請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63918完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫啟光 | |
| dc.contributor.author | Hung-Pin Chen | en |
| dc.contributor.author | 陳宏賓 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:23:03Z | - |
| dc.date.available | 2013-08-18 | |
| dc.date.copyright | 2012-08-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-16 | |
| dc.identifier.citation | [1.1] G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Resonant microwave absorption of selected DNA molecules,” Phys. Rev. Lett. 53, 1284 (1984).
[1.2] D. B. Murray, C. H. Netting, L. Saviot, C. Pighini, N. Millot, D. Aymes, H.-L Liu, “Far-infrared absorption by acoustic phonons in titanium dioxide nanopowders,” Journal of Nanoelectronics and Optoelectronics 1, pp. 92-98 (7) (2006) [1.3] A. A. Balandin, V. A. Fonoberov, “Vibrational modes of nano-template viruses” , Journal of Nanoelectronics and Optoelectronics 1, pp. 90-95 (6) (2005) [1.4] T.-M. Liu, J.-Y. Lu, H.-P. Chen, C.-C. Kuo , M.-J. Yang, C.-W. Lai, P.-T. Chou, M.-H. Chang, H.-L. Liu, Y.-T. Li, C.-L. Pan, S.-H. Lin, C.-H. Kuan, and C.-K. Sun, “Resonance-enhanced dipolar interaction between terahertz photons and confined acoustic phonons in nanocrystals,” Appl. Phys. Lett. 92, 093122 (2008). [1.5] S. B. Juhl, E. P. Chan, Y.-H. Ha, M. Maldovan, J. Brunton, V. Ward, T. Dokland, J. Kalmakoff, B. Farmer, E. L. Thomas, R. A. Vaia, “Assembly of wiseana iridovirus: Viruses for colloidal photonic crystals,” Adv. Func. Material 16, 1086-1094 (2006). [1.6] T-M. Liu, H.-P. Chen, L-T Wang, J-R Wang, T-N Luo, Y-J Chen, S-I Liu, and C.-K. Sun, “Microwave resonant absorption of viruses through dipolar coupling with confined acoustic vibrations,” Appl. Phys. Lett. 94, 043902 (2009). [1.7] T.-M. Liu, H.-P. Chen, S.-C. Yeh, C.-Y. Wu, C.-H. Wang, T.-N. Luo, Y.-J. Chen, S.-I. Liu, and C.-K. Sun, “Effects of hydration levels on the bandwidth of microwave resonant absorption induced by confined acoustic vibrations,” Appl. Phys. Lett. 95, 173702 (2009). [1.8] J.J. Brown, A.I. Baca, K.A. Bertness, D. A. Dikin, R. S. Ruoff, V. M. Bright, “Tensile measurement of single crystal gallium nitride nanowires on MEMS test stages,” Sens. Actuators A 166(2), 177-186 (2011). [1.9] R. A. Bernal, R. Agrawal, B. Peng, K. A. Bertness, N. A. Sanford, A. V. Davydov and H. D. Espinosa, “Effect of Growth Orientation and Diameter on the Elasticity of GaN Nanowires. A Combined in Situ TEM and Atomistic Modeling Investigation,” Nano Lett. 11(2), 548-555 (2011). [1.10] C.-Y. Nam, P. Jaroenapibal, D. Tham, D. E. Luzzi, S. Evoy and J. E. Fischer, 'Diameter-dependent electromechanical properties of GaN nanowires,' Nano Lett. 6(2), 153-158 (2006). [1.11] M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: Theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925-14933 (2003). [1.12] C. Guillon, P. Langot, D. Fatti, A. S. Kirakosyan, T. V. Shahbazyan, T. Cardinal, M. Truger, and F. Vallee, ' Coherent Acoustic Vibration of Metal Nanoshells,' Nano Lett. 7(1), 138-142 (2007). [1.13] H. Sakuma, M. Tomoda, P. H. Otsuka, O. Matsuda, O. B. Wright, T. Fukui, K. Tomioka, and I. A. Veres, “Vibrational modes of GaAs hexagonal nanopillar arrays studied with ultrashort optical pulses,” Appl. Phys. Lett. 100, 131902 (2012). [1.14] H. Liang, M. Upmanyu, and H. Huang, “Size-dependent elasticity of nanowires: Nonlinear effects ,” Phys. Rev. B 71, 241403 (2005). [1.15] C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires”, Phys. Rev. Lett. 96,075505 (2006). [1.16] L-G. Zhou and H. Huang, “Are surface elastically softer or stiffer,” Appl. Phys. Lett. 84, 1940 (2004). [1.17] H. Ogi, A. Yamamoto, K. Kondou, K. Nakano, K. Morita, N. Nakamura, T. Ono, and M. Hirao, “Significant softening of copper nanowires during electromigration studied by picosecond ultrasound spectroscopy,” Phys. Rev. B 82, 155436 (2010). [1.18] R. Fork, B. Greene, and C. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett., 38, 671 (1981). [1.19] D. Kim and P. Yu, “Hot-electron relaxations and hot phonons in GaAs studied by subpicosecond raman scattering,” Phys. Rev. B, 43, 4158 (1991). [1.20] C. K. Sun, J. C. Liang, and X. Y. Yu, “Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields,” Phys. Rev. Lett., 84, 179 (2000). [1.21] C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett., 53, 989 (1984). [1.22] A. Devos, F. Poinsotte, J. Groenen, O. Dehaese, N. Bertru, and A. Ponchet, “Strong Generation of Coherent Acoustic Phonons in Semiconductor Quantum Dots,” Phys. Rev. Lett. 98, 207402 (2007) [1.23] Christophe Voisin, Natalia Del Fatti, Dimitris Christofilos, and Fabrice Vallée, “Ultrafast Electron Dynamics and Optical Nonlinearities in Metal Nanoparticles,” J. Phys. Chem. B, 105 (12), 2264–2280 (2001). [1.24] S. M. Tanner, J. M. Gray, C. T. Rogers, K. A. Bertness, and N. A. Sanford, “High-Q GaN nanowire resonators and oscillators,” Appl. Phys. Lett. 91, 203117 (2007). [1.25] Abhishek Motayed, Mark Vaudin, Albert V. Davydov, John Melngailis, Maoqi He, and S. N. Mohammad, “Diameter dependent transport properties of gallium nitride nanowire field effect transistors,” Appl. Phys. Lett. 90, 043104 (2007). [1.26] C.-F. Lo, B. H. Chu, S. J. Pearton, A. Dabiran, P. P. Chow, S. Doré, S. C. Hung, C. W. Chen, and F. Ren, “Effect of temperature on CO detection sensitivity of ZnO nanorod-gated AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett. 99, 142107 (2011). [1.27] Junseok Heo, Wei Guo, and Pallab Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett. 98, 021110 (2011). [1.28] Mo Li, H. X. Tang and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nature Nanotechnology 2, 114 - 120 (2007). [2.1] K.-Q. Peng, and S.-T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater. 23, 198 (2011). [2.2] R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nature Photonic 3, 569 (2009). [2.3] C.-T. Huang, J.-Song, W.-F. Lee, Y. Ding, Z. Gao, Y. Hao L.-J. Chen, and Z.-L. Wang, “GaN Nanowire Arrays for High-Output Nanogenerators,” J. Am. Chem. Soc. 132, 4766 (2010). [2.4] R. Agrawal, B. Peng, and H.D. Espinosa, “Elasticity size effects in ZnO nanowires−A combined experimental-computational approach,” Nano Lett. 9, 4177 (2009). [2.5] J.-Heo, W. Guo, and P. Bhattacharya, “InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon,” Appl. Phys. Lett. 98, 021110 (2011). [2.6] N. Nakamura, H. Ogi, T. Yasui, M. Fujii, and M. Hirao, “Mechanism of elastic softening behavior in a superlattice,” Phys. Rev. Lett. 99, 035502 (2007). [2.7] R. A. Bernal, R. Agrawal, B. Peng, K. A. Bertness, N. A. Sanford, A. V. Davydov and H. D. Espinosa, “Effect of growth orientation and diameter on the elasticity of GaN nanowires. A Combined in situ TEM and atomistic modeling investigation,” Nano Lett. 11, 548 (2011). [2.8] S. O. Mariager, D. Khakhulin, H. T. Lemke, K. S. Kjar, L. Guerin, L. Nuccio, Claus B. Sorensen, Martin M. Nielsen and R. Feidenhans, “Direct observation of acoustic oscillations in InAs nanowires,” Nano Lett., 10 (7), pp 2461–2465 (2010). [2.9] Y. Chen, I. Stevenson, R. Pouy, L. Wang, D. N Mcllory, T. Pounds, M. G. Notorn, and D. E. Aston, “Mechanical elasticity of vapour–liquid–solid grown GaN nanowires,” nanotechnology 18, 135708 (2007) [2.10] J.J. Brown, A.I. Baca, K.A. Bertness, D. A. Dikin, R. S. Ruoff, V. M. Bright, “Tensile measurement of single crystal gallium nitride nanowires on MEMS test stages,”Sens. Actuators A 166, 177 (2011). [2.11] C.-Y. Nam, P. Jaroenapibal, D. Tham, D. E. Luzzi, S. Evoy and J. E. Fischer, “Diameter-dependent electromechanical properties of GaN nanowires,” Nano Lett. 6, 153 (2006). [2.12] T. Henry, K. Kim, Z. Ren, C. Yerino, and J. Han, “Directed growth of horizontally aligned gallium nitride nanowires for nanoelectromechanical resonator arrays,” Nano Lett. 7, 3315 (2007). [2.13] N. Nakamura, H. Ogi, T. Shagawa, and M. Hirao, “Recovery of elastic constant of ultrathin Cu films by low temperature annealing,” Appl. Phys. Lett. 92, 141901 (2008). [2.14] H. Ogi, M. Fujii, N. Nakamura, T. Shagawa, and M. Hirao, “Resonance acoustic-phonon spectroscopy for studying elasticity of ultrathin films,” Appl. Phys. Lett. 90, 191906 (2007). [2.15] Xin Xu, Alexis Potie, Rudeesun Songmuang, Jae Woo Lee, Bogdan Bercu, Thierry Baron, Bassem Salem and Laurent Montes, “An improved AFM cross-sectional method for piezoelectric nanostructures properties investigation: application to GaN nanowires,” nanotechnology 22, 105704 (2011). [2.16] T. Bienville, J. F. Robillard, L. Belliard, I. Roch-Jeune, A. Devos, B. Perrin, “Individual and collectivevibrationalmodes of nanostructures studied by picosecond ultrasonics,” Ultrasonic 44, 1289 (2006) [2.17] H. Sakuma, M. Tomoda, P. H. Otsuka, O. Matsuda, Oliver B. Wright, Takashi Fukui, K. Tomioka, and I. A. Veres, “Vibrational modes of GaAs hexagonal nanopillar arrays studied with ultrashort optical pulses,” Appl. Phys. Lett. 100, 131902 (2012). [2.18] J.-F. Robillard, A. Devos*, I. Roch-Jeune, and P. A. Mante, “Collective acoustic modes in various two-dimensional crystals by ultrafast acoustics: Theory and experiment,” Phys. Rev. B 78, 064302 (2008). [2.19] O. B. Wright, B. Perrin, O. Matsuda, and V. E. Gusev, “Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses,” Phys. Rev. B 64, 081202(R) (2001). [2.20] C.-K. Sun, J.-C. Liang, and X.-Y. Yu, “Coherent Acoustic Phonon Oscillations in Semiconductor Multiple Quantum Wells with Piezoelectric Fields,” Phys. Rev. Lett. 84, 179–182 (2000). [2.21] C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986). [2.22] S. Wu, P. Geiser, J. Jun, J. Karpinski, and R. Sobolewski, “Femtosecond optical generation and detection of coherent acoustic phonons in GaN single crystals,” Phys. Rev. B 76, 085210 (2007). [2.23] Y. Chen, I. Stevenson, R. Pouy, L. Wang, D. N Mcllory, T. Pounds, M. G. Notorn, and D. E. Aston, “Mechanical elasticity of vapour–liquid–solid grown GaN nanowires,” nanotechnology 18, 135708 (2007) [2.24] C.-Y. Nam, P. Jaroenapibal, D. Tham, D. E. Luzzi, S. Evoy and J. E. Fischer, “Diameter-Dependent Electromechanical Properties of GaN Nanowires,” Nano Lett. 6, 153 (2006). [2.25] S. O. Mariager, D. Khakhulin, H. T. Lemke, K. S. Kiar, L. Guerin, L. Nuccio, C. B. Sorensen, M. M. Nielsen and R. Feidenhans, “Direct Observation of Acoustic Oscillations in InAs Nanowires,” Nano Lett. 10, 2461 (2010). [2.26] H. Lange, M. Mohr, M. Artemyev, U. Woggon, and C. Thomsen, “Direct Observation of the Radial Breathing Mode in CdSe Nanorods,” Nano Lett. 8, 4614 (2008). [2.27] M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational Response of Nanorods to Ultrafast Laser Induced Heating: Theoretical and Experimental Analysis,” J. Am. Chem. Soc. 125, 14925 (2003). [2.28] R G Leisure and F A Willis, “Resonant ultrasound spectroscopy,” J. Phys.: Condens. Matter 9 6001 (1997). [2.29] Master Thesis by Yueh-Chun Wu. [2.30] D. Nardi, F. Banfi, C. Giannetti, B. Revaz, G. Ferrini, and F. Parmigiani, “Pseudosurface acoustic waves in hypersonic surface phononic crystals,” Phys. Rev. B 80, 104119 (2009). [2.31] M Yamaguchi, T Yagi, T Azuhata, T Sota, K Suzuki, S Chichibu and S Nakamura, “Brillouin scattering study of gallium nitride: elastic stiffness constants,” J. Phys.: Condens Matter 9, 241 (1997). [3.1] Handbook of Microlithography, Micromachining, and Microfabrication [3.2] T. H. P. Chang, “ Proximity effect in electron beam lithography,” J. Vac. Sci. Technol. 12, 1271 (1975). [3.3] D. Zhuang, J. H. Edgar, “Wet etching of GaN, AlN, and SiC: a review,” Materials Science and Engineering: R: Report 48, 1-47 (2005). [3.4] Chi-Chiang Kao, H.W. Huang, J. Y. Tsai, C. C. Yu, C. F. Lin, H. C. Kao, and S. C. Wang, “Study of dry etching for GaN and InGaN-based laser structure using inductively coupled plasma reactive ion etching,” Materials Science and Engineering B 107, p283-288 (2004). [3.5] Kirt R. Williams, kishan Gupta, and Matthew Wasilik, “Etch Rates for Micromachining Processing-Part 3,” J. Microelectro. Sys. 12, 1057 (2003). [4.1] G. V. Hartland, “Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism,” J. Chem. Phys. 116, 8048 (2002). [4.2] M. Pelton, J. E. Sader, J. Burgin, M. Liu, P. G. Sionnest, and D. Gosztola, “Damping of acoustic vibrations in gold nanoparticles,” Nature Nanotechnology 4, 492 - 495 (2009) [4.3] R. G. Leisure and F. A. Willis, “Resonant ultrasound spectroscopy,” J. Phys.: Condens. Matter 9 6001 (1997). [4.4] Master Thesis by Yueh-Chu Wu (2012). [4.5] Y.-C. Wen, S.-H. Guol, H.-P. Chen, J.-K. Sheu, and Chi-Kuang Sun, “Femtosecond ultrasonic spectroscopy using a piezoelectric nanolayer: Hypersound attenuation in vitreous silica films,” Appl. Phys. Lett. 99, 051913 (2011). [4.6] Y.-C. Wen, S.-H. Guol, H.-P. Chen, J.-K. Sheu, and C.-K. Sun, “Femtosecond ultrasonic spectroscopy using a piezoelectric nanolayer: Hypersound attenuation in vitreous silica films,” Appl. Phys. Lett. 99, 051913 (2011). [4.7] J.-F. Robillard, A. Devos, I. Roch-Jeune, and P. A. Mante, “Collective acoustic modes in various two-dimensional crystals by ultrafast acoustics: Theory and experiment,” Phys. Rev. B 78, 064302 (2008). [4.8] Vurgaftman and J. R. Meyer, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys., 94, 3675 (2003). [4.9] Polian, M.Grimsditch, and I. Grzegory, “Elastic constants of gallium nitride,” J. Appl. Phys 79, 3343 (1996). [4.10] H. Liang, M. Upmanyu, and H. Huang, “Size-dependent elasticity of nanowires: Nonlinear effects,” Phys. Rev. B 71, 241403 (2005). [4.11] Gulans and I. Tale, “Ab initio calculation of wurtzite-type GaN nanowires,” Phys. Stat. Sol. C 4,1197 (2007). [4.12] Z. Wang, X. Zu, L. Yang, F. Gao, and W. J. Weber, “Molecular dynamics simulation on the buckling behavior of GaN nanowires under uniaxial compression,” Phys. E 40, 561-566 (2008). [4.13] R. A. Bernal, R. Agrawal, B. Peng, K. A. Bertness, N. A. Sanford, A. V. Davydov, and H. D. Espinosa, “Effect of growth orientation and diameter on the elasticity of GaN nanowires. A combined in situ TEM and atomistic modeling investigation,” Nano Lett., 11 , pp 548–555, (2011). [4.14] P. Yu, C. H. Chiu, Y.-R. Wu, H. H. Yen, J. R. Chen, C. C. Kao, Han-Wei Yang, H. C. Kuo, T. C. Lu, W. Y. Yeh, and S. C. Wang, “Strain relaxation induced microphotoluminescence characteristics of a single InGaN-based nanopillar fabricated by focused ion beam milling,” Appl. Phys. Lett. 93, 081110 (2008). [4.15] D. Zhaung and J. H. Edgar, ' Wet etching of GaN, AlN, and SiC: a review ,” Materials Science and Engineering R, 48, 1-46 (2005). [4.16] H. Petrova, J. Perez-Juste, Z. Zhang, J. Zhang, T. Kosel, and G. V. Hartland, “Crystal structure dependence of the elastic constants of gold nanorods,” J. Mater. Chem 16, 3957 (2006). [4.17] M Pelton, JE Sader, J Burgin, M Liu, P. G. Sionnest, and D. Gosztola, “Damping of acoustic vibrations in gold nanoparticles,” Nature Nanotechnology 4, 492 - 495 (2009). [4.18] Patrik Ščajev, Alexander Usikov, Vitali Soukhoveev, Ramūnas Aleksiejūnas, and Kęstutis Jarašiūnas, “Diffusion-limited nonradiative recombination at extended defects in hydride vapor phase epitaxy GaN layers,” Appl. Phys. Lett. 98, 202105 (2011). [4.19] Tackeuchi, C. Ho Yoo, T. W. Kim, Y. H. Kwon, T. W. Kang, T. Nukui, T. Fujita, Y. Nakazato, Y. Saeki, S. Izumi, “Picosecond carrier recombination of single-crystalline GaN nanorods grown on Si(111) substrates,” J. J. of Appl. Phys. 49, 070201 (2010). [4.20] G. Mayer, B. E. Maile, R. Germann, A. Forchel, P. Grambow, and H. P. Meier, “Time‐resolved investigations of sidewall recombination in dry‐etched GaAs wires,” Appl. Phys. Lett. 56, 2016 (1990). [4.21] E. Fred Schubert, Light-Emitting Diodes 2nd (Cambridge, New York, 2006). [4.22] J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko, and N. A. Sanford, “Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy,” J. Appl. Phys. 103, 124309 (2008). [4.23] P. Šcˇajev, K. Jarašiūnas, S. Okur, Ü. Özgür, and H. Morkoc, “Carrier dynamics in bulk GaN,” J. Appl. Phys. 111, 023702 (2012). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63918 | - |
| dc.description.abstract | 氮化鎵奈米柱是一個常被使用於光電元件和微機電元件的結構。然而當結構被縮小至奈米尺度時,一些有趣且和巨觀尺度底下不同之行為,常常引人注意和被研究。這些新的行為和現象將會造成未來元件縮小化後,在設計和實做上的挑戰。然而為了可以在製程的過程中,及時監控和量測材料的特性,一些量測的技術因此被發展出來。我們提出利用飛秒雷射所激發的二維陣列氮化鎵奈米柱的音波局限模態來監控奈米材料的彈性係數(elastic stiffness contant)的改變。在這裡的研究中,我們成功的利用電子束微影系統以及偶合電漿子乾式時刻技術,製作出直徑小於35nm的氮化鎵奈米柱,並利用奈米超音波的量測技術觀察不同直徑大小下之奈米柱的徑向呼吸模態。因為奈米柱的徑向呼吸模態,是屬於單一個奈米柱的自然共振模態,對於一個二維陣列結構來說,我們也設計不同的周期和不同的aspect ratio來驗證周期結構和呼吸振動膜態的關係,然而我們也分析了奈米柱的呼吸振動模態的品質因子,並發現品質因子和奈米柱直徑的相關性。最後,在我們的分析裡,我們觀察到當奈米柱直徑小於50nm的時候,材料的彈性係數(elastic stiffness contant)會變小,我們推論這是因為氮化鎵材料因尺度奈米化後,表面原子和原子之間的鍵結變弱造成的材料軟化效應(softening effect)。憑藉著我們的量測和分析的方法,得到直徑35nm的氮化鎵奈米柱,他的彈性係數(elastic stiffness contant)是193±24 GPa。另外,我們的量測也發現氮化鎵奈米柱在尺度縮小後不僅機械特性改變,他的光學特性也會有所不同。我們發現直徑越小的奈米柱會出現一個較短的載子存活時間,我們推論這個現象可能和氮化鎵表面的surface recombination和surface depletion region等載子的運動行為有關。 | zh_TW |
| dc.description.abstract | GaN nanorod is a popular structure for the optoelectronic and microlectromechanical devices. Under the nano-scale, the rod has some interesting phenomenon about optical and mechanical properties. In this thesis, we successfully fabricated 2-D arrayed GaN nanorods with E-Beam lithography and dry-etching. The rod diameter can be scaled down to 35nm with this fabrication method. Some modifications of optical and mechanical properties were observed in our measurement, compared with the bulk GaN. In order to monitor the changes of optical and mechanical properties, the ultrafast optical pump-probe technique was adopted to generate and detect the nano-confined acoustic modes. The size-dependence experiment also pointed that non-radiative surface recombination or surface depletion region on the side wall might be a dominator factor for the relaxation time of carrier recombination.
Radial breathing oscillation of 2-D arrayed GaN nanorods was successfully excited and identified in rods with different diameters by using femtosecond transient reflectivity measurement. Through analyzing thus measured diameter dependent oscillation frequency, we discovered that modification of the mechanical property appeared in the 2-D arrayed piezoelectric GaN nanorods, fabricated on top of a bulk substrate, when the rod diameter was on the order of or less than 50 nm. Our measurement showed a much reduced elastic stiffness constant (C11) of 193±24 GPa in 35nm diameter nanorods, compared with the 365±2 GPa in bulk GaN. This size-reduction induced mechanical modification would be a critical factor to be considered for future sensing and energy applications. Our study also provides a new spectroscopic method to explore the size-reduction-induced softening effect through the measurement of the radial breathing oscillations. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:23:03Z (GMT). No. of bitstreams: 1 ntu-101-D94941007-1.pdf: 2638638 bytes, checksum: 40caf3c0bc819f5220488b0723236ab6 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 iii
ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Confined acoustic modes in the nanostructures 1 1.2 Femtosecond pump-probe technique 2 1.3 Motivation 3 1.4 Thesis structure 4 Reference 6 Chapter 2 Confined acoustic modes in the 2-D arrayed GaN nanorods 10 2.1 2-D arrayed GaN nanorods 10 2.2 The generation of acoustic phonon modes in the periodic nanorods 11 2.2.1 Backward Brillouin Oscillations 12 2.2.2 Confined acoustic modes in the cylindrical nanorods 14 2.2.3 Surface acoustic waves for 2-D arrayed GaN nanorods 17 2.3 The measurement of stiffness constant in 2-D arrayed GaN nanorods 18 Reference 20 Chapter 3 The Process of 2-D arrayed GaN nanorods 24 3.1 Nano fabrication process 24 3.1.1 E-Beam lithography 25 3.1.2 Chemical and physical etching 28 3.2 The geometry of the fabricated GaN nanorods 29 Reference 33 Chapter 4 Pump-probe transient reflection measurement 34 4.1 Experimental results 34 4.2 The dependence of period and aspect ratio 44 4.3 The diameter dependence of breathing mode oscillation 45 4.4 The diameter dependence of carrier relaxation time 50 Reference 54 Chapter 5 Summary 57 Appendix I 58 Appendix II 60 | |
| dc.language.iso | en | |
| dc.subject | 彈性係數 | zh_TW |
| dc.subject | 飛秒雷射 | zh_TW |
| dc.subject | 氮化鎵奈米柱 | zh_TW |
| dc.subject | GaN nanorod | en |
| dc.subject | Femtosecond laser | en |
| dc.subject | elastic stiffness contant | en |
| dc.title | 飛秒激發二維陣列氮化鎵奈米柱之徑向呼吸模態 | zh_TW |
| dc.title | Femtosecond excitation of radial breathing mode in 2-D arrayed GaN nanorods | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳政忠,張玉明,周必泰,盧廷昌 | |
| dc.subject.keyword | 氮化鎵奈米柱,飛秒雷射,彈性係數, | zh_TW |
| dc.subject.keyword | GaN nanorod,Femtosecond laser,elastic stiffness contant, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
