Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63896
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顧家綺
dc.contributor.authorChe-Ming Chuangen
dc.contributor.author莊哲銘zh_TW
dc.date.accessioned2021-06-16T17:22:19Z-
dc.date.available2017-09-18
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citationAhmad, A., Sharif-Askari, E., Fawaz, L., and Menezes, J. (2000). Innate immune response of the human host to exposure with herpes simplex virus type 1: in vitro control of the virus infection by enhanced natural killer activity via interleukin-15 induction. J Virol 74, 7196-7203.
Ahmad, R., El Bassam, S., Cordeiro, P., and Menezes, J. (2008). Requirement of TLR2-mediated signaling for the induction of IL-15 gene expression in human monocytic cells by HSV-1. Blood 112, 2360-2368.
Allavena, P., Giardina, G., Bianchi, G., and Mantovani, A. (1997). IL-15 is chemotactic for natural killer cells and stimulates their adhesion to vascular endothelium. Journal of leukocyte biology 61, 729-735.
Ashkar, A.A., and Rosenthal, K.L. (2003). Interleukin-15 and natural killer and NKT cells play a critical role in innate protection against genital herpes simplex virus type 2 infection. J Virol 77, 10168-10171.
Bauer, D., Mrzyk, S., van Rooijen, N., Steuhl, K.P., and Heiligenhaus, A. (2000). Macrophage-depletion influences the course of murine HSV-1 keratitis. Current eye research 20, 45-53.
Bonneville, M., O'Brien, R.L., and Born, W.K. (2010). Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nature reviews. Immunology 10, 467-478.
Budagian, V., Bulanova, E., Paus, R., and Bulfone-Paus, S. (2006). IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine & growth factor reviews 17, 259-280.
Carroll, H.P., Paunovic, V., and Gadina, M. (2008). Signalling, inflammation and arthritis: Crossed signals: the role of interleukin-15 and -18 in autoimmunity. Rheumatology (Oxford) 47, 1269-1277.
Eidsmo, L., Allan, R., Caminschi, I., van Rooijen, N., Heath, W.R., and Carbone, F.R. (2009). Differential migration of epidermal and dermal dendritic cells during skin infection. J Immunol 182, 3165-3172.
Esclatine, A., Taddeo, B., and Roizman, B. (2004). The UL41 protein of herpes simplex virus mediates selective stabilization or degradation of cellular mRNAs. Proceedings of the National Academy of Sciences of the United States of America 101, 18165-18170.
Estess, P., Nandi, A., Mohamadzadeh, M., and Siegelman, M.H. (1999). Interleukin 15 Induces Endothelial Hyaluronan Expression in Vitro and Promotes Activated T Cell Extravasation through a Cd44-Dependent Pathway in Vivo. Journal of Experimental Medicine 190, 9-20.
Fawaz, L.M., Sharif-Askari, E., and Menezes, J. (1999). Up-regulation of NK cytotoxic activity via IL-15 induction by different viruses: a comparative study. J Immunol 163, 4473-4480.
Fehniger, T.A., and Caligiuri, M.A. (2001). Interleukin 15: biology and relevance to human disease. Blood 97, 14-32.
Fleming, T.J., Fleming, M.L., and Malek, T.R. (1993). Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J Immunol 151, 2399-2408.
Gill, N., Rosenthal, K.L., and Ashkar, A.A. (2005). NK and NKT cell-independent contribution of interleukin-15 to innate protection against mucosal viral infection. J Virol 79, 4470-4478.
Gruber, A.R., Fallmann, J., Kratochvill, F., Kovarik, P., and Hofacker, I.L. (2011). AREsite: a database for the comprehensive investigation of AU-rich elements. Nucleic acids research 39, D66-69.
Hamilton, T., Li, X., Novotny, M., Pavicic, P.G., Jr., Datta, S., Zhao, C., Hartupee, J., and Sun, D. (2012). Cell type- and stimulus-specific mechanisms for post-transcriptional control of neutrophil chemokine gene expression. Journal of leukocyte biology 91, 377-383.
Hamilton, T., Novotny, M., Pavicic, P.J., Jr., Herjan, T., Hartupee, J., Sun, D., Zhao, C., and Datta, S. (2010). Diversity in post-transcriptional control of neutrophil chemoattractant cytokine gene expression. Cytokine 52, 116-122.
Hao, S., and Baltimore, D. (2009). The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules. Nature immunology 10, 281-288.
Loser, K., Mehling, A., Apelt, J., Stander, S., Andres, P.G., Reinecker, H.C., Eing, B.R., Skryabin, B.V., Varga, G., Schwarz, T., and Beissert, S. (2004). Enhanced contact hypersensitivity and antiviral immune responses in vivo by keratinocyte-targeted overexpression of IL-15. European journal of immunology 34, 2022-2031.
Lucas, T., Waisman, A., Ranjan, R., Roes, J., Krieg, T., Muller, W., Roers, A., and Eming, S.A. (2010). Differential roles of macrophages in diverse phases of skin repair. J Immunol 184, 3964-3977.
Lynch, K.W. (2004). Consequences of regulated pre-mRNA splicing in the immune system. Nature reviews. Immunology 4, 931-940.
Manickan, E., and Rouse, B.T. (1995). Roles of different T-cell subsets in control of herpes simplex virus infection determined by using T-cell-deficient mouse-models. J Virol 69, 8178-8179.
Mohamadzadeh, M., Takashima, A., Dougherty, I., Knop, J., Bergstresser, P.R., and Cruz, P.D., Jr. (1995). Ultraviolet B radiation up-regulates the expression of IL-15 in human skin. J Immunol 155, 4492-4496.
Mossman, K.L., and Ashkar, A.A. (2005). Herpesviruses and the innate immune response. Viral immunology 18, 267-281.
Nathan, C. (2006). Neutrophils and immunity: challenges and opportunities. Nature reviews. Immunology 6, 173-182.
Ohteki, T. (2002). Critical Role for IL-15 in Innate Immunity Current Molecular Medicine 2, 371-380.
Olsen SK, O.N., Kishishita S, Kukimoto-Niino M, Murayama K, Uchiyama H, Toyama M, Terada T, Shirouzu M, Kanagawa O, Yokoyama S. (2007). Crystal Structure of the interleukin-15.interleukin-15 receptor alpha complex: insights into trans and cis presentation. The Journal of biological chemistry 282, 37191-37204.
Park, J.E., and Barbul, A. (2004). Understanding the role of immune regulation in wound healing. American journal of surgery 187, 11S-16S.
Patel, A.R., Romanelli, P., Roberts, B., and Kirsner, R.S. (2009). Herpes simplex virus: a histopathologic study of the depth of herpetic wounds. International journal of dermatology 48, 36-40.
Perera, L.P., Goldman, C.K., and Waldmann, T.A. (1999). IL-15 induces the expression of chemokines and their receptors in T lymphocytes. Journal of Immunology 162, 2606-2612.
Perera, P.Y., Lichy, J.H., Waldmann, T.A., and Perera, L.P. (2012). The role of interleukin-15 in inflammation and immune responses to infection: implications for its therapeutic use. Microbes and infection / Institut Pasteur 14, 247-261.
Schott, J., and Stoecklin, G. (2010). Networks controlling mRNA decay in the immune system. Wiley interdisciplinary reviews. RNA 1, 432-456.
Simmons, A., and Nash, A.A. (1984). Zosteriform spread of HSV as a model of recrudescence and its use to investigate the role of Immune Cells. Virology 52, 816-821.
Soehnlein, O., Lindbom, L., and Weber, C. (2009). Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood 114, 4613-4623.
Stonier, S.W., and Schluns, K.S. (2010). Trans-presentation: a novel mechanism regulating IL-15 delivery and responses. Immunology letters 127, 85-92.
Taddeo, B., Esclatine, A., and Roizman, B. (2002). The patterns of accumulation of cellular RNAs in cells infected with a wild-type and a mutant herpes simplex virus 1 lacking the virion host shutoff gene. Proceedings of the National Academy of Sciences of the United States of America 99, 17031-17036.
Taddeo, B., Esclatine, A., and Roizman, B. (2004). Post-transcriptional processing of cellular RNAs in herpes simplex virus-infected cells. Biochemical Society transactions 32, 697-701.
Tan, X., and Lefrancois, L. (2006). Novel IL-15 isoforms generated by alternative splicing are expressed in the intestinal epithelium. Genes and immunity 7, 407-416.
Tsunobuchi, H., Nishimura, H., Goshima, F., Daikoku, T., Suzuki, H., Nakashima, I., Nishiyama, Y., and Yoshikai, Y. (2000). A protective role of interleukin-15 in a mouse model for systemic infection with herpes simplex virus. Virology 275, 57-66.
van den Berg, T.K., and Kraal, G. (2005). A function for the macrophage F4/80 molecule in tolerance induction. Trends in immunology 26, 506-509.
van Lint, A., Ayers, M., Brooks, A.G., Coles, R.M., Heath, W.R., and Carbone, F.R. (2004). Herpes simplex virus-specific CD8(+) T cells can clear established lytic infections from skin and nerves and can partially limit the early spread of virus after cutaneous inoculation. Journal of Immunology 172, 392-397.
Wojtasiak, M., Pickett, D.L., Tate, M.D., Bedoui, S., Job, E.R., Whitney, P.G., Brooks, A.G., and Reading, P.C. (2010). Gr-1+ cells, but not neutrophils, limit virus replication and lesion development following flank infection of mice with herpes simplex virus type-1. Virology 407, 143-151.
Wuest, T.R., and Carr, D.J. (2008). The role of chemokines during herpes simplex virus-1 infection. Frontiers in bioscience : a journal and virtual library 13, 4862-4872.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63896-
dc.description.abstractInterleukin-15 (IL-15)是一種多效性的細胞激素,表現在許多不同類型的細胞。藉由發炎反應的進行調節先天性免疫反應的作用並且具有促進自然殺手細胞發育、維持記憶性CD8 細胞的恆定等功能,因此在對抗病毒感染中扮演至關重要的角色。中研院基因突變鼠動物模式核心實驗室 (MMPCF)利用ENU的致突變機制產生的191品系突變鼠 (以下稱P191), 體內可表現顯著的IL-15選擇性剪接異構體mRNA (簡稱IL-15_ASE7)。雖然離體實驗曾被證明IL-15_ASE7可能具有抑制原型 IL-15生物活性的能力,它在動物體內的功能與作用仍然不清楚。本論文利用 HSV-1 感染小鼠的腹背側皮膚模式,比較抗 HSV-1感染的先天性免疫反應在該ENU 突變鼠與野生鼠的差異之處,以探討IL-15_ASE7在皮膚中調節抗病毒的先天性反應的可能角色。
本論文的實驗結果顯示,與B6相較之下,P191小鼠皮膚在 HSV-1 感染之後產生較大和嚴重的疱疹傷口,且皮膚損傷修復的時間延遲,病毒溶斑形成定量分析結果也顯示P191小鼠皮膚中的病毒量在感染後第3和5天均較高於 B6 小鼠。雖然P191 與B6 小鼠皮膚感染HSV-1後的病理現象類似,例如組織間細胞體積變大、表皮組織增生變厚、細胞崩解、壞死細胞的染色質聚集在一起呈現許多不規則的團塊狀以及皮層細胞之間空泡的形成,但是免疫細胞浸潤現象在P191小鼠卻大幅減少。進一步利用免疫組織化學染色分析發現感染HSV-1後的浸潤細胞組成,B6的皮膚疱疹中從初期(第1-3天)的中性白血球與中、後期 (第5-7天) 所出現的單核球與淋巴球,在P191小鼠都大幅下降並且達到統計的顯著差異 (p<0.01)。更重要的是在感染後 12和24 小時, 即時定量聚合酶分析結果顯示雖然MCP-1、 IL-1b 和TNF-a 的 mRNA表現量在 B6 與 P191 小鼠兩者的疱疹皮膚中差異不大, P191 小鼠皮膚中嗜中性白血球吸引趨化因子CXCL1 (KC) 和 IL-6 的mRNA表現量則比B6小鼠顯著下降。特別的是,HSV-1感染B6與P191小鼠皮膚後分別誘增IL-15與IL-15_ASE7 mRNA的表現。這些結果說明IL-15調節傳遞的訊號路徑對於造成小鼠皮膚特定細胞激素和趨化因子 mRNA 的表現有尚未被釐清的角色。 IL-15 如何調控皮膚對抗病毒感染的先天性免疫反應的機制值得未來作進一步的探討。
zh_TW
dc.description.abstractInterleukin-IL-15 (IL-15) is a pleiotropic cytokine expressed by a broad range of cell types. Not only it functions as a proinflammatory cytokine during innate immune response but also supports the development of natural killer cells and homeostasis of memory CD8 T cells. Therefore, it has been recognized as an important cytokine against viral infection. An ENU-mutagenized pedigree 191 (P191) generated at the Mouse Mutagenesis Program Core Facility (MMPCF) predominantly expresses an alternative splice IL-15 mRNA isoform called IL-15_ASE7. Studies from in vitro experiments demonstrated IL-15 splice variant protein inhibited IL-15 dependent cell proliferation; however, its function in vivo remains unclear. Using HSV-1 zosteriform mouse model, immunological consequences from HSV-1 infection were compared between B6 and P191 mice to clarify the role for IL-15 alternatively spliced variant in regulating innate immune response in skin.
Results from these experiments showed that HSV-1 created larger and severe skin lesions and delayed kinetics of skin lesion repair in P191 mice compared with B6 mouse skin. Furthermore, viral titers recovered from P191 lesional skin determined by plaque assay were higher than those from B6 lesional skin on days 3 and 5 post infection. Characteristics of HSV-1 resulted skin pathology including cell ballooning, reticular degeneration, chromosome condensation and vesicle formation in the epidermis were similar between B6 and P191 mice. However, levels of immune cell infiltration in the dermal layer were much reduced in P191 lesional skin. In addition, immunohistochemical analysis also confirmed that the influx of Gr1+ neutrophils on day 1 to day 2 and substantial infiltrations of lymphocytes and monocytes at day 3 to day 7 in B6 mice after infection were overall reduced in P191 skin (p<0.01). Importantly, real-time q-PCR analysis showed that the expression levels of MCP-1, IL-1b and TNF-a mRNA were comparable between B6 and P191 skin; however, the transcripts for neutrophil-attracting chemokine CXCL1 (KC) and IL-6 were marginally induced at 12 hr but dramatically down-regulated at 24 hr in HSV-1 infected P191 skin as opposed to elevated levels in B6 skin. The differential expression patterns of inflammatory cytokine and chemokine genes in skin between wild type and P191 mice after HSV-1 infection have implicated a yet defined role for IL-15 mediated signaling. The molecular mechanism by which IL-15 signaling controls innate immune response in skin against viral infection will be further explored.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:22:19Z (GMT). No. of bitstreams: 1
ntu-101-R99449009-1.pdf: 15831650 bytes, checksum: 023d18d562c1c4caa70726e176b707db (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsChinese abstract i
English abstract iii
Table of Contents v
List of Figures viii
Chapter I Literature review 1
1. IL-15 1
1.1 Effects of IL-15 on immune cells 2
1.2 IL-15 and IL-15 isoform: expression and regulation 4
2. The role for IL-15 in anti-herpes simplex virus type-1 (HSV-1) immune response 6
2.1 HSV-1 mediated induction of IL-15 6
2.2 Potential function of IL-15 during HSV infection in skin 7
3. HSV-1 zosteriform mouse model 8
4. Motives and Preliminary studies 10
Chapter II Materials and Methods 13
1. Establishment of HSV-1 zosteriform mouse model 13
1.1 Mice 13
1.2 Viruses 13
1.3 Plaque Assay 14
1.4 HSV-1 infection of mouse flank skin 15
1.5 Scoring of lesion severity 16
2. Histological analysis of skin sections 17
2.1 Tissue embedding 17
2.2 Tissue sectioning 18
2.3 H & E staining 18
2.4 Immunohistochemical (IHC) analysis 19
3. Quantification of cytokine mRNAs 21
3.1 Total RNA extraction from skin 21
3.2 RNA quantitative and qualitative assessment 23
3.3 DNase treatment 23
3.4 cDNA synthesis 24
3.5 Real-time PCR 24
4. Flow cytometry 26
4.1 Preparation of single cell suspensions 26
4.2 Surface marker staining 26
4.3 Flow cytometry 27
5. Removal of skin tissue for viral titer determination 27
5.1 Harvest virus from skin tissue 27
6. Statistical analysis 28
7. List of Antibodies 29
8. List of Enzymes 30
9. Buffers and stock solutions 30
9.1 2.4G2 mix (3ml) 30
9.2 Avertin (2,2,2 tribromoethanol) solution 30
9.3 Buffered salt solution (BSS) 31
9.4 BSS staining buffer Buffered salt solution containing 0.01% NaN3 and 2% FBS 31
9.5 Buffered ammonium chloride (Gey’s solution) 31
9.6 Fast Red substrate 31
9.7 10X Phosphate-bufferd saline (PBS) 32
9.8 Substrate TRIS 32
9.9 50X Tris-base-EDTA (TBE) (in DEPC-H2O) 32
9.10 TE buffer: 32
9.11 TRIS-buffered saline (TBS) 32
9.12 TRIS-buffered saline, Tween 20 (TBST) 33
10. Chemicals, kits and reagents 33
11. Quantitative real-time PCR primer and probe sequences 37
Chapter III Results 38
1. P191 mice develop more severe lesional skin than both B6 and IL-15+/- mice after HSV-1 infection 38
1.1 Characteristics of HSV-1 skin lesion in mouse model 39
1.2 Determining viral yields of HSV-1 lesion using plaque assay 41
2. The characterization of histopathology in HSV-1 skin lesion 42
3. Characterization and quantification of immune cells that infiltrate into mouse skin after HSV-1 infection 44
3.1 Reduced infiltration of Gr-1+ cells into skin of P191 mice after HSV-1 infection 45
3.2 Reduced infiltration of F4/80+ cells into skin of P191 mice on day 5 after HSV-1 infection 46
3.3 Reduced infiltration of CD4+ cells into skin of P191 mice on days 3 and 5 after HSV-1 infection 47
4. Analysis of chemokine and proinflammatory cytokine expression at early time after HSV-1 infection by real-time qPCR 47
5. Analysis of expression of IL-15 isoforms in normal and HSV-1 infected skin 50
6. Summary 51
Chapter IV Discussions 53
1. Dendritic epidermal gd T cells and altered inflammatory responses 54
2. Chemokine expression and the recruitment of neutrophils and macrophage in P191 skin 55
3. Post-transcriptional control of KC mRNA expression 57
4. Analysis of (AU)-rich element (ARE) in inflammatory cytokine and chemokine mRNA 58
5. Herpes simplex virus and destabilization of cellular RNAs 59
6. The possible role for IL-15 in regulating mRNA stability 60
Chapter V Figures 61
Chapter VI References 79
Appendices 87
Appendix A. Microarray analysis of lesional skin on day 2 after HSV-1 infection. 87
Appendix B. Reduced number of DETCs in epidermal sheet of P191 and IL-15+/- mice. 89
Appendix C. AU-rich elements (ARE) in the 3' UTR of mRNA as determined by “AREsite” 90
 
dc.language.isoen
dc.subject疹病毒zh_TW
dc.subject介白質-15zh_TW
dc.subject第一型單純疱zh_TW
dc.subject皮膚zh_TW
dc.subjectHSV-1en
dc.subjectskinen
dc.subjectIL-15en
dc.title探討第一型單純疱疹病毒經皮感染表現IL-15異構細胞激素突變鼠後的先天性免疫反應zh_TW
dc.titleInvestigation of innate immune response in HSV-1 zosteriform infection of ENU-mutagenized mice that express IL-15 alternative splice varianten
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孔祥智,伍安怡,王莉芳
dc.subject.keyword介白質-15,第一型單純疱,疹病毒,皮膚,zh_TW
dc.subject.keywordIL-15,HSV-1,skin,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2012-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
15.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved