請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63913
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張銘顯 | |
dc.contributor.author | Chun-Chia Chen | en |
dc.contributor.author | 陳俊嘉 | zh_TW |
dc.date.accessioned | 2021-06-16T17:22:53Z | - |
dc.date.available | 2012-08-19 | |
dc.date.copyright | 2012-08-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-16 | |
dc.identifier.citation | [1] J. F. Allen and A. D. Misener. Flow of liquid helium ii. Nature, 141:643–644, 1938.
[2] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cor- nell. Observation of bose-einstein condensation in a dilute atomic vapor. Science, 269(5221):198–201, 1995. [3] K.J. Arnold and M.D. Barrett. All-optical bose–einstein condensation in a 1.06um dipole trap. Optics Communications, 284(13):3288 – 3291, 2011. [4] M. D. Barrett, J. A. Sauer, and M. S. Chapman. All-optical formation of an atomic bose-einstein condensate. Phys. Rev. Lett., 87:010404, Jun 2001. [5] S. Bose. Z. Phys, 26:178, 1924. [6] J. Catani, P. Maioli, L. De Sarlo, F. Minardi, and M. Inguscio. Intense slow beams of bosonic potassium isotopes. Phys. Rev. A, 73:033415, Mar 2006. [7] Ming-Shien Chang, Qishu Qin, Wenxian Zhang, Li You, and Michael S. Chapman. Coherent spinor dynamics in a spin-1 bose condensate. Nat Phys, 1:1745–2473, November 2005. [8] Claude N. Cohen-Tannoudji and William D. Phillips. New mechanisms for laser cooling. Physics Today, 43(10):33–40, 1990. [9] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle. Bose-einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75:3969–3973, Nov 1995. [10] K. B. Davis, M. O. Mewes, and W. Ketterle. An analytical model for evapora- tive cooling of atoms. Applied Physics B: Lasers and Optics, 60:155–159, 1995. 10.1007/BF01135857. [11] K. Dieckmann, R. J. C. Spreeuw, M. Weidemu ̈ller, and J. T. M. Walraven. Two- dimensional magneto-optical trap as a source of slow atoms. Phys. Rev. A, 58:3891– 3895, Nov 1998. [25] C. J. Myatt, N. R. Newbury, R. W. Ghrist, S. Loutzenhiser, and C. E. Wieman. Multiply loaded magneto-optical trap. Opt. Lett., 21(4):290–292, Feb 1996. [26] Jaime Ramirez-Serrano, Nan Yu, James M. Kohel, James R. Kellogg, and Lute Maleki. Multistage two-dimensional magneto-optical trap as a compact cold atom beam source. Opt. Lett., 31(6):682–684, Mar 2006. [27] F Reif. Fundamentals of Statistical and Thermal Physics. Springer, 2008. [28] C. A. Stan and W. Ketterle. Multiple species atom source for laser-cooling experi- ments. Review of Scientific Instruments, 76(6):063113, 2005. [29] Daniel A. Steck. Rubidium 87 D Line Data,. Springer, 2008. [30] SStamper-KurnDMMiesnerH.-J.ChikkaturAPKetterleWStenger,JInouye.Spin domains in ground-state bose-einstein condensates. Nature, 396:345–348, Jul 1998. [31] S.-W.Su,C.-H.Hsueh,I.-K.Liu,T.-L.Horng,Y.-C.Tsai,S.-C.Gou,andW.M.Liu. Spontaneous crystallization of skyrmions and fractional vortices in fast-rotating and rapidly quenched spin-1 bose-einstein condensates. Phys. Rev. A, 84:023601, Aug 2011. [32] K. M. R. van der Stam, E. D. van Ooijen, R. Meppelink, J. M. Vogels, and P. van der Straten. Large atom number bose-einstein condensate of sodium. Review of Scien- tific Instruments, 78(1):013102, 2007. [33] Thad Walker and Paul Feng. Measurements of collisions between laser-cooled atoms. 34:125 – 170, 1994. [34] Thad Walker, David Sesko, and Carl Wieman. Collective behavior of optically trapped neutral atoms. Phys. Rev. Lett., 64:408–411, Jan 1990. [35] David S. Weiss, Erling Riis, Yaakov Shevy, P. Jeffrey Ungar, and Steven Chu. Op- tical molasses and multilevel atoms: experiment. J. Opt. Soc. Am. B, 6(11):2072– 2083, Nov 1989. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63913 | - |
dc.description.abstract | 本實驗完成全光式玻色–愛因斯坦凝結實驗之前期架設。實驗部 份,完成磁光阱(MOT)與光阱(ODT)之架設,我們分析並優化實驗條 件。我們以磁光阱捕捉3 × 107個原子,並降溫至40 μK。我們將磁光阱 所捕捉的冷原子團進一步載入光阱,目前已成功載入1 × 106原子,並 進行強迫蒸發致冷。優化蒸發致冷的初始條件以及效率,目前相空間 密度已達0.1,阱內剩餘原子數為2 × 104。 | zh_TW |
dc.description.abstract | The goal of this experiment is to realize the rapid formation of Rubidium Bose-Einstein Condensates (BEC) in a dipole trap. We completed the experi- ment setup, including a vapor load magneto-optical trap (MOT) and a crossed dipole trap. We first analyzed and optimized the MOT parameters. We then loaded cold atoms into the crossed dipole trap. With 3×107 atoms cooled to 40 μK in the MOT, we transferred 106 atoms into the crossed dipole trap. We the proceeded with forced evaporative cooling. We optimized the evaporation trajectory, and we achieved a final phase space density of 0.1, with 2 × 104 atoms remained in the trap. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:22:53Z (GMT). No. of bitstreams: 1 ntu-101-R98222018-1.pdf: 6136541 bytes, checksum: b9df8e9f972c2ca3a0832082900b64c0 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract iii 1 序論 1 1 1.1 簡介玻色–愛因斯坦凝聚現象....................... 1 1.2 相空間密度(Phasespacedensity)之考量 ................. 2 1.3 自旋自由度(Spindegreeoffreedom)之考量 ............... 3 2 玻色凝結實驗之原理與技術 5 2.1 雷射冷卻(LaserCooling)原理....................... 5 2.2 磁光阱(Magneto-OpticalTrap,MOT) ................... 7 2.2.1 冷卻極限(Coolinglimits)..................... 7 2.3 蒸發冷卻(EvaporativeCooling) ...................... 8 2.3.1 截斷係數(truncationparameter).................. 9 2.3.2 蒸發冷卻模型之冪次關係(Evaporative Cooling—Scaling Law) . 9 2.4 光偶極阱(OpticalDipoleTrap,ODT) ................... 10 2.4.1 Far-offresonancetrap(FORT)................... 11 2.4.2 光偶極阱之空間分布(ProfileofODT) .............. 12 3 實驗架設 15 3.1 實驗架設.................................. 15 3.2 超高真空系統 ............................... 15 3.3 外腔雷射(ExternalCavityDiodeLaser).................. 17 3.3.1 銣原子簡介 ............................ 17 3.3.2 二極體雷射(Diodelaser)...................... 19 3.3.3 DiodeLaserstablization ...................... 20 3.3.1 Acousto- Optic Deflector Modulator (AOM). . . . . . . . . . . 20 3.4 磁場線圈.................................. 25 3.4.1 磁光阱線圈設計與量測...................... 25 3.4.2 磁場開關.............................. 27 3.5 量測物理量................................. 27 3.5.1 吸收影像法(AbsorptionImaging)................. 28 3.5.2 螢光影像法(FluorescenceImaging)................ 29 3.5.3 成像方式比較(Imagingissue)................... 29 3.5.4 原子數(Atomnumber)....................... 29 3.5.5 原子團溫度(Temperature)..................... 31 3.5.6 光阱(ODT)振蕩頻率與密度峰值(trap frequency and density) . . 32 3.5.7 相空間密度(PhasespaceDensity)................. 32 3.6 光阱光束架設(Dipolebeamsetup)..................... 32 3.7 光阱形式之討論 .............................. 33 3.7.1 偶極光阱參數 ........................... 35 3.8 儀器控制.................................. 36 4 實驗結果與討論 39 4.1 磁光阱(MagneticOpticalTrap) ...................... 39 4.1.1 磁光阱捕捉(MOTloading) .................... 39 4.2 光阱載入.................................. 43 4.2.1 次都卜勒冷卻(sub-Dopplercooling) ............... 43 4.2.2 光阱載入方式 ........................... 44 4.3 蒸發冷卻.................................. 45 4.3.1 光阱損失與加熱機制(Trap loss and trap heating). . . . . . . . 45 4.3.2 自由蒸發冷卻 ........................... 47 4.3.3 蒸發冷卻效率參數 ........................ 48 4.3.4 強制蒸發冷卻(Forced Evaporative Cooling) . . . . . . . . . . . 48 4.3.5 結論 ................................ 49 5 結論與展望 57 5.1 結論..................................... 57 5.2 展望..................................... 57 | |
dc.language.iso | zh-TW | |
dc.title | 全光學式玻色愛因斯坦凝結實驗之建構 | zh_TW |
dc.title | Toward All-optical Bose Einstein condensate | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 陳正弦 | |
dc.contributor.oralexamcommittee | 余怡德,韓殿君 | |
dc.subject.keyword | 玻色愛因斯坦凝結,磁光阱,光偶極阱,雷射冷卻,蒸發冷卻, | zh_TW |
dc.subject.keyword | BEC,MOT,optical dipole trap,laser cooling,evaporative cooling, | en |
dc.relation.page | 61 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-16 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 5.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。