Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63911
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管中閔
dc.contributor.authorHsuan Fuen
dc.contributor.author傅萱zh_TW
dc.date.accessioned2021-06-16T17:22:49Z-
dc.date.available2013-08-28
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation1. Altman, E.I. (1968), Financial ratios, discriminant analysis and the prediction of corporate
bankruptcy, The Journal of Finance, Vol. 23, No. 4, 589 – 609.
2. Azizpour, S., and B. Giesecke (2008), Self-Exciting Corporate Defaults: Contagion vs.
Frailty, working paper, Standford University.
3. Bharath, S.T., and T. Shumway (2008), Forecasting Default with the Merton Distance to
Default Model, The Review of Financial Studies, Vol. 21, No. 3, 1339 – 1369.
4. Chava, S., and R.A. Jarrow (2004), Bankruptcy Prediction with Industry Effects, Review
of Finance, Vol. 8, No. 4, 537 – 569.
5. Cox D.R. (1972), Regression Models and Life-Tables, Journal of the Royal Statistical
Society Series B (Methodological) , Vol. 34, No. 2, 187 – 220.
6. Das, S.R., D. Duffie, N. Kapadia, and L. Saita (2007), Common Failing: How Corporate
Defaults Are Correlated, Journal of Finance, Vol. 62, No. 1, 93 – 117.
7. Duffie, D., L. Saita, and K. Wang (2007), Multi-period corporate default prediction with
stochastic covariates, Journal of Financial Economics, 635 – 665.
8. Duffie, D., A. Eckner, G. Horel, L. Saita (2009), Frailty Correlated Default, The Journal
of Finance, Vol. 64, 2089 – 2123.
9. Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani (2004), Least Angle Regression, The
annals of Statistics, Vol. 32, No. 2, 407 – 499.
10. Giesecke, K., and B. Kim (2009), Systemic Risk: What Defaults Are Telling Us? working
paper, Standard University.
11. Golub, G.H. and C. Reinsch, Singular value decomposition and least squares solutions,
Numerische Mathematik, Vol. 14, No. 5, 403 – 420.
12. Gorman, J.W. and R.J. Toman (1966), Selection of Variables for Fitting Equations to
Data, Technometrics, Vol. 8, No. 1, 27 – 51.
13. Greenland, S. (1989), Modeling and variable selection in epidemiologic analysis, American
Journal of Public Health, Vol. 79, No. 3, 340 – 349.
14. Hastie, T., R. Tibshirani, and J. Friedman (2009), The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Springer Series in Statistics, Second Edition.
15. Helland, I.S. (1988), On the structure of partial least squares regression, Communications
in Statistics - Simulation and Computation, Vol. 17, No. 2, 581 – 607.
40
16. Helland, K., H.E. Bernsten, D.S. Borgen, and H.A. Martens (1991), Recursive Algorithm
for Partial Least Squares Regression, Chemometrics and Intelligent Laboratory System,
Vol. 14, 129 – 137.
17. Hillegeist, S.A., E.K. Keating, D.P. Cram, and K.G. Lundstedt (2004), Assessing the
Probability of Bankruptcy, Review of Accounting Studies, Vol. 9, 5 – 34.
18. Hocking, R.R. and R.N. Leslie (1967), Selection of the Best Subset in Regression Analysis,
Technometrics, Vol. 9, No. 4, 531 – 540.
19. Hoerl, A.E. and R.W. Kennard (1970), Ridge regression: Biased Estimation for Nonorthogonal
problem, Technometrics, Vol. 12, No. 1, 55 – 67.
20. Koopman, S.J., A. Lucas, B. Schwaab (2011), Modeling Frailty-Correlated Defaults Using
Many Macroeconomic Covariates, Journal of Econometrics, 162, 312 – 325.
21. Lando D., and M.S. Nielsen (2010), Correlation in corporate defaults: Contagion or conditional
independence?, Journal of Financial Intermediation, 19, 355 – 372.
22. Lane, W.R., S.W. Looney, and J.W. Wansley (1986), An Application of the Cox Proportional
Hazards Model to Bank Failure, Journal of Banking and Finance, 10, 511 –
531.
23. Mallows, C.L. (1964), Choosing variables in a linear regression: a graphical aid. Presented
at the Central Regional Meeting of the Institute of Mathematical Statistics, Manhattan,
Kansas, May 7 – 9.
24. Mallows, C.L. (1966), Choosing a subset regression. Presented at the Annual Meeting of
the American Statistical Association, Los Angeles, August 15 – 19, 1966.
25. Massy, W.F. (1965), Principal Components Regression in Exploratory Statistical Research,
Journal of the American Statistical Association, Vol. 60, No. 309, 234 – 256.
26. Martens, H., and T. Naes (1989), Multivariate Calibration, John Wiley and Sons, 116 –
165.
27. Martens, H.A., and P. Dardenne (1998), Validation and verification of regression in small
data sets, Chemometrics and Intelligent Laboratory Systems, 44, 99 – 121.
28. Merton, R.C. (1974), On the Pricing of Corporate Debt: The Risk Structure of Interest
Rates, Journal of Finance, Vol. 29, No. 2, 449 – 470.
29. Ohlson, J.A. (1980), Financial Ratios and the Probabilistic Prediction of Bankruptcy,
Journal of Accounting Research, Vol. 18, No. 1, 109 – 131.
41
30. Shumway, T. (2001), Forecasting Bankruptcy More Accurately: A Simple Hazard Model,
Journal of Business, Vol. 74, No. 1, 101 – 124.
31. Tibshirani, R. (1996), Regression Shrinkage and Selection via the Lasso, Journal of the
Royal Statistical Society, B, Vol. 58, No. 1, 267 – 288.
32. Van Der Maaten, L.J.P., E.O. Postma, and H.J. van den Herik (2008), Dimensionality
reduction: A comparative review, Published online.
33. Vinzi, V.E., W.W. Chin, J. Henseler, and H. Wang (2010), Handbook of Partial Least
Squares Concepts, Methods and Applications, Springer Handbooks of Computational Statistics.
34. Wold, H. (1966), Nonlinear Estimation by Iterative Least Squares Procedures, Research
papers in statistics, Wiley New York.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63911-
dc.description.abstractFor discovering the useful variables in predicting the occurrence of firm’s default event, we examine 8 variable selection methods, including best subset selection, stepwise regression, stagewise regression, ridge regression (RR), the lasso, least angle regressions (LAR), principle component regression (PCR), and partial least squares regression (PLS). According to our simulation results, the stagewise regression, the lasso, and LAR, among all the variable selection methods, have stable in-sample fitting ability and robust performance in terms of root mean square error (RMSE). As a representative of the other 5 methods, PCR has similar result as the best 3 methods in our empirical analysis. Nevertheless, this thesis recommends the best 3 methods since the computation is less time-consuming and the results are more intuitive to interpret. Moreover, we find the combination of selected variables is time-dependent. Therefore, the incorporation of the frailty factor is inevitable to construct the default prediction model in the future studies.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:22:49Z (GMT). No. of bitstreams: 1
ntu-101-R99723039-1.pdf: 457138 bytes, checksum: b5a1d01f9a5cbf376b0a0786ec8b45d3 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
1 Introduction 3
2 Literature Review 5
3 The Cox Proportional Hazards Model 6
3.1 Estimation under Continuous Time . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Estimation under Discrete Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Estimate Frailty with latent factor . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Methodology 10
4.1 Best Subset Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Stepwise Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Incremental Forward-Stagewise Regression . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 The Least Absolute Shrinkage and Selection Operator . . . . . . . . . . . . . . . 16
4.6 Least Angle Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7 Principle Component Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.8 Partial Least Squares Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.9 Cross-Validation for Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . 23
5 Simulation Study 24
5.1 Simulation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Empirical Study 28
6.1 Data and variable selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Empirical evidence and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7 Conclusion 31
8 Appendix 38
dc.language.isoen
dc.title違約預測模型中變數選擇方法之應用zh_TW
dc.titleVariable Selection Methods for Default Prediction Modelen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡星陽,何耕宇
dc.subject.keyword維度精簡,破產預測,最佳子集篩選,脊迴歸,逐步回歸,逐段回歸,最小絕對壓縮挑選機制,最小角度迴歸,主成分迴歸,偏最小平方法,考克斯比例風險模型,zh_TW
dc.subject.keyworddimension reduction,bankruptcy prediction,best subset selection,ridge regression,stepwise regression,stagewise regression,lasso,least angle regressions,principle component regression,partial least squares,Cox proportional hazard model.,en
dc.relation.page44
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
446.42 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved