Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 天文物理研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63949
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor朱有花(You-Hua Chu)
dc.contributor.authorChen-Fatt Limen
dc.contributor.author林征發zh_TW
dc.date.accessioned2021-06-16T17:24:05Z-
dc.date.available2020-04-16
dc.date.copyright2020-04-16
dc.date.issued2020
dc.date.submitted2020-03-16
dc.identifier.citationAbdurro’uf, Akiyama, M. 2018, MNRAS, 479, 5083
Adelberger, K. L., Steidel, C. C., Pettini, M., et al. 2005, ApJ, 619, 697
Aird, J., Coil, A. L., & Georgakakis, A. 2017, MNRAS, 465, 3390
Alaghband-Zadeh, S., Chapman, S. C., Swinbank, A. M., et al. 2012, MNRAS, 424, 2232
Alexander, D. M., Bauer, F. E., Chapman, S. C., et al. 2005, ApJ, 632, 736
Amvrosiadis, A., Valiante, E., Gonzalez-Nuevo, J., et al. 2019, MNRAS, 483, 4649
An, F. X., Stach, S. M., Smail, I., et al. 2018, ApJ, 862, 101
An, F. X., Simpson, J. M., Smail, I., et al. 2019, ApJ, 886, 48
Aoyama, S., Hirashita, H., Lim, C.-F., et al. 2019, MNRAS, 484, 1852
Aravena, M., Decarli, R., Walter, F., et al. 2016, ApJ, 833, 68
Aretxaga, I., Hughes, D. H., Coppin, K., et al. 2007, MNRAS, 379, 1571
Aretxaga, I., Wilson, G. W., Aguilar, E., et al. 2011, MNRAS, 415, 3831
Armus, L., Mazzarella, J. M., Evans, A. S., et al. 2009, PASP, 121, 559
Arnouts, S., Cristiani, S., Moscardini, L., et al. 1999, MNRAS, 310, 540
Assef, R. J., Kochanek, C. S., Ashby, M. L. N., et al. 2011, ApJ, 728, 56
Avni, Y. 1976, ApJ, 210, 642
Barger, A. J., Cowie, L. L., & Richards, E. A. 2000, AJ, 119, 2092
Barger, A. J., Cowie, L. L., & Sanders, D. B. 1999, ApJL, 518, L5
Barger, A. J., Cowie, L. L., Sanders, D. B., et al. 1998, Nature, 394, 248
Barger, A. J., Wang, W.-H., Cowie, L. L., et al. 2012, ApJ, 761, 89
Baugh, C. M., & Efstathiou, G. 1993, MNRAS, 265, 145
Bergstra, J., & Bengio, Y. 2012, J. Mach. Learn. Res., 13, 281
Bernstein, G., & Huterer, D. 2010, MNRAS, 401, 1399
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Bertoldi, F., Carilli, C., Aravena, M., et al. 2007, ApJS, 172, 132
Béthermin, M., Daddi, E., Magdis, G., et al. 2015, A&A, 573, A113
Béthermin, M., Wu, H.-Y., Lagache, G., et al. 2017, A&A, 607, A89
Blain, A. W., Chapman, S. C., Smail, I., & Ivison, R. 2004, ApJ, 611, 725
Boissier, S., Gil de Paz, A., Boselli, A., et al. 2007, ApJS, 173, 524
Bondi, M., Ciliegi, P., Venturi, T., et al. 2007, A&A, 463, 519
Boquien, M., Buat, V., Boselli, A., et al. 2012, A&A, 539, A145
Borys, C., Chapman, S., Halpern, M., & Scott, D. 2003, MNRAS, 344, 385
Bourne, N., Dunlop, J. S., Merlin, E., et al. 2017, MNRAS, 467, 1360
Bouwens, R. J., Illingworth, G. D., Franx, M., et al. 2009, ApJ, 705, 936
Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2014, ApJ, 793, 115
Breiman, L. 1996, Machine Learning, 24, 123
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Buat, V., Giovannoli, E., Burgarella, D., et al. 2010, MNRAS, 409, L1
Buat, V., Giovannoli, E., Heinis, S., et al. 2011, A&A, 533, A93
Buat, V., Noll, S., Burgarella, D., et al. 2012, A&A, 545, A141
Calistro Rivera, G., Hodge, J. A., Smail, I., et al. 2018, ApJ, 863, 56
Calzetti, D. 2001, PASP, 113, 1449
Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682
Calzetti, D., Kinney, A. L., & Storchi-Bergmann, T. 1994, ApJ, 429, 582
Capak, P. L., Carilli, C., Jones, G., et al. 2015, Nature, 522, 455
Casey, C. M., Narayanan, D., & Cooray, A. 2014a, PhR, 541, 45
Casey, C. M., Berta, S., Béthermin, M., et al. 2012, ApJ, 761, 140
Casey, C. M., Chen, C.-C., Cowie, L. L., et al. 2013, MNRAS, 436, 1919
Casey, C. M., Scoville, N. Z., Sanders, D. B., et al. 2014b, ApJ, 796, 95
Casey, C. M., Zavala, J. A., Spilker, J., et al. 2018, ApJ, 862, 77
Chabrier, G. 2003, PASP, 115, 763
Chang, Y.-Y., van der Wel, A., Rix, H.-W., et al. 2013, ApJ, 762, 83
Chang, Y.-Y., Le Floc’h, E., Juneau, S., et al. 2017, ApJS, 233, 19
Chang, Y.-Y., Ferraro, N., Wang, W.-H., et al. 2018, ApJ, 865, 103
Chapin, E. L., Berry, D. S., Gibb, A. G., et al. 2013, MNRAS, 430, 2545
Chapin, E. L., Hughes, D. H., & Aretxaga, I. 2009, MNRAS, 393, 653
Chapman, S. C., Blain, A. W., Ivison, R. J., & Smail, I. R. 2003, Nature, 422, 695
Chapman, S. C., Blain, A. W., Smail, I., & Ivison, R. J. 2005, ApJ, 622, 772
Chapman, S. C., Lewis, G. F., Scott, D., Borys, C., & Richards, E. 2002, ApJ, 570, 557
Chapman, S. C., Smail, I., Blain, A. W., & Ivison, R. J. 2004a, ApJ, 614, 671
Chapman, S. C., Smail, I., Windhorst, R., Muxlow, T., & Ivison, R. J. 2004b, ApJ, 611,
732
Chary, R., & Elbaz, D. 2001, ApJ, 556, 562
Chen, C.-C., Cowie, L. L., Barger, A. J., et al. 2013a, ApJ, 776, 131
—. 2013b, ApJ, 762, 81
Chen, C.-C., Smail, I., Swinbank, A. M., et al. 2015, ApJ, 799, 194
Chen, C.-C., Smail, I., Ivison, R. J., et al. 2016a, ApJ, 820, 82
Chen, C.-C., Smail, I., Swinbank, A. M., et al. 2016b, ApJ, 831, 91
Chen, C.-C., Hodge, J. A., Smail, I., et al. 2017, ApJ, 846, 108
Chomiuk, L., & Povich, M. S. 2011, AJ, 142, 197
Coil, A. L., Hennawi, J. F., Newman, J. A., Cooper, M. C., & Davis, M. 2007, ApJ, 654,
115
Coil, A. L., Newman, J. A., Cooper, M. C., et al. 2006, ApJ, 644, 671
Coil, A. L., Newman, J. A., Croton, D., et al. 2008, ApJ, 672, 153
Coil, A. L., Blanton, M. R., Burles, S. M., et al. 2011, ApJ, 741, 8
Condon, J. J. 1992, ARA&A, 30, 575
Conroy, C., Schiminovich, D., & Blanton, M. R. 2010, ApJ, 718, 184
Conselice, C. J., Chapman, S. C., & Windhorst, R. A. 2003, ApJL, 596, L5
Cooray, A., Amblard, A., Wang, L., et al. 2010, A&A, 518, L22
Coppin, K., Halpern, M., Scott, D., Borys, C., & Chapman, S. 2005, MNRAS, 357, 1022
Coppin, K., Halpern, M., Scott, D., et al. 2008, MNRAS, 384, 1597
Corre, D., Buat, V., Basa, S., et al. 2018, A&A, 617, A141
Cowie, L. L., Barger, A. J., Hsu, L.-Y., et al. 2017, ApJ, 837, 139
Cowie, L. L., Barger, A. J., & Kneib, J.-P. 2002, AJ, 123, 2197
Cowie, L. L., González-López, J., Barger, A. J., et al. 2018, ApJ, 865, 106
Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. G. 1996, AJ, 112, 839
Cowley, W. I., Béthermin, M., Lagos, C. d. P., et al. 2017, MNRAS, 467, 1231
da Cunha, E., Walter, F., Smail, I. R., et al. 2015, ApJ, 806, 110
Dale, D. A., & Helou, G. 2002, ApJ, 576, 159
Damjanov, I., Zahid, H. J., Geller, M. J., Fabricant, D. G., & Hwang, H. S. 2018, ApJS,
234, 21
Danielson, A. L. R., Swinbank, A. M., Smail, I., et al. 2017, ApJ, 840, 78
Davis, M., & Peebles, P. J. E. 1983, ApJ, 267, 465
de Ravel, L., Kampczyk, P., Le Fèvre, O., et al. 2011, arXiv e-prints, arXiv:1104.5470.
https://arxiv.org/abs/1104.5470
Delhaize, J., Smolčić, V., Delvecchio, I., et al. 2017, A&A, 602, A4
Delvecchio, I., Smolčić, V., Zamorani, G., et al. 2017, A&A, 602, A3
Dempsey, J. T., Friberg, P., Jenness, T., et al. 2013, MNRAS, 430, 2534
Dolley, T., Brown, M. J. I., Weiner, B. J., et al. 2014, ApJ, 797, 125
Downes, A. J. B., Peacock, J. A., Savage, A., & Carrie, D. R. 1986, MNRAS, 218, 31
Draine, B. T. 2006, ApJ, 636, 1114
Dudzevičiūtė, U., Smail, I., Swinbank, A. M., et al. 2019, arXiv e-prints,
arXiv:1910.07524. https://arxiv.org/abs/1910.07524
Dunlop, J. S., McLure, R. J., Biggs, A. D., et al. 2017, MNRAS, 466, 861
Durkalec, A., Le Fèvre, O., Pollo, A., et al. 2015, A&A, 583, A128
Dwek, E., & Arendt, R. G. 1998, ApJL, 508, L9
Eales, S., Lilly, S., Gear, W., et al. 1999, The Astrophysical Journal, 515, 518
Eftekharzadeh, S., Myers, A. D., White, M., et al. 2015, MNRAS, 453, 2779
Elbaz, D., Dickinson, M., Hwang, H. S., et al. 2011, A&A, 533, A119
Elbaz, D., Leiton, R., Nagar, N., et al. 2018, A&A, 616, A110
Engel, H., Tacconi, L. J., Davies, R. I., et al. 2010, ApJ, 724, 233
Evans, A. S., Mazzarella, J. M., Surace, J. A., et al. 2005, ApJS, 159, 197
Fabian, A. C. 1999, MNRAS, 308, L39
Farrah, D., Rowan-Robinson, M., Oliver, S., et al. 2001, MNRAS, 326, 1333
Farrah, D., Lonsdale, C. J., Borys, C., et al. 2006, ApJL, 641, L17
Fernández Lorenzo, M., Sulentic, J., Verdes-Montenegro, L., & Argudo-Fernández, M.
2013, MNRAS, 434, 325
Fixsen, D. J., Dwek, E., Mather, J. C., Bennett, C. L., & Shafer, R. A. 1998, ApJ, 508,
123
Forrest, B., Tran, K.-V. H., Tomczak, A. R., et al. 2016, ApJL, 818, L26
Franco, M., Elbaz, D., Béthermin, M., et al. 2018, A&A, 620, A152
Frayer, D. T., Ivison, R. J., Scoville, N. Z., et al. 1998, ApJL, 506, L7
Friedman, J. H. 2000, Annals of Statistics, 29, 1189
—. 2002, Comput. Stat. Data Anal., 38, 367
G. Cochran, W. 1952, Ann. Math. Stat., 23, 315
Galliano, F. 2017, Planet. Space Sci., 149, 38
Geach, J. E., Chapin, E. L., Coppin, K. E. K., et al. 2013, MNRAS, 432, 53
Geach, J. E., Dunlop, J. S., Halpern, M., et al. 2017, MNRAS, 465, 1789
Georgantopoulos, I., Rovilos, E., & Comastri, A. 2011, A&A, 526, A46
Gilli, R., Daddi, E., Chary, R., et al. 2007, A&A, 475, 83
Goldader, J. D., Meurer, G., Heckman, T. M., et al. 2002, ApJ, 568, 651
Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U., & Wolff, M. J. 2003, ApJ,
594, 279
Goto, T., Takagi, T., Matsuhara, H., et al. 2010, A&A, 514, A6
Greve, T. R., Pope, A., Scott, D., et al. 2008, MNRAS, 389, 1489
Greve, T. R., Bertoldi, F., Smail, I., et al. 2005, MNRAS, 359, 1165
Griffin, M. J., Abergel, A., Abreu, A., et al. 2010, A&A, 518, L3
Grogin, N. A., Kocevski, D. D., Faber, S. M., et al. 2011, ApJS, 197, 35
Gruppioni, C., Pozzi, F., Rodighiero, G., et al. 2013, MNRAS, 432, 23
Hainline, L. J., Blain, A. W., Smail, I., et al. 2011, ApJ, 740, 96
Harikane, Y., Ouchi, M., Ono, Y., et al. 2016, ApJ, 821, 123
Hartley, W. G., Lane, K. P., Almaini, O., et al. 2008, MNRAS, 391, 1301
Hartley, W. G., Almaini, O., Cirasuolo, M., et al. 2010, MNRAS, 407, 1212
Hasinger, G., Miyaji, T., & Schmidt, M. 2005, A&A, 441, 417
Hasinger, G., Capak, P., Salvato, M., et al. 2018, ApJ, 858, 77
Hatsukade, B., Kohno, K., Aretxaga, I., et al. 2011, MNRAS, 411, 102
Hatsukade, B., Kohno, K., Umehata, H., et al. 2016, PASJ, 68, 36
Hatsukade, B., Kohno, K., Yamaguchi, Y., et al. 2018, PASJ, 70, 105
Hayward, C. C., Kereš, D., Jonsson, P., et al. 2011, ApJ, 743, 159
Hayward, C. C., Narayanan, D., Kereš, D., et al. 2013, MNRAS, 428, 2529
Heinis, S., Buat, V., Béthermin, M., et al. 2013, MNRAS, 429, 1113
Helou, G., Soifer, B. T., & Rowan-Robinson, M. 1985, ApJL, 298, L7
Hickox, R. C., Wardlow, J. L., Smail, I., et al. 2012, MNRAS, 421, 284
Hildebrandt, H., Pielorz, J., Erben, T., et al. 2009, A&A, 498, 725
Hodge, J. A., Swinbank, A. M., Simpson, J. M., et al. 2016, ApJ, 833, 103
Holland, W. S., Robson, E. I., Gear, W. K., et al. 1999, MNRAS, 303, 659
Holland, W. S., Bintley, D., Chapin, E. L., et al. 2013, MNRAS, 430, 2513
Hopkins, P. F., Hernquist, L., Cox, T. J., et al. 2005a, ApJ, 630, 705
—. 2006, ApJS, 163, 1
Hopkins, P. F., Hernquist, L., Cox, T. J., & Kereš, D. 2008, ApJS, 175, 356
Hopkins, P. F., Hernquist, L., Martini, P., et al. 2005b, ApJL, 625, L71
Howell, J. H., Armus, L., Mazzarella, J. M., et al. 2010, ApJ, 715, 572
Hsu, L.-Y., Cowie, L. L., Chen, C.-C., Barger, A. J., & Wang, W.-H. 2016, ApJ, 829, 25
Hughes, D. H., Serjeant, S., Dunlop, J., et al. 1998, Nature, 394, 241
Hung, C.-L., Sanders, D. B., Casey, C. M., et al. 2013, ApJ, 778, 129
Hurley, P. D., Oliver, S., Betancourt, M., et al. 2017, MNRAS, 464, 885
Hwang, H. S., Elbaz, D., Dickinson, M., et al. 2011, A&A, 535, A60
Ibar, E., Ivison, R. J., Biggs, A. D., et al. 2009, MNRAS, 397, 281
Ichikawa, T., Kajisawa, M., & Akhlaghi, M. 2012, MNRAS, 422, 1014
Ilbert, O., Arnouts, S., McCracken, H. J., et al. 2006, A&A, 457, 841
Ilbert, O., McCracken, H. J., Le Fèvre, O., et al. 2013, A&A, 556, A55
Infante, L. 1994, A&A, 282, 353
Iono, D., Wilson, C. D., Yun, M. S., et al. 2009, ApJ, 695, 1537
Ivison, R. J., Smail, I., Papadopoulos, P. P., et al. 2010a, MNRAS, 404, 198
Ivison, R. J., Alexander, D. M., Biggs, A. D., et al. 2010b, MNRAS, 402, 245
Ivison, R. J., Lewis, A. J. R., Weiss, A., et al. 2016, ApJ, 832, 78
Jenness, T., Cavanagh, B., Economou, F., & Berry, D. S. 2008, in Astronomical Society
of the Pacific Conference Series, Vol. 394, Astronomical Data Analysis Software and
Systems XVII, ed. R. W. Argyle, P. S. Bunclark, & J. R. Lewis, 565
Ji, Z., Giavalisco, M., Williams, C. C., et al. 2018, ApJ, 862, 135
Johnson, S. P., Wilson, G. W., Wang, Q. D., et al. 2013, MNRAS, 431, 662
Jones, E., Oliphant, T., & Peterson, P. 2001
Jose, C., Baugh, C. M., Lacey, C. G., & Subramanian, K. 2017, MNRAS, 469, 4428
Joseph, R. D., & Wright, G. S. 1985, MNRAS, 214, 87
Karim, A., Swinbank, A. M., Hodge, J. A., et al. 2013, MNRAS, 432, 2
Kashikawa, N., Yoshida, M., Shimasaku, K., et al. 2006, ApJ, 637, 631
Kennicutt, R. C., & Evans, N. J. 2012, ARA&A, 50, 531
Kim, J.-h., Wise, J. H., & Abel, T. 2009, ApJL, 694, L123
Klaassen, P., Mroczkowski, T., Bryan, S., et al. 2019, in BAAS, Vol. 51, 58
Koekemoer, A. M., Faber, S. M., Ferguson, H. C., et al. 2011, ApJS, 197, 36
Kohavi, R. 1995, in Proceedings of the 14th International Joint Conference on Artificial
Intelligence - Volume 2, IJCAI’95 (San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.), 1137–1143. http://dl.acm.org/citation.cfm?id=1643031.1643047
Kong, X., Charlot, S., Brinchmann, J., & Fall, S. M. 2004, MNRAS, 349, 769
Koprowski, M. P., Dunlop, J. S., Michałowski, M. J., et al. 2017, MNRAS, 471, 4155
—. 2016a, MNRAS, 458, 4321
Koprowski, M. P., Coppin, K. E. K., Geach, J. E., et al. 2016b, ApJL, 828, L21
Kovács, A., Chapman, S. C., Dowell, C. D., et al. 2006, ApJ, 650, 592
Kriek, M., & Conroy, C. 2013, ApJL, 775, L16
Kroupa, P. 2001, MNRAS, 322, 231
Kroupa, P., & Weidner, C. 2003, ApJ, 598, 1076
Lagache, G., Dole, H., & Puget, J.-L. 2003, MNRAS, 338, 555
Laigle, C., McCracken, H. J., Ilbert, O., et al. 2016, ApJS, 224, 24
Laird, E. S., Nandra, K., Pope, A., & Scott, D. 2010, MNRAS, 401, 2763
Landy, S. D., & Szalay, A. S. 1993, ApJ, 412, 64
Lang, P., Schinnerer, E., Smail, I., et al. 2019, ApJ, 879, 54
Laurent, G. T., Aguirre, J. E., Glenn, J., et al. 2005, ApJ, 623, 742
Le Fèvre, O., Tasca, L. A. M., Cassata, P., et al. 2015, A&A, 576, A79
Lee, K.-S., Giavalisco, M., Gnedin, O. Y., et al. 2006, ApJ, 642, 63
Liang, L., Feldmann, R., Kereš, D., et al. 2019, MNRAS, 489, 1397
Lilly, S. J., Eales, S. A., Gear, W. K. P., et al. 1999, ApJ, 518, 641
Lilly, S. J., Le Fèvre, O., Renzini, A., et al. 2007, ApJS, 172, 70
Lilly, S. J., Le Brun, V., Maier, C., et al. 2009, ApJS, 184, 218
Lim, C.-F., Wang, W.-H., Smail, I., et al. 2020, ApJ, 889, 80
Limber, D. N. 1953, ApJ, 117, 134
Lin, L., Cooper, M. C., Jian, H.-Y., et al. 2010, ApJ, 718, 1158
Lin, L., Dickinson, M., Jian, H.-Y., et al. 2012, ApJ, 756, 71
Lin, L., Capak, P. L., Laigle, C., et al. 2016, ApJ, 817, 97
Lindner, R. R., Baker, A. J., Omont, A., et al. 2011, ApJ, 737, 83
Lo Faro, B., Buat, V., Roehlly, Y., et al. 2017, MNRAS, 472, 1372
MacKenzie, T. P., Scott, D., & Swinbank, M. 2016, MNRAS, 463, 10
Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415
Maddox, S. J., Dunne, L., Rigby, E., et al. 2010, A&A, 518, L11
Magliocchetti, M., Lapi, A., Negrello, M., De Zotti, G., & Danese, L. 2014, MNRAS,
437, 2263
Magliocchetti, M., Silva, L., Lapi, A., et al. 2007, Monthly Notices of the Royal Astronomical
Society, 375, 1121
Magliocchetti, M., Cirasuolo, M., McLure, R. J., et al. 2008, MNRAS, 383, 1131
Magliocchetti, M., Popesso, P., Rosario, D., et al. 2013, MNRAS, 433, 127
Magnelli, B., Lutz, D., Santini, P., et al. 2012, A&A, 539, A155
Magnelli, B., Popesso, P., Berta, S., et al. 2013, A&A, 553, A132
Magnelli, B., Lutz, D., Saintonge, A., et al. 2014, A&A, 561, A86
Maraston, C., Pforr, J., Renzini, A., et al. 2010, MNRAS, 407, 830
Marsden, D., Gralla, M., Marriage, T. A., et al. 2014, MNRAS, 439, 1556
McCracken, H. J., Capak, P., Salvato, M., et al. 2010, ApJ, 708, 202
McCracken, H. J., Wolk, M., Colombi, S., et al. 2015, MNRAS, 449, 901
McLure, R. J., Dunlop, J. S., Cullen, F., et al. 2018, MNRAS, 476, 3991
Menéndez-Delmestre, K., Blain, A. W., Swinbank, M., et al. 2013, ApJ, 767, 151
Merlin, E., Fontana, A., Ferguson, H. C., et al. 2015, A&A, 582, A15
Meurer, G. R., Heckman, T. M., & Calzetti, D. 1999, ApJ, 521, 64
Michałowski, M., Hjorth, J., & Watson, D. 2010, A&A, 514, A67
Michałowski, M. J., Dunlop, J. S., Cirasuolo, M., et al. 2012a, A&A, 541, A85
Michałowski, M. J., Hayward, C. C., Dunlop, J. S., et al. 2014, A&A, 571, A75
Michałowski, M. J., Dunlop, J. S., Ivison, R. J., et al. 2012b, MNRAS, 426, 1845
Michałowski, M. J., Dunlop, J. S., Koprowski, M. P., et al. 2017, MNRAS, 469, 492
Miller, T. B., Chapman, S. C., Aravena, M., et al. 2018, Nature, 556, 469
Mitchell-Wynne, K., Cooray, A., Gong, Y., et al. 2012, The Astrophysical Journal, 753,
23
Mocanu, L. M., Crawford, T. M., Vieira, J. D., et al. 2013, ApJ, 779, 61
Mortier, A. M. J., Serjeant, S., Dunlop, J. S., et al. 2005, Monthly Notices of the Royal
Astronomical Society, 363, 563
Murakami, H., Baba, H., Barthel, P., et al. 2007, PASJ, 59, S369
Murphy, E. J., Chary, R.-R., Dickinson, M., et al. 2011, ApJ, 732, 126
Myers, A. D., Brunner, R. J., Nichol, R. C., et al. 2007, ApJ, 658, 85
Myers, A. D., Brunner, R. J., Richards, G. T., et al. 2006, ApJ, 638, 622
Narayanan, D., Conroy, C., Davé, R., Johnson, B. D., & Popping, G. 2018a, ApJ, 869, 70
Narayanan, D., Davé, R., Johnson, B. D., et al. 2018b, MNRAS, 474, 1718
Neugebauer, G., Habing, H. J., van Duinen, R., et al. 1984, ApJL, 278, L1
Newman, A. B., Ellis, R. S., Bundy, K., & Treu, T. 2012, ApJ, 746, 162
Noll, S., & Pierini, D. 2005, A&A, 444, 137
Noll, S., Pierini, D., Pannella, M., & Savaglio, S. 2007, A&A, 472, 455
Noll, S., Pierini, D., Cimatti, A., et al. 2009, A&A, 499, 69
Norberg, P., Baugh, C. M., Gaztañaga, E., & Croton, D. J. 2009, MNRAS, 396, 19
Oteo, I., Cepa, J., Bongiovanni, Á., et al. 2013, A&A, 554, L3
Ouchi, M., Hamana, T., Shimasaku, K., et al. 2005, ApJL, 635, L117
Overzier, R. A., Heckman, T. M., Wang, J., et al. 2011, ApJL, 726, L7
Peacock, J. A. 1983, MNRAS, 202, 615
—. 1991, MNRAS, 253, 1P
Pearson, K. 1900, Phil. Mag. Series 5, 50, 157
Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, Journal of Machine Learning
Research, 12, 2825
Peebles, P. J. E. 1980, Princeton, NJ: Princeton Univ. Press
Pei, Y. C. 1992, ApJ, 395, 130
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2010, AJ, 139, 2097
Pforr, J., Maraston, C., & Tonini, C. 2012, MNRAS, 422, 3285
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014, A&A, 571, A16
Poglitsch, A., Waelkens, C., Geis, N., et al. 2010, A&A, 518, L2
Polletta, M., Tajer, M., Maraschi, L., et al. 2007, ApJ, 663, 81
Pope, A., Scott, D., Dickinson, M., et al. 2006, MNRAS, 370, 1185
Popping, G., Puglisi, A., & Norman, C. A. 2017, MNRAS, 472, 2315
Porciani, C., & Norberg, P. 2006, MNRAS, 371, 1824
Pozzetti, L., Bolzonella, M., Zucca, E., et al. 2010, A&A, 523, A13
Provost, F., Fawcett, T., & Kohavi, R. 1997, In Proceedings of the Fifteenth International
Conference on Machine Learning, 445
Puget, J. L., Abergel, A., Bernard, J. P., et al. 1996, A&A, 308, L5
Ranalli, P., Comastri, A., & Setti, G. 2003, A&A, 399, 39
Reddy, N. A., Erb, D. K., Pettini, M., Steidel, C. C., & Shapley, A. E. 2010, ApJ, 712,
1070
Reddy, N. A., Oesch, P. A., Bouwens, R. J., et al. 2018, ApJ, 853, 56
Rennehan, D., Babul, A., Hayward, C. C., et al. 2019, arXiv e-prints, arXiv:1907.00977.
https://arxiv.org/abs/1907.00977
Riechers, D. A., Bradford, C. M., Clements, D. L., et al. 2013, Nature, 496, 329
Rieke, G. H., Alonso-Herrero, A., Weiner, B. J., et al. 2009, ApJ, 692, 556
Rieke, G. H., Young, E. T., Engelbracht, C. W., et al. 2004, ApJS, 154, 25
Rijsbergen, C. J. V. 1979, Information Retrieval, 2nd edn. (Newton, MA, USA:
Butterworth-Heinemann)
Robitaille, T. P., & Whitney, B. A. 2010, ApJL, 710, L11
Roche, N., & Eales, S. A. 1999, MNRAS, 307, 703
Rodighiero, G., Daddi, E., Baronchelli, I., et al. 2011, ApJL, 739, L40
Romano, D., Matteucci, F., Zhang, Z. Y., Papadopoulos, P. P., & Ivison, R. J. 2017, MNRAS,
470, 401
Roseboom, I. G., Oliver, S. J., Kunz, M., et al. 2010, MNRAS, 409, 48
Roseboom, I. G., Ivison, R. J., Greve, T. R., et al. 2012, MNRAS, 419, 2758
Roseboom, I. G., Dunlop, J. S., Cirasuolo, M., et al. 2013, MNRAS, 436, 430
Rowan-Robinson, M., Oliver, S., Wang, L., et al. 2016, MNRAS, 461, 1100
Safarzadeh, M., Hayward, C. C., & Ferguson, H. C. 2017, ApJ, 840, 15
Salmon, B., Papovich, C., Long, J., et al. 2016, ApJ, 827, 20
Salpeter, E. E. 1955, ApJ, 121, 161
Sandage, A., Tammann, G. A., & Yahil, A. 1979, ApJ, 232, 352
Sanders, D. B., & Mirabel, I. F. 1996, ARA&A, 34, 749
Sanders, D. B., Soifer, B. T., Elias, J. H., et al. 1988a, ApJ, 325, 74
Sanders, D. B., Soifer, B. T., Elias, J. H., Neugebauer, G., & Matthews, K. 1988b, ApJL,
328, L35
Sanders, D. B., Salvato, M., Aussel, H., et al. 2007, ApJS, 172, 86
Sato, T., Sawicki, M., & Arcila-Osejo, L. 2014, MNRAS, 443, 2661
Saunders, W., Rowan-Robinson, M., Lawrence, A., et al. 1990, MNRAS, 242, 318
Schechter, P. 1976, ApJ, 203, 297
Schmidt, M. 1968, ApJ, 151, 393
Schmidt, M., Schneider, D. P., & Gunn, J. E. 1995, AJ, 110, 68
Schreiber, C., Elbaz, D., Pannella, M., et al. 2018, A&A, 609, A30
Scott, K. S., Austermann, J. E., Perera, T. A., et al. 2008, MNRAS, 385, 2225
Scott, S. E., Fox, M. J., Dunlop, J. S., et al. 2002, Monthly Notices of the Royal Astronomical
Society, 331, 817
Scoville, N., Aussel, H., Brusa, M., et al. 2007, ApJS, 172, 1
Scranton, R., Johnston, D., Dodelson, S., et al. 2002, ApJ, 579, 48
Sérsic, J. L. 1963, Boletin de la Asociacion Argentina de Astronomia La Plata Argentina,
6, 41
—. 1968, Atlas de Galaxias Australes
Shen, S., Mo, H. J., White, S. D. M., et al. 2003, MNRAS, 343, 978
Shen, Y., Strauss, M. A., Oguri, M., et al. 2007, AJ, 133, 2222
Sheth, R. K., Mo, H. J., & Tormen, G. 2001, MNRAS, 323, 1
Silk, J., & Rees, M. J. 1998, A&A, 331, L1
Simpson, J. M., Swinbank, A. M., Smail, I., et al. 2014, The Astrophysical Journal, 788,
125
Simpson, J. M., Smail, I., Swinbank, A. M., et al. 2015, ApJ, 807, 128
—. 2017, ApJ, 839, 58
—. 2019, ApJ, 880, 43
Smail, I., Chapman, S. C., Blain, A. W., & Ivison, R. J. 2004, ApJ, 616, 71
Smail, I., Ivison, R. J., & Blain, A. W. 1997, The Astrophysical Journal Letters, 490, L5
Smail, I., Ivison, R. J., Blain, A. W., & Kneib, J.-P. 2002, MNRAS, 331, 495
Smith, R. E., Peacock, J. A., Jenkins, A., et al. 2003, MNRAS, 341, 1311
Smolčić, V., Delvecchio, I., Zamorani, G., et al. 2017, A&A, 602, A2
Sobral, D., Best, P. N., Smail, I., et al. 2011, MNRAS, 411, 675
Solarz, A., Pollo, A., Takeuchi, T. T., et al. 2015, A&A, 582, A58
Sorba, R., & Sawicki, M. 2015, MNRAS, 452, 235
—. 2018, MNRAS, 476, 1532
Speagle, J. S., Steinhardt, C. L., Capak, P. L., & Silverman, J. D. 2014, ApJS, 214, 15
Springel, V. 2005, MNRAS, 364, 1105
Stach, S. M., Dudzevičiūtė, U., Smail, I., et al. 2019, MNRAS, 487, 4648
Staguhn, J. G., Kovács, A., Arendt, R. G., et al. 2014, ApJ, 790, 77
Starikova, S., Berta, S., Franceschini, A., et al. 2012, ApJ, 751, 126
Stecher, T. P. 1965, ApJ, 142, 1683
Swinbank, A. M., Smail, I., Chapman, S. C., et al. 2004, ApJ, 617, 64
—. 2010, MNRAS, 405, 234
Swinbank, A. M., Simpson, J. M., Smail, I., et al. 2014, MNRAS, 438, 1267
Swinbank, M., Smail, I., Lindner, C., et al. 2006, arXiv Astrophysics e-prints
Symeonidis, M., Vaccari, M., Berta, S., et al. 2013, MNRAS, 431, 2317
Szokoly, G. P., Bergeron, J., Hasinger, G., et al. 2004, ApJS, 155, 271
Tacconi, L. J., Neri, R., Chapman, S. C., et al. 2006, ApJ, 640, 228
Tacconi, L. J., Genzel, R., Smail, I., et al. 2008, ApJ, 680, 246
Takahashi, R., Sato, M., Nishimichi, T., Taruya, A., & Oguri, M. 2012, ApJ, 761, 152
Targett, T. A., Dunlop, J. S., McLure, R. J., et al. 2011, MNRAS, 412, 295
Targett, T. A., Dunlop, J. S., Cirasuolo, M., et al. 2013, MNRAS, 432, 2012
Teyssier, R., Chapon, D., & Bournaud, F. 2010, ApJL, 720, L149
Thomson, A. P., Ivison, R. J., Simpson, J. M., et al. 2014, MNRAS, 442, 577
Thomson, A. P., Smail, I., Swinbank, A. M., et al. 2019, ApJ, 883, 204
To, C.-H., Wang, W.-H., & Owen, F. N. 2014, ApJ, 792, 139
Toba, Y., Nagao, T., Kajisawa, M., et al. 2017, ApJ, 835, 36
Toft, S., Smolčić, V., Magnelli, B., et al. 2014, ApJ, 782, 68
Trayford, J. W., Theuns, T., Bower, R. G., et al. 2016, MNRAS, 460, 3925
Trump, J. R., Impey, C. D., Elvis, M., et al. 2009, ApJ, 696, 1195
U, V., Sanders, D. B., Mazzarella, J. M., et al. 2012, ApJS, 203, 9
van der Wel, A., Bell, E. F., Häussler, B., et al. 2012, ApJS, 203, 24
van der Wel, A., Franx, M., van Dokkum, P. G., et al. 2014, ApJ, 788, 28
van Kampen, E., Smith, D. J. B., Maddox, S., et al. 2012, MNRAS, 426, 3455
Vieira, J. D., Crawford, T. M., Switzer, E. R., et al. 2010, ApJ, 719, 763
Wall, J. V., Pope, A., & Scott, D. 2008, MNRAS, 383, 435
Wang, R., Carilli, C. L., Beelen, A., et al. 2007, AJ, 134, 617
Wang, S. X., Brandt, W. N., Luo, B., et al. 2013, ApJ, 778, 179
Wang, T., Schreiber, C., Elbaz, D., et al. 2019, Nature, 572, 211
Wang, W.-H., Cowie, L. L., & Barger, A. J. 2004, ApJ, 613, 655
Wang, W.-H., Lin, W.-C., Lim, C.-F., et al. 2017, ApJ, 850, 37
Wardlow, J. L., Smail, I., Coppin, K. E. K., et al. 2011, MNRAS, 415, 1479
Watson, D., Christensen, L., Knudsen, K. K., et al. 2015, Nature, 519, 327
Webb, T. M., Eales, S., Foucaud, S., et al. 2003a, ApJ, 582, 6
—. 2003b, ApJ, 582, 6
Weiß, A., Kovács, A., Coppin, K., et al. 2009a, ApJ, 707, 1201
—. 2009b, ApJ, 707, 1201
Wild, V., Charlot, S., Brinchmann, J., et al. 2011, MNRAS, 417, 1760
Wilkinson, A., Almaini, O., Chen, C.-C., et al. 2017, MNRAS, 464, 1380
Williams, C. C., Giavalisco, M., Porciani, C., et al. 2011, ApJ, 733, 92
Wuyts, S., Förster Schreiber, N. M., Genzel, R., et al. 2012, ApJ, 753, 114
Younger, J. D., Hayward, C. C., Narayanan, D., et al. 2009, MNRAS, 396, L66
Yun, M. S., Scott, K. S., Guo, Y., et al. 2012, MNRAS, 420, 957
Zahid, H. J., Kashino, D., Silverman, J. D., et al. 2014, ApJ, 792, 75
Zavala, J. A., Aretxaga, I., Geach, J. E., et al. 2017, MNRAS, 464, 3369
Zavala, J. A., Aretxaga, I., Dunlop, J. S., et al. 2018, MNRAS, 475, 5585
Zehavi, I., Blanton, M. R., Frieman, J. A., et al. 2002, ApJ, 571, 172
Zehavi, I., Zheng, Z., Weinberg, D. H., et al. 2005, ApJ, 630, 1
Zezas, A. L., Georgantopoulos, I., & Ward, M. J. 1998, MNRAS, 301, 915
Zhang, Z.-Y., Romano, D., Ivison, R. J., Papadopoulos, P. P., & Matteucci, F. 2018, Nature,
558, 260
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63949-
dc.description.abstract本論文的研究對象主要是在次毫米波觀測到的星系,探討它們的
物理性質,從而進一步瞭解它們的生成以及演化。這些星系是經由15
米的詹姆士克拉克麥斯威爾望遠鏡中鑲嵌的SCUBA-2 儀器觀測得到。
本論文結合了SCUBA-2 最新的大型觀測計畫(STUDIES)以及所有
SCUBA-2 在COSMOS 巡天場裡的公開資料,建構了有史以來最深的
450 微米影像,其觀測靈敏度在最深的區域大約是0.6 斯基。本論文
的第一部分探討了這些星系的物理性質,例如:紅移、恆星生成率、
恆星質量、紅外光度以及塵埃輻射溫度。對於紅移小於3 以及紅外光
度大於太陽光度十的十二次方倍的450 微米星系,其塵埃輻射溫度並沒有隨著
紅移而有所演化。但是它們的塵埃輻射溫度與其於恆星生成主星序的
距離成正向關係。此外,塵埃輻射溫度也與其可見光形態有關聯,符
合了次毫米星系中的星暴成因是藉由星系間碰撞及併吞引發的。本論
文也計算了450 微米星系的光度函數以及它們的恆星生成率密度。在
紅移0 到2 之間,大於太陽光度十的十二次方倍的450 微米星系貢獻於恆星生
成率密度逐漸提升,並主導了紅移大於2 的區間。本論文的第二部分
利用了450 微米觀測到的次毫米波星系以及K-譜帶觀測到的非次毫米
波星系做為研究的基底,並透過機器學習的分類方法發展了一個分類
器。這個機器學習的分類器可以被利用於大範圍的COSMOS 巡天場
(1.6 平方度),從而在整個COSMOS 巡天場內判斷出哪些星系是次毫
米波星系的候選星系。針對這些次毫米波候選星系在紅移0.5 到3 的
區間,本論文進行了星系的兩點相關函數的分析,從而發現它們的暈
質量大約是太陽質量的二乘十的十三次方倍。此外,它們的暈質量並沒有顯示
出強烈的紅移演化關係。本研究旨在擴大我們對次毫米波星系生成與
演化的瞭解。
zh_TW
dc.description.abstractIn my thesis, I studied a sample of sub-millimeter galaxies (SMGs), aiming
at unveiling their physical properties and providing insight in the physical
processes shaping galaxy formation and evolution. I based the analysis
on the 450-μm data obtained from the SCUBA-2 camera on the 15-m
James Clerk Maxwell Telescope (JCMT). By combining a new SCUBA-2
imaging survey from the ongoing JCMT Large Program - SCUBA-2 Ultra
Deep Imaging EAO Survey (STUDIES) and all the archival data in the CANDELS/
COSMOS field, I constructed an extremely deep single-dish image
across an area of 300 arcmin^2 at 450μm (S450μm ≃ 0.6 mJy beam^-1). This
image is the deepest ever observed at 450μm. In the first part of my thesis,
I probed the physical properties of the 450-μm-selected galaxies, such
as redshift, star-formation rate (SFR), stellar mass (M *), infrared luminosity
(LIR), and dust temperature (Td). I did not find a redshift evolution in
dust temperature for sources with LIR > 10^12 L⊙ at z < 3. I found a moderate
correlation between the dust temperature and the deviation from the
SFR–M * relation. The increase in dust temperature also correlates with optical
morphology, which is consistent with merger-triggered starbursts in submillimeter
galaxies. I constructed the infrared luminosity functions of the
450-μm sources and measure their comoving SFR densities (SFRDs). I discovered
that the contribution of the LIR > 10^12 L⊙ population to the SFRD
rises dramatically from z = 0 to 2 and dominates the total SFRD at z ≳ 2. In
the second part of my thesis, I developed a machine-learning classifier using
optical-to-near-infrared colors from the 450-μm-selected SMGs and a sample
of K-band-selected non-SMGs. I employed the trained machine-learning
classifier to the general COSMOS field (1.6 deg^2) and identified a sample of
SMG candidates with similar colors to the training SMG sample. I measured
the two-point autocorrelation functions and found that the SMG candidates
reside in massive halos of ≃ (2+-0.5) 10^13 h^-1M⊙ across the redshift
range of z = 0.5–3.0. I did not find evidence of downsizing that is suggested
by recent observational studies. The work presented in this dissertation contributes to widening our understanding of the evolution of SMGs.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:24:05Z (GMT). No. of bitstreams: 1
ntu-109-D04244001-1.pdf: 12100736 bytes, checksum: 5a688a53fbba55c5f16edec0f550af4a (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝ii
摘要iii
Abstract v
1 Introduction 1
1.1 A typical galactic spectral energy distribution . . . . . . . . . . . . . . . 1
1.2 Infrared/Sub-millimeter Observations . . . . . . . . . . . . . . . . . . . 1
1.3 Local Infrared-luminous Galaxies . . . . . . . . . . . . . . . . . . . . . 3
1.4 Sub-millimeter Galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 The 450-mm observations . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Multi-wavelength Properties and Luminosity Functions 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Multi-wavelength Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 SCUBA-2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Ancillary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Source Extraction and Counterpart Identification . . . . . . . . . . . . . 22
2.3.1 Source Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Counterpart Identification . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 Unidentified Sources . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Deriving Physical Parameters . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 AGN Contamination . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.3 Stellar Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.4 Infrared Luminosity . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.5 Dust Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.6 Ultraviolet-continuum Slope and Ultraviolet Luminosity . . . . . 40
2.4.7 SFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.8 Radio Power at 1.4 GHz . . . . . . . . . . . . . . . . . . . . . . 42
2.5 The Nature of SCUBA-2 450-mm-selected Sources . . . . . . . . . . . . 43
2.5.1 The Star-formation Main Sequence . . . . . . . . . . . . . . . . 44
2.5.2 Td–LIR Correlation . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5.3 IRX–bUV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.6 Infrared Luminosity Function . . . . . . . . . . . . . . . . . . . . . . . . 59
2.6.1 1/Vmax Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.6.2 Likelihood Method . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.6.3 Comparison with Other Observations . . . . . . . . . . . . . . . 65
2.6.4 Comparison with Models . . . . . . . . . . . . . . . . . . . . . . 66
2.7 The Obscured Star-formation History . . . . . . . . . . . . . . . . . . . 68
2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3 Spatial Clustering and Halo Masses 75
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2.1 Main Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2.2 Ancillary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2.3 Training Sample . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3 Machine-Learning Methodology . . . . . . . . . . . . . . . . . . . . . . 84
3.3.1 Performance Measures of Classification . . . . . . . . . . . . . . 84
3.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.4 Tuning Hyper-parameters . . . . . . . . . . . . . . . . . . . . . 87
3.3.5 Algorithms Comparison . . . . . . . . . . . . . . . . . . . . . . 88
3.4 Verifications of the SMG Candidates . . . . . . . . . . . . . . . . . . . . 89
3.5 Comparison Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5.1 Rest-frame NUV-r-J Color . . . . . . . . . . . . . . . . . . . . . 93
3.5.2 Physical Properties of SMG Candidates and Comparison Samples 96
3.6 Clustering and Halo Mass . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.6.1 Two Point Auto-correlation Function . . . . . . . . . . . . . . . 101
3.6.2 Dark-matter Halo Mass . . . . . . . . . . . . . . . . . . . . . . . 103
3.6.3 Clustering Signals . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4 Conclusions 109
5 Future Works 111
5.1 A More Complete Picture of SMGs . . . . . . . . . . . . . . . . . . . . 111
5.2 Machine-learning De-blending Procedure for Far-infrared Photometry . . 111
5.3 Star-formation History of Dusty Population . . . . . . . . . . . . . . . . 112
A Monte Carlo Simulation 113
B Confusion Noises 116
C Long Tables 118
D Clustering Results of SMG Candidates Identified by Other Algorithms 129
Bibliography 131
dc.language.isoen
dc.subject機器學習zh_TW
dc.subject宇宙大尺度結構zh_TW
dc.subject星系光度函數zh_TW
dc.subject星系演化zh_TW
dc.subject星系形成zh_TW
dc.subject次毫米波星系zh_TW
dc.subject高紅移星系zh_TW
dc.subjectmachine learningen
dc.subjecthigh-redshift galaxyen
dc.subjectgalaxy formationen
dc.subjectgalaxy evolutionen
dc.subjectgalaxy luminosity functionen
dc.subjectlarge-scale structure of universeen
dc.subjectsub-millimeter galaxyen
dc.title多波段性質、星系光度函數以及大尺度結構群聚於450微米星系的研究zh_TW
dc.titleMulti-wavelength properties, luminosity functions, and clustering measurements of 450-μm-selected galaxiesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.coadvisor王為豪(Wei-Hao Wang)
dc.contributor.oralexamcommittee平下博之(Hiroyuki Hirashita),林彥廷(Yen-Ting Lin),陳建州(Chian-Chou Chen)
dc.subject.keyword次毫米波星系,高紅移星系,星系形成,星系演化,星系光度函數,宇宙大尺度結構,機器學習,zh_TW
dc.subject.keywordsub-millimeter galaxy,high-redshift galaxy,galaxy formation,galaxy evolution,galaxy luminosity function,large-scale structure of universe,machine learning,en
dc.relation.page149
dc.identifier.doi10.6342/NTU202000685
dc.rights.note有償授權
dc.date.accepted2020-03-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept天文物理研究所zh_TW
Appears in Collections:天文物理研究所

Files in This Item:
File SizeFormat 
ntu-109-1.pdf
  Restricted Access
11.82 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved