Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63931
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林靖愉
dc.contributor.authorHeng-Chun Liuen
dc.contributor.author劉姮君zh_TW
dc.date.accessioned2021-06-16T17:23:29Z-
dc.date.available2017-09-17
dc.date.copyright2012-09-17
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citationAbe, M., M. Takahashi, K. Takeuchi, and M. Fukuka. 1968. Studies on the significance of taurine in radiation injury. Radiation research. 33:563-573.
Albers, M.J., R. Bok, A.P. Chen, C.H. Cunningham, M.L. Zierhut, V.Y. Zhang, S.J. Kohler, J. Tropp, R.E. Hurd, Y.F. Yen, S.J. Nelson, D.B. Vigneron, and J. Kurhanewicz. 2008. Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer research. 68:8607-8615.
Amores-Sanchez, M.I., and M.A. Medina. 1999. Glutamine, as a precursor of glutathione, and oxidative stress. Molecular genetics and metabolism. 67:100-105.
Anthony, M.L., M. Zhao, and K.M. Brindle. 1999. Inhibition of phosphatidylcholine biosynthesis following induction of apoptosis in HL-60 cells. The Journal of biological chemistry. 274:19686-19692.
Beckonert, O., H.C. Keun, T.M.D. Ebbels, J. Bundy, E. Holmes, J.C. Lindon, and J.K. Nicholson. 2007. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols 2:2692 - 2703.
Berneburg, M., T. Gremmel, V. Kurten, P. Schroeder, I. Hertel, A. von Mikecz, S. Wild, M. Chen, L. Declercq, M. Matsui, T. Ruzicka, and J. Krutmann. 2005. Creatine supplementation normalizes mutagenesis of mitochondrial DNA as well as functional consequences. The Journal of investigative dermatology. 125:213-220.
Bertram, H.C., N. Oksbjerg, and J.F. Young. 2010. NMR-based metabonomics reveals relationship between pre-slaughter exercise stress, the plasma metabolite profile at time of slaughter, and water-holding capacity in pigs. Meat Science. 84:108-113.
Bessman, S.P., and C.L. Carpenter. 1985. The creatine-creatine phosphate energy shuttle. Annual review of biochemistry. 54:831-862.
Bhujwalla, Z.M., and J.D. Glickson. 1996. Detection of tumor response to radiation therapy by in vivo proton MR spectroscopy. International journal of radiation oncology, biology, physics. 36:635-639.
Blankenberg, F.G., R.W. Storrs, L. Naumovski, T. Goralski, and D. Spielman. 1996. Detection of apoptotic cell death by proton nuclear magnetic resonance spectroscopy. Blood. 87:1951-1956.
Bligh, E.G., and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology. 37:911-917.
Bloom, M., K.T. Holmes, C.E. Mountford, and P.G. Williams. 1986. Complete proton magnetic resonance in whole cells. Journal of Magnetic Resonance (1969). 69:73-91.
Bohaček, J., B. Hošek, and M. Pospišil. 1993. Postirradiation administration of adenosine monophosphate combined with dipyridamole reduces early cellular damage in mice. Life Sciences. 53:1317-1324.
Boice, J.D., Jr., G. Engholm, R.A. Kleinerman, M. Blettner, M. Stovall, H. Lisco, W.C. Moloney, D.F. Austin, A. Bosch, D.L. Cookfair, and et al. 1988. Radiation dose and second cancer risk in patients treated for cancer of the cervix. Radiation research. 116:3-55.
Brown, R., C. Clugston, A. Edlin, P. Vasey, S.B. Kaye, P. Burns, and B. Vojtěšek. 1993. Increased accumulation of p53 protein in cisplatin-resistant ovarian cell lines. International Journal of Cancer. 55:678-684.
Bulavin, D.V., S. Saito, M.C. Hollander, K. Sakaguchi, C.W. Anderson, E. Appella, and A.J. Fornace. 1999. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. The EMBO journal. 18:6845-6854.
Charles, M. 2001. UNSCEAR report 2000: sources and effects of ionizing radiation. United Nations Scientific Comittee on the Effects of Atomic Radiation. Journal of radiological protection : official journal of the Society for Radiological Protection. 21:83-86.
Chuang, Y.Y., Q. Chen, J.P. Brown, J.M. Sedivy, and H.L. Liber. 1999. Radiation-induced mutations at the autosomal thymidine kinase locus are not elevated in p53-null cells. Cancer research. 59:3073-3076.
Coe, J.P., I. Rahman, N. Sphyris, A.R. Clarke, and D.J. Harrison. 2002. Glutathione and p53 independently mediate responses against oxidative stress in ES cells. Free Radic Biol Med. 32:187-196.
Cuperlovic-Culf, M., D.A. Barnett, A.S. Culf, and I. Chute. 2010. Cell culture metabolomics: applications and future directions. Drug discovery today. 15:610-621.
Cuperlovic-Culf, M., N. Belacel, A.S. Culf, I.C. Chute, R.J. Ouellette, I.W. Burton, T.K. Karakach, and J.A. Walter. 2009. NMR metabolic analysis of samples using fuzzy K-means clustering. Magnetic resonance in chemistry : MRC. 47 Suppl 1:S96-104.
Dennis, E.A. 2009. Lipidomics joins the omics evolution. Proceedings of the National Academy of Sciences of the United States of America. 106:2089-2090.
Dietmair, S., N.E. Timmins, P.P. Gray, L.K. Nielsen, and J.O. Kromer. 2010. Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Analytical biochemistry. 404:155-164.
Edwards, A.A., and D.C. Lloyd. 1998. Risks from ionising radiation: deterministic effects. Journal of radiological protection : official journal of the Society for Radiological Protection. 18:175-183.
Fiehn, O. 2001. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and functional genomics. 2:155-168.
Folch, J., M. Lees, and G.H. Sloane Stanley. 1957. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of biological chemistry. 226:497-509.
Godlee, F. 1992. Environmental radiation: a cause for concern? BMJ (Clinical research ed.). 304:299-304.
Gottschalk, M., G. Ivanova, D.M. Collins, A. Eustace, R. O'Connor, and D.F. Brougham. 2008. Metabolomic studies of human lung carcinoma cell lines using in vitro (1)H NMR of whole cells and cellular extracts. NMR in biomedicine. 21:809-819.
Grande, S., A.M. Luciani, A. Rosi, R. Cherubini, M. Conzato, L. Guidoni, and V. Viti. 2001. Radiation effects on soluble metabolites in cultured HeLa cells examined by 1H MRS: changes in concentration of glutathione and of lipid catabolites induced by gamma rays and proton beams. International journal of cancer. Journal international du cancer. 96 Suppl:27-42.
Green, T.J., J.J. Bijlsma, and D.D. Sweet. 2010. Profound metabolic acidosis from pyroglutamic acidemia: an underappreciated cause of high anion gap metabolic acidosis. Cjem. 12:449-452.
Haimovitz-Friedman, A., C.C. Kan, D. Ehleiter, R.S. Persaud, M. McLoughlin, Z. Fuks, and R.N. Kolesnick. 1994. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. The Journal of experimental medicine. 180:525-535.
Hall, E.J., and A.J. Giaccia. 2006. Radiobiology for the radiologist /|cEric J. Hall, Amato J, Philadelphia |bWolters Kluwer Health/Lippincott Williams. ix, 546 p. pp.
Han, X., A.B. Patters, and R.W. Chesney. 2002. Transcriptional repression of taurine transporter gene (TauT) by p53 in renal cells. The Journal of biological chemistry. 277:39266-39273.
Hong, R.W., J.D. Rounds, W.S. Helton, M.K. Robinson, and D.W. Wilmore. 1992. Glutamine preserves liver glutathione after lethal hepatic injury. Annals of surgery. 215:114-119.
Ide, T., L. Brown-Endres, K. Chu, P.P. Ongusaha, T. Ohtsuka, W.S. El-Deiry, S.A. Aaronson, and S.W. Lee. 2009. GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress. Molecular cell. 36:379-392.
Iverson, S., S. Lang, and M. Cooper. 2001. Comparison of the bligh and dyer and folch methods for total lipid determination in a broad range of marine tissue. Lipids. 36:1283-1287.
Johnson, C.H., A.D. Patterson, K.W. Krausz, C. Lanz, D.W. Kang, H. Luecke, F.J. Gonzalez, and J.R. Idle. 2011. Radiation metabolomics. 4. UPLC-ESI-QTOFMS-Based metabolomics for urinary biomarker discovery in gamma-irradiated rats. Radiation research. 175:473-484.
Jones, D.P. 2002. Redox potential of GSH/GSSG couple: assay and biological significance. Methods in enzymology. 348:93-112.
Jong, S.D. 1993. PLS fits closer than PCR. Journal of Chemometrics. 7:551-557.
Kolesnikov Iu, A., S.D. Novosel'tseva, E.I. Iartsev, B. Kudriashov Iu, and G.P. Bogatyrev. 1975. [Antiradiation properties of taurine compounds]. Radiobiologiia. 15:928-931.
Krishnan, N., M.B. Dickman, and D.F. Becker. 2008. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radical Biology and Medicine. 44:671-681.
Leclercq-Meyer, V., W.J. Malaisse, P. Roose, and F. Smedes. 1996. Evaluation of the Results of the QUASIMEME Lipid Intercomparison: the Bligh & Dyer Total Lipid Extraction Method. Marine Pollution Bulletin. 32:674-680.
Lee, R., and P. Britz-McKibbin. 2010. Metabolomic studies of radiation-induced apoptosis of human leukocytes by capillary electrophoresis-mass spectrometry and flow cytometry: adaptive cellular responses to ionizing radiation. Electrophoresis. 31:2328-2337.
Leyko, W., and G. Bartosz. 1986. Membrane effects of ionizing radiation and hyperthermia. International journal of radiation biology and related studies in physics, chemistry, and medicine. 49:743-770.
Lin, C., H. Wu, R. Tjeerdema, and M. Viant. 2007. Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. METABOLOMICS. 3:55-67.
Lindon, J.C., J.K. Nicholson, and E. Holmes. 2007. The handbook of metabonomics and metabolomics /|cedited by, Amsterdam ;|aOxford |bElsevier,|c2007. x, 561 p. pp.
Little, M. 2003. Risks associated with ionizing radiation. British Medical Bulletin. 68:259-275.
Little, M.P. 2002. Comparisons of lung tumour mortality risk in the Japanese A-bomb survivors and in the Colorado Plateau uranium miners: support for the ICRP lung model. International journal of radiation biology. 78:145-163.
Lu, T.P., L.C. Lai, B.I. Lin, L.H. Chen, T.H. Hsiao, H.L. Liber, J.A. Cook, J.B. Mitchell, M.H. Tsai, and E.Y. Chuang. 2010. Distinct signaling pathways after higher or lower doses of radiation in three closely related human lymphoblast cell lines. International journal of radiation oncology, biology, physics. 76:212-219.
Mehta, A.K., N. Arora, S.N. Gaur, and B.P. Singh. 2009. Choline supplementation reduces oxidative stress in mouse model of allergic airway disease. European journal of clinical investigation. 39:934-941.
Michel, V., Z. Yuan, S. Ramsubir, and M. Bakovic. 2006. Choline transport for phospholipid synthesis. Experimental biology and medicine (Maywood, N.J.). 231:490-504.
Oliver, S.G., M.K. Winson, D.B. Kell, and F. Baganz. 1998. Systematic functional analysis of the yeast genome. Trends in biotechnology. 16:373-378.
Ong, E.S., C.F. Chor, L. Zou, and C.N. Ong. 2009. A multi-analytical approach for metabolomic profiling of zebrafish (Danio rerio) livers. Molecular bioSystems. 5:288-298.
Oostendorp, M., U.F. Engelke, M.A. Willemsen, and R.A. Wevers. 2006. Diagnosing inborn errors of lipid metabolism with proton nuclear magnetic resonance spectroscopy. Clinical chemistry. 52:1395-1405.
Otake, M., and W.J. Schull. 1998. Radiation-related brain damage and growth retardation among the prenatally exposed atomic bomb survivors. International journal of radiation biology. 74:159-171.
Otake, M., W.J. Schull, and S. Lee. 1996. Threshold for radiation-related severe mental retardation in prenatally exposed A-bomb survivors: a re-analysis. International journal of radiation biology. 70:755-763.
Patterson, A.D., C. Lanz, F.J. Gonzalez, and J.R. Idle. 2010. The role of mass spectrometry-based metabolomics in medical countermeasures against radiation. Mass spectrometry reviews. 29:503-521.
Patterson, A.D., H. Li, G.S. Eichler, K.W. Krausz, J.N. Weinstein, A.J. Fornace, Jr., F.J. Gonzalez, and J.R. Idle. 2008. UPLC-ESI-TOFMS-based metabolomics and gene expression dynamics inspector self-organizing metabolomic maps as tools for understanding the cellular response to ionizing radiation. Analytical chemistry. 80:665-674.
Rainaldi, G., R. Romano, P. Indovina, A. Ferrante, A. Motta, P.L. Indovina, and M.T. Santini. 2008. Metabolomics using 1H-NMR of apoptosis and Necrosis in HL60 leukemia cells: differences between the two types of cell death and independence from the stimulus of apoptosis used. Radiation research. 169:170-180.
Redmond, H.P., P.P. Stapleton, P. Neary, and D. Bouchier-Hayes. 1998. Immunonutrition: the role of taurine. Nutrition (Burbank, Los Angeles County, Calif.). 14:599-604.
Riley, P.A. 1994. Free radicals in biology: oxidative stress and the effects of ionizing radiation. International journal of radiation biology. 65:27-33.
Schaffer, S.W., C. Ballard-Croft, J. Azuma, K. Takahashi, D.G. Kakhniashvili, and T.E. Jenkins. 1998. Shape and size changes induced by taurine depletion in neonatal cardiomyocytes. Amino acids. 15:135-142.
Sellick, C.A., R. Hansen, A.R. Maqsood, W.B. Dunn, G.M. Stephens, R. Goodacre, and A.J. Dickson. 2009. Effective quenching processes for physiologically valid metabolite profiling of suspension cultured Mammalian cells. Analytical chemistry. 81:174-183.
Sies, H. 1999. Glutathione and its role in cellular functions. Free radical biology & medicine. 27:916-921.
Smedes, F., and T.k. Askland. 1999. Revisiting the Development of the Bligh and Dyer Total Lipid Determination Method. Marine Pollution Bulletin. 38:193-201.
Smedes, F., and T.K. Thomasen. 1996. Evaluation of the Bligh & Dyer lipid determination method. Marine Pollution Bulletin. 32:681-688.
Stockler, S., F. Hanefeld, and J. Frahm. 1996. Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet. 348:789-790.
Sugahara, T., H. Nagata, and T. Tanaka. 1969. Experimental studies on radiation protection by taurine. Nihon Igaku Hoshasen Gakkai zasshi. Nippon acta radiologica. 29:156-161.
Teague, C.R., F.S. Dhabhar, R.H. Barton, B. Beckwith-Hall, J. Powell, M. Cobain, B. Singer, B.S. McEwen, J.C. Lindon, J.K. Nicholson, and E. Holmes. 2007. Metabonomic studies on the physiological effects of acute and chronic psychological stress in Sprague-Dawley rats. Journal of proteome research. 6:2080-2093.
Teng, Q., W. Huang, T.W. Collette, D.R. Ekman, and C. Tan. 2008. A direct cell quenching method for cell-culture based metabolomics. Metabolomics. 5:199-208.
Thrippleton, M.J., N.M. Loening, and J. Keeler. 2003. A fast method for the measurement of diffusion coefficients: one-dimensional DOSY. Magnetic Resonance in Chemistry. 41:441-447.
Tsai, M.H., X. Chen, G.V. Chandramouli, Y. Chen, H. Yan, S. Zhao, P. Keng, H.L. Liber, C.N. Coleman, J.B. Mitchell, and E.Y. Chuang. 2006. Transcriptional responses to ionizing radiation reveal that p53R2 protects against radiation-induced mutagenesis in human lymphoblastoid cells. Oncogene. 25:622-632.
Unger, T., T. Juven-Gershon, E. Moallem, M. Berger, R. Vogt Sionov, G. Lozano, M. Oren, and Y. Haupt. 1999. Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. The EMBO journal. 18:1805-1814.
United Nations. Scientific Committee on the Effects of Atomic, R. 2001. Hereditary effects of radiation : UNSCEAR 2001 report to the General Assembly, with scientific annex. United Nations, New York.
Viant, M.R., D.W. Bearden, J.G. Bundy, I.W. Burton, T.W. Collette, D.R. Ekman, V. Ezernieks, T.K. Karakach, C.Y. Lin, S. Rochfort, J.S. de Ropp, Q. Teng, R.S. Tjeerdema, J.A. Walter, and H. Wu. 2009. International NMR-based environmental metabolomics intercomparison exercise. Environmental science & technology. 43:219-225.
von Frijtag Drabbe Kunzel, J.K., J. van der Zee, and A.P. Ijzerman. 1996. Radical scavenging properties of adenosine and derivatives in vitro. Drug Development Research. 37:48-54.
Wang, C., J. Yang, and J. Nie. 2009. Plasma phospholipid metabolic profiling and biomarkers of rats following radiation exposure based on liquid chromatography-mass spectrometry technique. Biomedical chromatography : BMC. 23:1079-1085.
Waters, N.J., E. Holmes, C.J. Waterfield, R.D. Farrant, and J.K. Nicholson. 2002. NMR and pattern recognition studies on liver extracts and intact livers from rats treated with α-naphthylisothiocyanate. Biochemical Pharmacology. 64:67-77.
Weckwerth, W. 2003. Metabolomics in systems biology. Annual review of plant biology. 54:669-689.
Wellner, V.P., R. Sekura, A. Meister, and A. Larsson. 1974. Glutathione synthetase deficiency, an inborn error of metabolism involving the gamma-glutamyl cycle in patients with 5-oxoprolinuria (pyroglutamic aciduria). Proceedings of the National Academy of Sciences of the United States of America. 71:2505-2509.
Whitehead, T., and T. Kieberemmons. 2005. Applying in vitro NMR spectroscopy and 1H NMR metabonomics to breast cancer characterization and detection. Progress in Nuclear Magnetic Resonance Spectroscopy. 47:165-174.
Yamauchi, M., K. Suzuki, S. Kodama, and M. Watanabe. 2004. Stabilization of alanine substituted p53 protein at Ser15, Thr18, and Ser20 in response to ionizing radiation. Biochemical and Biophysical Research Communications. 323:906-911.
Zhang, W., A. Becciolini, A. Biggeri, P. Pacini, and C.R. Muirhead. 2011. Second malignancies in breast cancer patients following radiotherapy: a study in Florence, Italy. Breast cancer research : BCR. 13:R38.
余君岳, 關祖杰. 1994. 輻射與人體健康. 新竹市 : 理藝.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63931-
dc.description.abstract雖然流行病學調查已證實暴露游離輻射會對人體有不良效應,也已證實會有引發癌症的風險。然而,即使在醫療上利用游離輻射作為診斷與治療的工具已有相當多發展,對於游離輻射的生物效應的機制目前仍有許多不了解之處。為了瞭解游離輻射對生物系統的影響,近年來已有許多利用功能性基因體學的方法研究游離輻射對生物體內小分子層面的效應。而利用代謝體學方法探討游離輻射影響生物系統中代謝物變化的研究並不多,因此,本研究希望藉由利用代謝體學的方法瞭解游離輻射對於代謝體效應。本研究利用兩種不同p53狀態的人類淋巴細胞:TK6及WTK1(TK6細胞的p53為正常狀態,WTK1則是突變型的p53)來進行游離輻射的代謝物效應研究。將細胞分別暴露不同劑量的γ射線:TK6及WTK1都暴露 D0劑量(TK6為0.8 Gy,WTK1為1.5 Gy)、及WTK1細胞暴露10 Gy,並於暴露後收集經過3小時或24小時的細胞樣本以進行劑量效應及時間效應的探討。細胞萃取後分為水溶性及脂溶性代謝物兩層,都以核磁共振儀進行1H及J-resolved實驗分析。並將數據結果利用主成分分析、單因子變異數分析及Student’s t-tes找出可能統計上重要的代謝物並進行代謝物鑑定。本研究的結果發現,TK6及WTK1兩細胞株的水溶性代謝物及脂溶性代謝物受游離輻射的影響有明顯不同。而在兩細胞株以及不同劑量下都可以發現,水溶性代謝物的時間效應中,經過24小時的變化比經過3小時的變化更顯著。游離輻射對WTK1造成的劑量效應可能與細胞內氧化壓力有關。而研究結果中發現游離輻射影響代謝物變化可能與細胞內的氧化壓力、細胞膜受損、細胞凋亡以及DNA受損有關。牛磺酸、丙胺酸、肌酸及榖胱甘肽在TK6及WTK1間的變異可能來自於兩細胞p53狀態的不同。zh_TW
dc.description.abstractAlthough epidemiological studies have demonstrated adverse human health effects with a greater risk for cancer development when subjects are exposed to ionizing radiation, the mechanisms of biological impacts are still unclear despite the increasing use of diagnostic radiology in medicine. In recent years, several functional genomic approaches have been developed and applied to examine molecular events in biological systems exposed to ionizing radiation. Little metabolomic studies were conducted on the metabolic effects of ionizing radiation. Therefore, we intend to use metabolomic approach to understand the molecular events in a more functional measurement. Human lymphoblastic cell lines: TK6 (wild-type p53) and WTK1 (mutant p53) were used to examine metabolic effects of ionizing radiation. Time-course and dose-response experiments were conducted in cells treated with gamma-ray (iso-survival dose, D0 (TK6: 0.8 Gy; WTK1: 1.5 Gy) or 10 Gy) for 3 or 24 hours. Hydrophilic and hydrophobic metabolites were extracted and analyzed by 1H and J-resolved NMR followed by principal component analysis and metabolite identification. Based on our results, both hydrophilic and hydrophobic metabolome are shown different radiation effects between TK6 and WTK1 cells. The γ-ray radiation effects on hydrophilic metabolome at 24 hours are greater than at 3 hours both in different cell types and doses. The dose effect of ionizing radiation on the WTK1 may be related to intracellular oxidative stress. In summary, after γ-ray exposure, the hydrophilic metabolome changing in cells may caused by oxidative stress, cell membrane damage, apoptosis and DNA damage. The various p53 status also results in differences in taurine, alanine, creatine and glutathione between TK6 and WTK1 cells.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:23:29Z (GMT). No. of bitstreams: 1
ntu-101-R99844007-1.pdf: 6278242 bytes, checksum: 8579c745876b97fa44ca8c978e0abcae (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 I
摘要 III
ABSTRACT V
圖目錄 IX
表目錄 XI
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1 游離輻射簡介 3
2.2 游離輻射危害 4
2.2.1 轉錄體學的輻射效應研究 5
2.2.2 代謝體學的輻射效應研究 7
2.3 代謝體學 10
2.3.1 代謝體學簡介 10
2.3.2 核磁共振儀方法的代謝體學 11
2.3.3 核磁共振儀的細胞代謝體學 12
2.3.4 細胞樣本的收集方法 13
第三章 實驗材料與方法 17
3.1 實驗架構 17
3.2 游離輻射暴露實驗 18
3.2.1 實驗細胞培養 18
3.2.2 游離輻射暴露 19
3.3 細胞樣本前處理 19
3.3.1 細胞樣本前處理方法確認 19
3.3.2 細胞樣本前處理 20
3.4 核磁共振儀分析 20
3.4.1 一維1H核磁共振實驗 21
3.4.2 二維J-resolved核磁共振實驗 22
3.5 資料處理 22
3.5.1 圖譜處理 23
3.5.2 多變量統計分析 23
3.5.3 代謝物鑑定 24
3.5.4 統計檢定 25
第四章 結果 27
4.1前處理方法確認 27
4. 2 游離輻射暴露實驗 28
4.2.1 游離輻射對TK6細胞代謝物之影響─時間效應 29
4.2.2 游離輻射對WTK1細胞之影響─劑量與時間效應 31
4.2.3 游離輻射對TK6及WTK1細胞影響的比較 34
第五章 討論 37
5.1 懸浮細胞QUENCHING方法 37
5.2游離輻射對人類淋巴細胞的影響 38
5.2.1 暴露游離輻射造成TK6細胞代謝物變化的時間效應 39
5.2.2暴露游離輻射造成WTK1代謝物變化劑量效應與時間效應 42
5.2.3 TK6與WTK1細胞受游離輻射暴露的代謝物變化情形比較 44
5.3 研究限制 47
5.4 結論 48
參考文獻 49
dc.language.isozh-TW
dc.subject人類淋巴細胞zh_TW
dc.subject游離輻射zh_TW
dc.subject核磁共振儀zh_TW
dc.subject代謝體學zh_TW
dc.subjectp53zh_TW
dc.subjecthuman lymphocytesen
dc.subjectnuclear magnetic resonance (NMR)en
dc.subjectp53en
dc.subjectionizing radiationen
dc.subjectmetabolomicsen
dc.title以核磁共振技術的代謝體學研究游離輻射對人類淋巴細胞之影響zh_TW
dc.title1H NMR-based Metabolomics to Study Effects of Ionizing Radiation in Human Lymphocytesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor蔡孟勳
dc.contributor.oralexamcommittee唐川禾,郭錦樺
dc.subject.keyword核磁共振儀,人類淋巴細胞,游離輻射,p53,代謝體學,zh_TW
dc.subject.keywordnuclear magnetic resonance (NMR),human lymphocytes,ionizing radiation,p53,metabolomics,en
dc.relation.page103
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
6.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved