請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63936完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 毛明華(Ming-Hua Mao) | |
| dc.contributor.author | Po-Chi Lin | en |
| dc.contributor.author | 林伯騏 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:23:39Z | - |
| dc.date.available | 2015-08-20 | |
| dc.date.copyright | 2012-08-20 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-16 | |
| dc.identifier.citation | [1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. Vol. 58, No. 20, 2059 (1987).
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. Vol. 58, No. 23, 2486 (1987). [3] John. D. Joannopoulos, photonic crystals- molding the flow of light, Princeton University Press, 1995 [4] A. Blanco, E. Chomski, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature, 405, 437 (2000). [5] A. Gerardino, M. Francardi, “Fabrication and characterization of point defect photonic crystal nanocavities at telecom wavelength,” Microelectronic Engineering 84,1480–1483 (2007) [6] Yoshihiro Akahane, Masamitsu Mochizuki, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” APPLIED PHYSICS LETTERS, VOLUME 82, NUMBER 9 (2003) [7] Yoshihiro Akahane, Takashi Asano,” High-Q photonic nanocavity in a two-dimensional photonic crystal,” nature,vol. 425(2003) [8] Alexei A. Erchak, Daniel J. Ripin, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” APPLIED PHYSICS LETTERS, VOLUME 78, NUMBER 5(2001) [9] M.A. Verschuuren, A.N. Sprang” Photonic crystal LED,” Patnet Application Publication, 0270572(2010) [10] Michael Barth, Josef Kouba, “Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities,” OPTICS EXPRESS 17231, Vol. 15, No. 25(2007) [11] M. Loncar, T. Doll, “Design and Fabrication of Silicon Photonic Crystal Optical Waveguides,” J. Lightwave Tech., Vol. 18, No. 10, 1402 (2000). [12] M. Tokushima, H. Kosaka, ' Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide ,' Appl. Phys. Lett. Vol. 76, 952 (2000). [13] J.D. Joannopoulos, Pierre R. Villeneuve and Shanhni Fan,” Photonic crystal,” Solid State Communications, Vol. 102, No. 2-3, pp. 165-173(1997) [14] O. Painter, R. K. Lee, 'Two-dimensional photonic band-gap defect mode laser,' Science 284, 1819 (1999) [15] H. G. Park, S. H. Kim, 'Electrically Driven Single-Cell Photonic Crystal Laser,' Science Vol. 305, 1444 (2004). [16] D. Bimberg, M. Grundmann, “Quantum Dot Lasers: Theory and Experiment,” AIP Conference Proceedings, vol. 560, 178-197 ( 2001). [17] N. N. Ledentsov, M. Grundmann, 'Quantum-Dot Heterostructure Lasers,' IEEE J. Sel. Top. Quantum Electron, VOL. 6, NO. 3, 439 (2000). [18] T. Yoshie, O.B. Shchekin, 'Quantum dot photonic crystal lasers,' Electronics Letters, Vol. 38, No. 17, 967 (2002). [19] T. Yoshie, O.B. Shchekin, 'Design and characterization of quantum dot photonic crystal lasers,' Proc. of SPIE Vol. 5000, 27 (2003). [20] S. Strauf1, K. Hennessy, 'Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,' Phys. Rev. Lett. 96, 127404 (2006) [21] Masahiro Nomura, Satoshi Iwamoto, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” OPTICS EXPRESS 6308, Vol. 14, No. 13(2006) [22] Masahiro Nomura, Satoshi Iwamoto “Ultra-low threshold photonic crystal nanocavity laser,” Physica E, 40 ,1800–1803(2008) [23] Katsuaki Tanabe, Masahiro Nomura, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” OPTICS EXPRESS 7036, Vol. 17, No. 9(2009) [24] Katsuaki Tanabe, Masahiro Nomura, “Design, fabrication and optical characterization of GaAs photonic crystal nanocavity lasers with InAs quantum dots gain wafer-bonded onto Si substrates,” Physica E 42, 2560–2562 (2010) [25] Yoshimasa Sugimoto, Yu Tanaka, “Low propagation loss of 0.76 dB_mm in GaAsbased single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length,” OPTICS EXPRESS 1090, Vol. 12, No. 6(2004) [26] Steven G. Johnson, Shanhui Fan, “Guided modes in photonic crystal slabs,” PHYSICAL REVIEW B, VOLUME 60, NUMBER 8(1999) [27] Wenjuan Fan, Zhibiao Hao, “Comparison between two types of photonic-crystal cavities for singlephoton emitters,” SEMICONDUCTOR SCIENCE AND TECHNOLOGY 26 (2011) [28] S. A. Blokhin, N. V. Kryzhanovskaya, D. Bimberg, 'Optical studies of asymmetric-waveguide submonolayer InGaAs QD microdisks formed by selective oxidation,' Semiconductor, Vol. 40, No. 4, 476 (2006) [29] N. V. Kryzhanovskaya, S. A. Blokhin,” Room-Temperature 1.3-μm Lasing in a Microdisk with Quantum Dots,” Semiconductors, Vol. 40, No. 9, pp. 1101–1104(2006) [30] F.A.Kish et al ., Appl Phys Lett., 64, 2839(1994) [31] L.C. Andreani, D. Gerace, M. Agio,” Gap maps, diffraction losses, and exciton–polaritons in photonic crystal slabs,” Photonics and Nanostructures – Fundamentals and Applications 2, 103–110(2004) [32] 賀嘉, “砷化銦量子點光子晶體微共振腔雷射之製作與量測,” 台灣大學光電工程研究所碩士論文(2011) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63936 | - |
| dc.description.abstract | 我們在砷化鎵基板上成功製作單層砷化銦量子點的光子晶體奈米共振腔,在製程方面,藉由電子束直寫微影技術,以及經由乾式蝕刻與濕式蝕刻的步驟,將光子晶體奈米共振腔製作出來。並在室溫利用連續波雷射激發出雷射光,在300K的臨界激發強度為11.6 μW。
我們設計以線缺陷L3系列為主的共振腔,藉由改變特徵尺寸,我們發現共振模態會紅移,與預期理論吻合。並利用兩側相鄰孔洞半徑減小和位移,以期製作出高品質係數和低臨界激發強度的微共振腔。 我們使用微光激發螢光系統在不同溫度做量測,在80K溫度下,最低量測到的臨界激發強度為217 nW,接著我們做變溫量測,在室溫300K仍然可以清楚觀察到共振腔模態,臨界激發強度為11.6 μW。而由於不同溫度下,共振腔的有效折射率會產生變化,導致模態紅移,紅移量為0.054 nm/K。在不同的激發強度下,模態的紅移量因光子晶體散熱不佳的因素,在高溫特別明顯。 | zh_TW |
| dc.description.abstract | We have successfully fabricated photonic crystal slab nanocavities on a GaAs substrate with a single layer of InAs quantum dots as active medium. The photonic crystal nanocavities were fabricatedby E-beam lithography, dry etching, and wet etching. Lasing can be observed in continuous wave operation at room temperature, and the threshold pump power is 11.6 μW.
We designed a point defect structure, called L3 defect, which consists of three missing air holes along one direction. We observed the resonant mode has red shift with different r/a ratios. The two nearby holes were shrunk and shifted in the one direction to produce a nanocavity with a higher quality factor and lower threshold power. We performed the micro-photoluminescence measurements on the fabricated devices at different temperatures. The lowest threshold power we observed at 80 K is 217 nW. The cavity mode can still be observed clearly at room temperature with the threshold power of 11.6 μW. Because the effective refractive index of the resonant cavities changes with temperature, the mode shows red shift of 0.054 nm/K. Due to the heat dissipation issue in photonic crystal cavities, higher red shifts are observed for higher pumping, especially at higher operating temperature. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:23:39Z (GMT). No. of bitstreams: 1 ntu-101-R99941083-1.pdf: 2834824 bytes, checksum: 313c3d590532fe0771596950abd45d6a (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 IV 圖目錄 V 表目錄 IX 第一章 序論 1 1.1光子晶體介紹 1 1.2光子晶體之應用 4 1.3 光子晶體雷射共振腔之研究動機 9 第二章 設計原理與模擬 12 2.1設計原理 12 2.2模擬 17 2.3 實驗設計 20 第三章 製程與實驗架構 23 3.1製程 23 3.2量測架構 27 第四章 量測與討論 29 4.1 固定r/a(120/360),將相鄰共振腔的兩個孔洞微調 29 4.1.1 L3共振腔 29 4.1.2 L3s共振腔 31 4.1.3 L3-20共振腔 34 4.1.4比較有無修改共振腔孔洞的變化 36 4.2 固定r/a比值,同時變化r/a 43 4.2.1 L3(r/a=120/360)共振腔 43 4.2.2 L3(r/a=130/390)共振腔 45 4.2.3 比較有無放大共振腔的變化 53 4.3 固定孔洞半徑(130nm),改變晶格常數 55 4.3.1 L3(r/a=130/390)共振腔 55 4.3.2 L3(r/a=130/400)共振腔 57 4.3.3 比較有無改變晶格常數共振腔的變化 67 4.4 L3s-20(r/a=130/410)共振腔 70 第五章 結論 93 Reference 95 | |
| dc.language.iso | zh-TW | |
| dc.subject | 砷化銦 | zh_TW |
| dc.subject | 光子晶體雷射 | zh_TW |
| dc.subject | 室溫 | zh_TW |
| dc.subject | Room-temperature | en |
| dc.subject | InAs | en |
| dc.subject | Photonic Crystal Lasers | en |
| dc.title | 室溫操作之砷化銦量子點光子晶體雷射 | zh_TW |
| dc.title | Room-temperature Operation of InAs Quantum-dot Photonic Crystal Lasers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林浩雄,吳肇欣 | |
| dc.subject.keyword | 室溫,砷化銦,光子晶體雷射, | zh_TW |
| dc.subject.keyword | Room-temperature,InAs,Photonic Crystal Lasers, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
