請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63911
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 管中閔 | |
dc.contributor.author | Hsuan Fu | en |
dc.contributor.author | 傅萱 | zh_TW |
dc.date.accessioned | 2021-06-16T17:22:49Z | - |
dc.date.available | 2013-08-28 | |
dc.date.copyright | 2012-08-28 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-16 | |
dc.identifier.citation | 1. Altman, E.I. (1968), Financial ratios, discriminant analysis and the prediction of corporate
bankruptcy, The Journal of Finance, Vol. 23, No. 4, 589 – 609. 2. Azizpour, S., and B. Giesecke (2008), Self-Exciting Corporate Defaults: Contagion vs. Frailty, working paper, Standford University. 3. Bharath, S.T., and T. Shumway (2008), Forecasting Default with the Merton Distance to Default Model, The Review of Financial Studies, Vol. 21, No. 3, 1339 – 1369. 4. Chava, S., and R.A. Jarrow (2004), Bankruptcy Prediction with Industry Effects, Review of Finance, Vol. 8, No. 4, 537 – 569. 5. Cox D.R. (1972), Regression Models and Life-Tables, Journal of the Royal Statistical Society Series B (Methodological) , Vol. 34, No. 2, 187 – 220. 6. Das, S.R., D. Duffie, N. Kapadia, and L. Saita (2007), Common Failing: How Corporate Defaults Are Correlated, Journal of Finance, Vol. 62, No. 1, 93 – 117. 7. Duffie, D., L. Saita, and K. Wang (2007), Multi-period corporate default prediction with stochastic covariates, Journal of Financial Economics, 635 – 665. 8. Duffie, D., A. Eckner, G. Horel, L. Saita (2009), Frailty Correlated Default, The Journal of Finance, Vol. 64, 2089 – 2123. 9. Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani (2004), Least Angle Regression, The annals of Statistics, Vol. 32, No. 2, 407 – 499. 10. Giesecke, K., and B. Kim (2009), Systemic Risk: What Defaults Are Telling Us? working paper, Standard University. 11. Golub, G.H. and C. Reinsch, Singular value decomposition and least squares solutions, Numerische Mathematik, Vol. 14, No. 5, 403 – 420. 12. Gorman, J.W. and R.J. Toman (1966), Selection of Variables for Fitting Equations to Data, Technometrics, Vol. 8, No. 1, 27 – 51. 13. Greenland, S. (1989), Modeling and variable selection in epidemiologic analysis, American Journal of Public Health, Vol. 79, No. 3, 340 – 349. 14. Hastie, T., R. Tibshirani, and J. Friedman (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics, Second Edition. 15. Helland, I.S. (1988), On the structure of partial least squares regression, Communications in Statistics - Simulation and Computation, Vol. 17, No. 2, 581 – 607. 40 16. Helland, K., H.E. Bernsten, D.S. Borgen, and H.A. Martens (1991), Recursive Algorithm for Partial Least Squares Regression, Chemometrics and Intelligent Laboratory System, Vol. 14, 129 – 137. 17. Hillegeist, S.A., E.K. Keating, D.P. Cram, and K.G. Lundstedt (2004), Assessing the Probability of Bankruptcy, Review of Accounting Studies, Vol. 9, 5 – 34. 18. Hocking, R.R. and R.N. Leslie (1967), Selection of the Best Subset in Regression Analysis, Technometrics, Vol. 9, No. 4, 531 – 540. 19. Hoerl, A.E. and R.W. Kennard (1970), Ridge regression: Biased Estimation for Nonorthogonal problem, Technometrics, Vol. 12, No. 1, 55 – 67. 20. Koopman, S.J., A. Lucas, B. Schwaab (2011), Modeling Frailty-Correlated Defaults Using Many Macroeconomic Covariates, Journal of Econometrics, 162, 312 – 325. 21. Lando D., and M.S. Nielsen (2010), Correlation in corporate defaults: Contagion or conditional independence?, Journal of Financial Intermediation, 19, 355 – 372. 22. Lane, W.R., S.W. Looney, and J.W. Wansley (1986), An Application of the Cox Proportional Hazards Model to Bank Failure, Journal of Banking and Finance, 10, 511 – 531. 23. Mallows, C.L. (1964), Choosing variables in a linear regression: a graphical aid. Presented at the Central Regional Meeting of the Institute of Mathematical Statistics, Manhattan, Kansas, May 7 – 9. 24. Mallows, C.L. (1966), Choosing a subset regression. Presented at the Annual Meeting of the American Statistical Association, Los Angeles, August 15 – 19, 1966. 25. Massy, W.F. (1965), Principal Components Regression in Exploratory Statistical Research, Journal of the American Statistical Association, Vol. 60, No. 309, 234 – 256. 26. Martens, H., and T. Naes (1989), Multivariate Calibration, John Wiley and Sons, 116 – 165. 27. Martens, H.A., and P. Dardenne (1998), Validation and verification of regression in small data sets, Chemometrics and Intelligent Laboratory Systems, 44, 99 – 121. 28. Merton, R.C. (1974), On the Pricing of Corporate Debt: The Risk Structure of Interest Rates, Journal of Finance, Vol. 29, No. 2, 449 – 470. 29. Ohlson, J.A. (1980), Financial Ratios and the Probabilistic Prediction of Bankruptcy, Journal of Accounting Research, Vol. 18, No. 1, 109 – 131. 41 30. Shumway, T. (2001), Forecasting Bankruptcy More Accurately: A Simple Hazard Model, Journal of Business, Vol. 74, No. 1, 101 – 124. 31. Tibshirani, R. (1996), Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical Society, B, Vol. 58, No. 1, 267 – 288. 32. Van Der Maaten, L.J.P., E.O. Postma, and H.J. van den Herik (2008), Dimensionality reduction: A comparative review, Published online. 33. Vinzi, V.E., W.W. Chin, J. Henseler, and H. Wang (2010), Handbook of Partial Least Squares Concepts, Methods and Applications, Springer Handbooks of Computational Statistics. 34. Wold, H. (1966), Nonlinear Estimation by Iterative Least Squares Procedures, Research papers in statistics, Wiley New York. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63911 | - |
dc.description.abstract | For discovering the useful variables in predicting the occurrence of firm’s default event, we examine 8 variable selection methods, including best subset selection, stepwise regression, stagewise regression, ridge regression (RR), the lasso, least angle regressions (LAR), principle component regression (PCR), and partial least squares regression (PLS). According to our simulation results, the stagewise regression, the lasso, and LAR, among all the variable selection methods, have stable in-sample fitting ability and robust performance in terms of root mean square error (RMSE). As a representative of the other 5 methods, PCR has similar result as the best 3 methods in our empirical analysis. Nevertheless, this thesis recommends the best 3 methods since the computation is less time-consuming and the results are more intuitive to interpret. Moreover, we find the combination of selected variables is time-dependent. Therefore, the incorporation of the frailty factor is inevitable to construct the default prediction model in the future studies. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:22:49Z (GMT). No. of bitstreams: 1 ntu-101-R99723039-1.pdf: 457138 bytes, checksum: b5a1d01f9a5cbf376b0a0786ec8b45d3 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | Contents
1 Introduction 3 2 Literature Review 5 3 The Cox Proportional Hazards Model 6 3.1 Estimation under Continuous Time . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Estimation under Discrete Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3 Estimate Frailty with latent factor . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Methodology 10 4.1 Best Subset Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2 Stepwise Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3 Incremental Forward-Stagewise Regression . . . . . . . . . . . . . . . . . . . . . . 13 4.4 Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.5 The Least Absolute Shrinkage and Selection Operator . . . . . . . . . . . . . . . 16 4.6 Least Angle Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.7 Principle Component Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.8 Partial Least Squares Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.9 Cross-Validation for Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Simulation Study 24 5.1 Simulation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6 Empirical Study 28 6.1 Data and variable selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.2 Empirical evidence and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7 Conclusion 31 8 Appendix 38 | |
dc.language.iso | en | |
dc.title | 違約預測模型中變數選擇方法之應用 | zh_TW |
dc.title | Variable Selection Methods for Default Prediction Model | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 胡星陽,何耕宇 | |
dc.subject.keyword | 維度精簡,破產預測,最佳子集篩選,脊迴歸,逐步回歸,逐段回歸,最小絕對壓縮挑選機制,最小角度迴歸,主成分迴歸,偏最小平方法,考克斯比例風險模型, | zh_TW |
dc.subject.keyword | dimension reduction,bankruptcy prediction,best subset selection,ridge regression,stepwise regression,stagewise regression,lasso,least angle regressions,principle component regression,partial least squares,Cox proportional hazard model., | en |
dc.relation.page | 44 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-16 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 財務金融學研究所 | zh_TW |
顯示於系所單位: | 財務金融學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 446.42 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。