Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63912Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳中明(Chung-Ming Chen) | |
| dc.contributor.author | Chao-Yu Huang | en |
| dc.contributor.author | 黃兆佑 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:22:51Z | - |
| dc.date.available | 2012-08-20 | |
| dc.date.copyright | 2012-08-20 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-16 | |
| dc.identifier.citation | 1. 中華民國公共衛生年報,行政院衛生署, 2010
2. C.D.C Leading Causes of Death (Data are for the U.S.) http://www.cdc.gov/nchs/fastats/lcod.htm 3. Zipes, D.P. and E. Braunwald, Braunwald's heart disease : a textbook of cardiovascular medicine. 7th ed2005, Philadelphia, Pa.: W.B. Saunders. xxi, 2183, 75 p. 4. Atherosclerosis: MedlinePlus Medical Encyclopedia Image. http://www.nlm.nih.gov/medlineplus/ency/imagepages/18050.htm 5. Enrico, B., et al., Coronary artery plaque formation at coronary CT angiography: morphological analysis and relationship to hemodynamics. European Radiology, 2009. 19(4): p. 837-844. 6. Siriapisith, T., et al., Effect of concentration of contrast medium on coronary CT angiography. J Med Assoc Thai, 2008. 91(3): p. 372-6. 7. 心絞痛(Angina)http://www.cna55.url.tw/%E5%BF%83%E7%B5%9E%E7%97%9B.htm 8. Cardiophile MD http://cardiophile.org/ 9. Cademartiri, F., et al., Intravenous contrast material administration at helical 16-detector row CT coronary angiography: Effect of iodine concentration on vascular attenuation. Radiology, 2005. 236(2): p. 661-665. 10. Schlosser, T., et al., Coronary artery calcium score: Influence of reconstruction interval at 16-detector row CT with retrospective electrocardiographic gating. Radiology, 2004. 233(2): p. 586-589. 11. 安生醫院&護理之家 http://blog.nownews.com/blog.php?bid=14211 12. Fotin, S.V. and A.P. Reeves, Segmentation of coronary arteries from CT angiography images - art. no. 651418. Medical Imaging 2007: Computer-Aided Diagnosis, Pts 1 and 2, 2007. 6514: p. 51418-51418. 13. Kirbas, C. and F. Quek, A review of vessel extraction techniques and algorithms. Acm Computing Surveys, 2004. 36(2): p. 81-121. 14. Fotin SV, Reeves AP, Cham MD, et al. Segmentation of coronary arteries from CT angiography images. Proc SPIE 2007; 6514 15. P. J. Yim, J. J. Cebral, R. M. Mullick, H. B. Marcos, P. L. Choyke, 'Vessel Surface Reconstruction With a Tublar Deformable Model', IEEE Transactions on .Medical Image Processing. vol. 20, pp. 1411-1421, 2001. 16. Nain, D., A. Yezzi, and G. Turk, Vessel segmentation using a shape driven flow. Medical Image Computing and Computer-Assisted Intervention - Miccai 2004, Pt 1, Proceedings, 2004. 3216: p. 51-59. 17. H. Tek, Y. Zheng, M. A. Gulsun, and G. Funka-Lea, “An Automatic System For Segmenting Coronary Arteries from CTA,”, MICCAI-CVII 2011, pp. 47-54, 2011 18. Yang, Y., A. Tannenbaum, and D. Giddens, Knowledge-based 3D segmentation and reconstruction of coronary arteries using CT images. Proceedings of the 26th Annual International Conference of the Ieee Engineering in Medicine and Biology Society, Vols 1-7, 2004. 26: p. 1664-1666. 19. H. Shikata, G. McLennan, E. A. Hoffman, and M. Sonka, “Segmentation of pulmonary vascular tree from thoracic 3D CT Images,” International Journal of Biomedical Imaging, vol. 2009 20. T. Brox and J. Weickert, “Level set segmentation with multiple regions”, IEEE Transactions on Image Processing, vol. 15, no. 10, pp.3213-3218, 2006 21. W. K. Pratt, Digital Image Processing 4th Edition, John Wiley & Sons, Inc., Los Altos, California, 2007 22. Wang, L., et al., Active contours driven by local Gaussian distribution fitting energy. Signal Processing, 2009. 89(12): p. 2435-2447. 23. Y. Yang, A. Tannenbaum, D. Giddens, and A. Stillman, “Automatic Segmentation of Coronart Arteries using Bayesian Driven Implict Surfaces,” 4th IEEE International Symposium on Biomedical Imaging (ISBI), pp.189-192, 2007 24. Y. Wang, and P. Liatsis, “An Automatic Method for Segmentation of Coronary Arteries X-ray in Coronary CT Imaging,” IEEE Computer Society Developments in E-systems Engineering 2010 25. Wesarg, S., M.F. Khan, and E.A. Firle, Localizing calcifications in cardiac CT data sets using a new vessel segmentation approach. Journal of Digital Imaging, 2006. 19(3): p. 249-257. 26. H. Shikata, G. McLennan, E. A. Hoffman, and M. Sonka, “Segmentation of pulmonary vascular tree from thoracic 3D CT Images,” International Journal of Biomedical Imaging, vol. 2009 27. T. Brox and J. Weickert, “Level set segmentation with multiple regions”, IEEE Transactions on Image Processing, vol. 15, no. 10, pp.3213-3218, 2006 28. W. K. Pratt, Digital Image Processing 4th Edition, John Wiley & Sons, Inc., Los Altos, California, 2007 29. Y. Yang, A. Tannenbaum, D. Giddens, and A. Stillman, “Automatic Segmentation of Coronart Arteries using Bayesian Driven Implict Surfaces,” 4th IEEE International Symposium on Biomedical Imaging (ISBI), pp.189-192, 2007 30. Y. Wang, and P. Liatsis, “An Automatic Method for Segmentation of Coronary Arteries X-ray in Coronary CT Imaging,” IEEE Computer Society Developments in E-systems Engineering 2010 31. Crum, W.R., T. Hartkens, and D.L.G. Hill, Non-rigid image registration: theory and practice. British Journal of Radiology, 2004. 77: p. S140-S153. 32. Pluim, J.P.W., J.B.A. Maintz, and M.A. Viergever, Mutual-information-based registration of medical images: A survey. Ieee Transactions on Medical Imaging, 2003. 22(8): p. 986-1004. 33. Dirk Smeets_, Pieter Bruyninckx, Johannes Keustermans, Dirk Vandermeulen, and Paul Suetens : Robust Matching of 3D Lung Vessel Trees. MICCAI 2010 workshop proceedings of the third international workshop on pulmonary image analysis pages:61-70 34. Wu, C.H. and C. Agam, Vessel-based registration with application to nodule detection in thoracic CT scans - art. no. 614432. Medical Imaging 2006: Image Processing, Pts 1-3, 2006. 6144: p. 14432-14432. 35. Prado, M.P.M.F., N.D.A. Mascarenhas, and P.M.A. Marques, Analysis of medical image sequences by recursive polynomial registration. Xiv Brazilian Symposium on Computer Graphics and Image Processing, Proceedings, 2001: p. 258-265. 36. Chan, T. and L. Vese, An active contour model without edges. Scale-Space Theories in Computer Vision, 1999. 1682: p. 141-151. 37. Wu, J., et al., Automated Coronary Calcium Scoring Using Predictive Active Contour Segmentation. 2009 Ieee Nuclear Science Symposium Conference Record, Vols 1-5, 2009: p. 3970-3974. 38. Chien-Hsuan Wang, 'Automatic Segmentation of Coronary Vessel and Plaque Detection Algorithm in CT Image', NTU Biomedical Engineering Master Thesis,2010 39. Pavlidis, T. and Y.T. Liow, Integrating Region Growing and Edge-Detection. Ieee Transactions on Pattern Analysis and Machine Intelligence, 1990. 12(3): p. 225-233. 40. Chang, T. and C.C.J. Kuo, Texture analysis and classification with tree-structured wavelet transform. Ieee Transactions on Image Processing, 1993. 2(4): p. 429-441. 41. Unser, M., Texture Classification and Segmentation Using Wavelet Frames. Ieee Transactions on Image Processing, 1995. 4(11): p. 1549-1560. 42. H.D. Cheng, Y. Guo, A new neutrosophic appraoch to image thresholding, New Math. Nat. Comput. 4 (3) (2008) 291–308 43. Chien-Hsuan Wang, ” Automatic Segmentation of Coronary Vessel and Plaque Detection Algorithm in CT Image.” NTU Biomedical Engineering Master Thesis,2011 44. Becker, C.R., et al., Ex vivo coronary atherosclerotic plaque characterization with multi-detector-row CT. European Radiology, 2003. 13(9): p. 2094-2098. 45. Maffei, E., et al., Classification of noncalcified coronary atherosclerotic plaque components on CT coronary angiography: impact of vascular attenuation and density thresholds. Radiologia Medica, 2012. 117(2): p. 230-241. 46. Dey, D., et al., Automated 3-dimensional quantification of noncalcified and calcified coronary plaque from coronary CT angiography. J Cardiovasc Comput Tomogr, 2009. 3(6): p. 372-82. 47. Friman, O., et al., Multiple hypothesis template tracking of small 3D vessel structures. Med Image Anal, 2010. 14(2): p. 160-71. 48. http://www.miccai2012.org/ | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63912 | - |
| dc.description.abstract | 近年來,心血管疾病在國人十大死因中高居第二名,而冠狀動脈疾病又為心血管疾病之首,故冠狀動脈疾病的診斷及治療成為重要的課題。而多切片電腦斷層掃描(MSCT)是目前非侵入性的冠狀動脈疾病影像學檢查中,最為重要且有效的影像方法之一。然而,目前市面上雖有商用分析軟體處理冠狀動脈血管樹(Vessel tree)以及斑塊的定量分析與危險性分析,但提供的資訊相對有限。本研究著重於發展一套自動化的工具降低使用者操作過程,強化整體冠狀動脈分支的準確率,並分析血管中斑塊的資訊,提供完善的資訊幫助醫師診斷及治療。
本篇方法主要分成三大步驟:第一步驟為血管分割,是利用加入機率值概念之區域成長法(region growing)對每一切面進行主動脈的成長,最後得到初步的冠狀動脈走向當做血管的初始輪廓(initial contour),再套用本論文提供的小波轉換以及Neutrosophic set方法偵測細部的血管分支,得到最終多切片電腦斷層掃描冠狀動脈影像之冠狀動脈輪廓,以便進行斑塊分割與斑塊危險性之評估與預測。 第二步驟為鈣化斑塊分割與對位,由於顯影劑會造成鈣化斑塊在影像上的誤判,所以醫師常以不含顯影劑影像之鈣化斑塊當做判斷的依據。故本步驟之目的是希望藉由對位的方式,找出含顯影劑影像之鈣化斑塊在不含顯影劑影像中相對應的鈣化斑塊,進而得知正確的鈣化斑塊位置及大小,以便進行後續之危險性評估。在分割含顯影劑影像之鈣化斑塊方面,由於上述之問題,故使用門檻值(threshold)大略分割含顯影劑影像中之鈣化斑塊。另一方面,因為不含顯影劑影像之對比度高,所以利用門檻值方法即可輕易地分割出鈣化斑塊,最後計算兩組影像之斑塊的質心,並求解斑塊與斑塊間的距離比,利用此資訊進行對位。 第三步驟為斑塊定量分析,此步驟依照斑塊種類可分成兩種評估方式。首先利用Agatston score判讀鈣化斑塊之危險程度。另一方面,為了計算非鈣化斑塊所造成的狹窄程度,首先必須求得血管橫切面(Cross section),再從中分割出非鈣化斑塊,最後在用臨床上常用的方式,也就是以非鈣化斑塊最長直徑與血管直徑之比值當作依據。 本研究之影像皆由台大醫院影像醫學部提供之多切面胸腔電腦斷層影像(MSCT),並採用三十組電腦斷層掃描影像來進行實驗,結果顯示本研究可以重建出各種不同管徑的冠狀動脈分支,且對位結果也相當準確,而斑塊定量分析結果也與醫生之結果符合。 | zh_TW |
| dc.description.abstract | Atherosclerosis, the leading cause of heart disease, has been highly ranked as the second major cause of death in Taiwan for the past decades. The diagnosis and treatment of coronary artery disease have become the most important issue. Multi-slice computed tomography (MSCT) is the conventional strategy for the diagnosis of atherosclerosis. However, commercial software provides very limited information for quantitative analysis of both calcified and non-calcified plaques. This research focuses on developing automated system, improving the precision of coronary artery branch detection, and providing comprehensive information of plaques. The investigation consists of the following steps.
First of all, region growing and discrete wavelet transform are applied to adequately segment coronary arteries. The modified region growing is used to initialize the segmentation of coronary arteries. According to this initial segmentation, discrete wavelet transform with neutrosophic set detects tiny branches of coronary arteries. The outcome of this procedure will contribute to further analysis of plaques. Segmentation and registration of calcified plaques are the second step in our investigation. For the disturbance of contrast agent by the calcified plaques, physicians are used to observe the calcified plaques in computed tomography without contrast agent. Therefore, the registration scheme is utilized to find the corresponding calcified plaques between two types of computed tomography. It will help obtain the characteristics of calcified plaques. Different thresholds are set to detect the plaques in images with and without contrast agent. The distance between two centroids of neighboring plaques are analyzed during the registration. The third step is the plaque quantification and plaques with different ingredients are individually quantified. Agatston score is utilized to analyze calcified plaques. On the other hand, cross sections are evaluated to segment con-calcified plaques and investigate the stenosis caused by non-calcified plaques. Accordingly, we compute the ratio of plaque diameters to vessel diameter and stenosis area to area of normal lumen. Our raw MSCT images were collected by National Taiwan University Hospital Department of Medical Imaging. We developed a fast automated algorithm for the segmentation of coronary arteries, registration of CP and quantification of NCP and CP from MSCT. The experimental results demonstrate that the proposed approach has good performance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:22:51Z (GMT). No. of bitstreams: 1 ntu-101-R99548054-1.pdf: 13059123 bytes, checksum: 0712144710b802ca00448c156016f93a (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract III 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 6 1.3文獻探討 8 1.3.1血管樹分割 9 1.3.2 斑塊對位 10 1.3.3 斑塊定量分析 11 1.4研究架構 12 第二章 研究方法與材料 13 2.1研究材料 13 2.2演算法流程 13 2.2.1血管分割 14 2.2.2鈣化斑塊分割及對位 15 2.2.3斑塊定量分析: 16 2.3血管分割 17 2.3.1影像前處理 17 2.3.2血管邊緣分割 22 2.4鈣化斑塊分割與對位 28 2.4.1含顯影劑影像之鈣化斑塊分割流程 29 2.4.2 鈣化斑塊對位 33 2.5 斑塊定量分析及狹心症輔助診斷 36 第三章 結果與討論 43 3.1 冠狀動脈血管分割結果 43 3.2 斑塊分割與對位結果 50 3.3 斑塊定量分析 54 3.3.1 鈣化斑塊危險程度分析 54 3.3.2 非鈣化斑塊危險程度分析 56 第四章 結論 71 Reference 72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 對位 | zh_TW |
| dc.subject | 冠狀動脈疾病 | zh_TW |
| dc.subject | 冠狀動脈追蹤 | zh_TW |
| dc.subject | 影像分割 | zh_TW |
| dc.subject | 斑塊 | zh_TW |
| dc.subject | 區域成長法 | zh_TW |
| dc.subject | Registration | en |
| dc.subject | Coronary artery tracking | en |
| dc.subject | Region growing | en |
| dc.subject | Plaques | en |
| dc.subject | Image segmentation | en |
| dc.subject | Coronary artery disease | en |
| dc.title | 含顯影劑與不含顯影劑三維電腦斷層影像之
冠狀動脈斑塊比較分析:血管重建與斑塊對位 | zh_TW |
| dc.title | The analysis of coronary arteries plaque in 3D CTA with and without contrast agent : vessel reconstruction and plaque registration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王宗道,李文正,王靖維 | |
| dc.subject.keyword | 冠狀動脈疾病,冠狀動脈追蹤,區域成長法,斑塊,影像分割,對位, | zh_TW |
| dc.subject.keyword | Coronary artery disease,Coronary artery tracking,Region growing,Plaques,Image segmentation,Registration, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| Appears in Collections: | 醫學工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-101-1.pdf Restricted Access | 12.75 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
