutant and MtaLonA2 S694A mutant under thermal stress 61
Figure 25. Refolding activity of MtaLonA1 S678A mutant and MtaLonA2 S694A mutant 62
Figure 26. Refolding activity of MtaLonA1 S678A mutant and MtaLonA2 S694A mutant 63
Figure 27. Refolding activity of MtaLonA1 and MtaLonA2 64
Figure 28. Refolding activity of MtaLonA1 and MtaLonA2 65
Figure 29. Refolding or proteolytic substrates by MtaLonA1 or MtaLonA2 66
3.8 Specific substrates of MtaLonA1 and MtaLonA2 67
Figure 30. Natural substrates of Lon protease in M. taiwanesis 68
4. Discussion 69
4.1 Phylogenetic analysis of MtaLonA1, MtaLonA2 69
Figure 31. Phylogenetic analysis of Lon proteases-1 71
Figure 32. Phylogenetic analysis of Lon proteases-2 72
Table 2. Materials of phylogenetic tree 73
Table 3. Materials of phylogenetic tree 74
4-2 Structural characteristics of MtaLonA1, MtaLonA2 and their truncated proteins 75
4-3 DNA-binding region of Lon protease 77
Figure 33. Alignment of MtaLonA1, MtaLonA2 and Bt-Lon α-domains 80
4-4 Catalytic activity of MtaLonA1, MtaLonA2 and their truncated proteins 81
4-5 Characterization of chaperone-like activity of MtaLonA1 mutant, MtaLonA2 mutant and their truncated proteins 82
4-6 Physiological roles of multi-functional MtaLonA1 and MtaLonA2 86
Reference 88
Appendix 98
Figure 1. Particle size of MtaLonA2 98
dc.language.isoen
dc.subjectMeiothermus taiwanensiszh_TW
dc.subjectLon 蛋白&#37238zh_TW
dc.subjectAAA+ superfamilyzh_TW
dc.subject高溫菌zh_TW
dc.subjectserine-lysine dyad 催化活性zh_TW
dc.subjectAAA+ superfamilyen
dc.subjectthermophileen
dc.subjectserine-lysine catalytic dyaden
dc.subjectLon proteaseen
dc.subjectMeiothermus taiwanensisen
dc.title臺灣本土嗜熱菌 Meiothermus taiwanensis Lon 蛋白特異區塊酵素功能與結構之研究zh_TW
dc.titleFunction-Structure Studies on the isolated Domains of Lon Protease from Meiothermus taiwanensis WR-220en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee梁博煌(Po-Huang Liang),李岳倫(Yueh-Luen Lee),張崇毅(Chung-I Chang)
dc.subject.keywordMeiothermus taiwanensis,Lon 蛋白&#37238,AAA+ superfamily,高溫菌,serine-lysine dyad 催化活性,zh_TW
dc.subject.keywordMeiothermus taiwanensis,Lon protease,AAA+ superfamily,thermophile,serine-lysine catalytic dyad,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
Appears in Collections:生化科學研究所

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
7.88 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved