Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63876
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李佳音
dc.contributor.authorYa-Wen Changen
dc.contributor.author張雅雯zh_TW
dc.date.accessioned2021-06-16T17:21:41Z-
dc.date.available2017-08-27
dc.date.copyright2012-08-27
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation張絜雯 (2009). 胞外絲胺酸蛋白酶對腸炎弧菌生物膜生成及遊走能力之影響. 國立台灣大學農業化學系碩士論文.
王婕 (2011). 磷脂醯絲胺酸合成酶對腸炎弧菌運動性之影響. 國立台灣大學農業化學系碩士論文.
Allison, D.G., Ruiz, B., SanJose, C., Jaspe, A., and Gilbert, P. (1998). Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett 167, 179-184.
Antoine, R., and Locht, C. (1992). Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from gram-positive organisms. Mol Microbiol 6, 1785-1799.
Baba, K., Yamasaki, S., Nishibuchi, M., and Takeda, Y. (1992). Examination by site-directed mutagenesis of the amino acid residues of the thermostable direct hemolysin of Vibrio parahaemolyticus required for its hemolytic activity. Microb Pathog 12, 279-287.
Bae-Lee, M.S., and Carman, G.M. (1984). Phosphatidylserine synthesis in Saccharomyces cerevisiae. Purification and characterization of membrane-associated phosphatidylserine synthase. J Biol Chem 259, 10857-10862.
Bell, R.M., Mavis, R.D., Osborn, M.J., and Vagelos, P.R. (1971). Enzymes of phospholipid metabolism: localization in the cytoplasmic and outer membrane of the cell envelope of Escherichia coli and Salmonella typhimurium. Biochim Biophys Acta 249, 628-635.
Bogdanov, M., Dowhan, W. (2002). Functional roles of lipids in membranes. Biochemistry of lipids, Lipoproteins and Membranes ( 4th Edn ) 1, 1-35.
Bukata, L., Altabe, S., de Mendoza, D., Ugalde, R.A., and Comerci, D.J. (2008). Phosphatidylethanolamine synthesis is required for optimal virulence of Brucella abortus. J Bacteriol 190, 8197-8203.
Bullock, W.O., Fernandez, J.M.& Short, J.M. (1987). XL1-Blue: A high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. BioTechniques 5, 376-379.
Carman, G.M., and Dowhan, W. (1979). Phosphatidylserine synthase from Escherichia coli. The role of Triton X-100 in catalysis. J Biol Chem 254, 8391-8397.
Carman, G.M., and Henry, S.A. (1999). Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res 38, 361-399.
Carman, G.M., and Wieczorek, D.S. (1980). Phosphatidylglycerophosphate synthease and phosphatidylserine synthase activites in Clostridium perfringens. J Bacteriol 142, 262-267.
Chen, Y.L., Montedonico, A.E., Kauffman, S., Dunlap, J.R., Menn, F.M., and Reynolds, T.B. (2010). Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans. Mol Microbiol 75, 1112-1132.
Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., and Lappin-Scott, H.M. (1995). Microbial biofilms. Annu Rev Microbiol 49, 711-745.
Costerton, J.W., and Stewart, P.S. (2001). Battling biofilms. Sci Am 285, 74-81.
Cousminer, J.J., Fischl, A.S., and Carman, G.M. (1982). Partial purification and properties of phosphatidylserine synthase from Clostridium perfringens. J Bacteriol 151, 1372-1379.
Cronan, J.E. (2003). Bacterial Membrane Lipids:Where Do We Stand? Annu Rev Microbio; 57, 203-224.
Daniels, N.A., MacKinnon, L., Bishop, R., Altekruse, S., Ray, B., Hammond, R.M., Thompson, S., Wilson, S., Bean, N.H., Griffin, P.M., et al. (2000a). Vibrio parahaemolyticus infections in the United States, 1973-1998. J Infect Dis 181, 1661-1666.
Daniels, N.A., Ray, B., Easton, A., Marano, N., Kahn, E., McShan, A.L., 2nd, Del Rosario, L., Baldwin, T., Kingsley, M.A., Puhr, N.D., et al. (2000b). Emergence of a new Vibrio parahaemolyticus serotype in raw oysters: A prevention quandary. JAMA 284, 1541-1545.
Davies, D.G., and Geesey, G.G. (1995). Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol 61, 860-867.
Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., and Greenberg, E.P. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295-298.
de Vrije, T., de Swart, R.L., Dowhan, W., Tommassen, J., and de Kruijff, B. (1988). Phosphatidylglycerol is involved in protein translocation across Escherichia coli inner membranes. Nature 334, 173-175.
DeChavigny, A., Heacock, P.N., and Dowhan, W. (1991). Sequence and inactivation of the pss gene of Escherichia coli. Phosphatidylethanolamine may not be essential for cell viability. J Biol Chem 266, 5323-5332.
Dutt, A., and Dowhan, W. (1977). Intracellular distribution of enzymes of phospholipid metabolism in several gram-negative bacteria. J Bacteriol 132, 159-165.
Dutt, A., and Dowhan, W. (1981). Characterization of a membrane-associated cytidine diphosphate-diacylglycerol-dependent phosphatidylserine synthase in bacilli. J Bacteriol 147, 535-542.
Dutt, A., and Dowhan, W. (1985). Purification and characterization of a membrane-associated phosphatidylserine synthase from Bacillus licheniformis. Biochemistry 24, 1073-1079.
Escriba, P.V., Ozaita, A., Ribas, C., Miralles, A., Fodor, E., Farkas, T., and Garcia-Sevilla, J.A. (1997). Role of lipid polymorphism in G protein-membrane interactions: nonlamellar-prone phospholipids and peripheral protein binding to membranes. Proc Natl Acad Sci U S A 94, 11375-11380.
Fujino, T., U. Okuno, D. Nakada, A. Aoyama, K. Fukai, T. Mukai, and T. Uebo. (1953). On the bacteriological examination of Shirasu Food poisoning. Med J Osaka Univ 4, 299-304.
Garavito, R.M., and Ferguson-Miller, S. (2001). Detergents as tools in membrane biochemistry. J Biol Chem 276, 32403-32406.
Guilhot, C., Otal, I., Van Rompaey, I., Martin, C., and Gicquel, B. (1994). Efficient transposition in mycobacteria: construction of Mycobacterium smegmatis insertional mutant libraries. J Bacteriol 176, 535-539.
Hawrot, E., and Kennedy, E.P. (1978). Phospholipid composition and membrane function in phosphatidylserine decarboxylase mutants of Escherichia coli. J Biol Chem 253, 8213-8220.
Heydorn, A., Nielsen, A.T., Hentzer, M., Sternberg, C., Givskov, M., Ersboll, B.K., and Molin, S. (2000). Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146 ( Pt 10), 2395-2407.
Honda, T., Ni, Y.X., and Miwatani, T. (1988). Purification and characterization of a hemolysin produced by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the thermostable direct hemolysin. Infect Immun 56, 961-965.
Itaru Yanagihara, K.N., Yamane, T., Kaieda S., Mayanagi K., Hamada D., Fukui T., Ohnishi K., Kajiyama S., Shimizu T., Sato M., Ikegami T., Ikeguchi M., Honda T., and Hashimoto H. (2010). Structure and functional characterization of Vibrio parahaemolyticus thermostable direct hemolysin. J Bacteriol 285, 16267-16274.
Jordi Folch, M.L., and G. H. Sloane Stanley (1956). A simple method for the isolation and purification of total lipides from animal tissues. Isolation of Total Tissues Lipides.497-509
Joseph, S.W., Colwell, R.R., and Kaper, J.B. (1982). Vibrio parahaemolyticus and related halophilic Vibrios. Crit Rev Microbiol 10, 77-124.
Kanfer, J., and Kennedy, E.P. (1964). Metabolism and function of bacterial lipids. Biosynthesis of phospholipids in Escherichia coli. J Biol Chem 239, 1720-1726.
Klusener, S., Aktas, M., Thormann, K.M., Wessel, M., and Narberhaus, F. (2009). Expression and physiological relevance of Agrobacterium tumefaciens phosphatidylcholine biosynthesis genes. J Bacteriol 191, 365-374.
Korber DR, L.J., Lappin-Scott HM, Costerton JW. (1995). Growth of microorganisms on surfaces. Microbial Biofilms, 15-45.
Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., 2nd, and Peterson, K.M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175-176.
Langley, K.E., Yaffe, M.P., and Kennedy, E.P. (1979). Biosynthesis of phospholipids in Bacillus megaterium. J Bacteriol 140, 996-1007.
Lawrence, J.R., Korber, D.R., Hoyle, B.D., Costerton, J.W., and Caldwell, D.E. (1991). Optical sectioning of microbial biofilms. J Bacteriol 173, 6558-6567.
Lee, C.Y., Cheng, M.F., Yu, M.S., and Pan, M.J. (2002). Purification and characterization of a putative virulence factor, serine protease, from Vibrio parahaemolyticus. FEMS Microbiol Lett 209, 31-37.
Louie, K., Chen, Y.C., and Dowhan, W. (1986). Substrate-induced membrane association of phosphatidylserine synthase from Escherichia coli. J Bacteriol 165, 805-812.
Makino, K., Oshima, K., Kurokawa, K., Yokoyama, K., Uda, T., Tagomori, K., Iijima, Y., Najima, M., Nakano, M., Yamashita, A., et al. (2003). Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361, 743-749.
Matsumoto, K. (1997). Phosphatidylserine synthase from bacteria. Biochim Biophys Acta 1348, 214-227.
Merritt, P.M., Danhorn, T., and Fuqua, C. (2007). Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation. J Bacteriol 189, 8005-8014.
Miyamoto, Y., Kato, T., Obara, Y., Akiyama, S., Takizawa, K., and Yamai, S. (1969). In vitro hemolytic characteristic of Vibrio parahaemolyticus: its close correlation with human pathogenicity. J Bacteriol 100, 1147-1149.
Nishibuchi, M., Fasano, A., Russell, R.G., and Kaper, J.B. (1992). Enterotoxigenicity of Vibrio parahaemolyticus with and without genes encoding thermostable direct hemolysin. Infect Immun 60, 3539-3545.
Nishijima, S., Asami, Y., Uetake, N., Yamagoe, S., Ohta, A., and Shibuya, I. (1988). Disruption of the Escherichia coli cls gene responsible for cardiolipin synthesis. J Bacteriol 170, 775-780.
O'Toole, G.A., and Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30, 295-304.
Ohta, A., and Shibuya, I. (1977). Membrane phospholipid synthesis and phenotypic correlation of an Escherichia coli pss mutant. J Bacteriol 132, 434-443.
Okada, M., Matsuzaki, H., Shibuya, I., and Matsumoto, K. (1994). Cloning, sequencing, and expression in Escherichia coli of the Bacillus subtilis gene for phosphatidylserine synthase. J Bacteriol 176, 7456-7461.
Oliver, J.D., and Colwell, R.R. (1973). Extractable lipids of gram-negative marine bacteria: phospholipid composition. J Bacteriol 114, 897-908.
Parish, T., Liu, J., Nikaido, H., and Stoker, N.G. (1997). A Mycobacterium smegmatis mutant with a defective inositol monophosphate phosphatase gene homolog has altered cell envelope permeability. J Bacteriol 179, 7827-7833.
Patterson, P.H., and Lennarz, W.J. (1971). Studies on the membranes of bacilli. I. Phospholipid biosynthesis. J Biol Chem 246, 1062-1072.
Philippe, N., Alcaraz, J.P., Coursange, E., Geiselmann, J., and Schneider, D. (2004). Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51, 246-255.
Plaine, A., Walker, L., Da Costa, G., Mora-Montes, H.M., McKinnon, A., Gow, N.A., Gaillardin, C., Munro, C.A., and Richard, M.L. (2008). Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet Biol 45, 1404-1414.
Pratt, L.A., and Kolter, R. (1998). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30, 285-293.
Raetz, C.R. (1976). Phosphatidylserine synthetase mutants of Escherichia coli. Genetic mapping and membrane phospholipid composition. J Biol Chem 251, 3242-3249.
Raetz, C.R., and Kennedy, E.P. (1972). The association of phosphatidylserine synthetase with ribosomes in extracts of Escherichia coli. J Biol Chem 247, 2008-2014.
Ralph, A., and Currie, B.J. (2007). Vibrio vulnificus and V. parahaemolyticus necrotising fasciitis in fishermen visiting an estuarine tropical northern Australian location. J Infect 54, e111-114.
Rietveld, A.G., Chupin, V.V., Koorengevel, M.C., Wienk, H.L., Dowhan, W., and de Kruijff, B. (1994). Regulation of lipid polymorphism is essential for the viability of phosphatidylethanolamine-deficient Escherichia coli cells. J Biol Chem 269, 28670-28675.
Rietveld, A.G., Killian, J.A., Dowhan, W., and de Kruijff, B. (1993). Polymorphic regulation of membrane phospholipid composition in Escherichia coli. J Biol Chem 268, 12427-12433.
Sarkar, B.L., Kumar, R., De, S.P., and Pal, S.C. (1987). Hemolytic activity of and lethal toxin production by environmental strains of Vibrio parahaemolyticus. Appl Environ Microbiol 53, 2696-2698.
Sauer, K., Camper, A.K., Ehrlich, G.D., Costerton, J.W., and Davies, D.G. (2002). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184, 1140-1154.
Schafer, A., Kalinowski, J., Simon, R., Seep-Feldhaus, A.H., and Puhler, A. (1990). High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J Bacteriol 172, 1663-1666.
Shibuya, I. (1992). Metabolic regulations and biological functions of phospholipids in Escherichia coli. Prog Lipid Res 31, 245-299.
Shibuya, I., Miyazaki, C., and Ohta, A. (1985). Alteration of phospholipid composition by combined defects in phosphatidylserine and cardiolipin synthases and physiological consequences in Escherichia coli. J Bacteriol 161, 1086-1092.
Silber, P., Borie, R.P., and Goldfine, H. (1980). The enzymes of phospholipid synthesis in Clostridium butyricum. J Lipid Res 21, 1022-1031.
Stoodley, P., Jacobsen, A., Dunsmore, B.C., Purevdorj, B., Wilson, S., Lappin-Scott, H.M., and Costerton, J.W. (2001). The influence of fluid shear and AICI3 on the material properties of Pseudomonas aeruginosa PAO1 and Desulfovibrio sp. EX265 biofilms. Water Sci Technol 43, 113-120.
Stoodley P. , K.S., D. G. Davies, and J.W. Costerton (2002). Biofilms as complex differentiated communities. Annu Rev Microbiol 56, 187-209.
Stringer, J.D.O.a.W.F. (1983). Lipid Compositon of Psychrophilic Marine Vibrio sp. During Starvation-Induced Morphogenesis. Applied And Environmental 47, 461-466.
Tolker-Nielsen, T., Brinch, U.C., Ragas, P.C., Andersen, J.B., Jacobsen, C.S., and Molin, S. (2000). Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182, 6482-6489.
Vora, G.J., Meador, C.E., Bird, M.M., Bopp, C.A., Andreadis, J.D., and Stenger, D.A. (2005). Microarray-based detection of genetic heterogeneity, antimicrobial resistance, and the viable but nonculturable state in human pathogenic Vibrio spp. Proc Natl Acad Sci USA 102, 19109-19114.
Wiegand, I., Hilpert, K., and Hancock, R.E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols 3, 163-175.
Xu, M., Yamamoto, K., Honda, T., and Ming, X. (1994). Construction and characterization of an isogenic mutant of Vibrio parahaemolyticus having a deletion in the thermostable direct hemolysin-related hemolysin gene (trh). J Bacteriol 176, 4757-4760.
Yamaichi, Y., Iida, T., Park, K.S., Yamamoto, K., and Honda, T. (1999). Physical and genetic map of the genome of Vibrio parahaemolyticus: presence of two chromosomes in Vibrio species. Mol Microbiol 31, 1513-1521.
Yeung, P.S., and Boor, K.J. (2004). Epidemiology, pathogenesis, and prevention of foodborne Vibrio parahaemolyticus infections. Foodborne Pathog Dis 1, 74-88.
Zhang, Y.M., and Rock, C.O. (2008). Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6, 222-233.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63876-
dc.description.abstract腸炎弧菌 ( Vibrio parahaemolyticus )以磷脂醯乙醇胺( Phosphatidylethanolamine, PE ) 為主要的膜磷脂質成分。PE合成路徑藉由磷脂醯絲胺酸合成酶 ( Phosphatodylserine synthase, Pss )以及磷脂醯絲胺酸脫羧酶 ( Phosphatidylserine decarboxylase, Psd )合成PE。本研究比較一株缺乏熱穩定性溶血素( tdh ) 以及類熱穩定性溶血素(trh )的腸炎弧菌臨床菌株,Vibrio parahaemolyticus No.93 ( VP93 ) 和此株腸炎弧菌pss突變株 ( Δpss )其生理變化現象,觀察剔除pss基因造成的影響。以薄層層析法分析兩菌株的磷脂質,發現Δpss –VP93的PE僅從野生株的72%降至63%,雖然Δpss –VP93有大量的PE殘存但仍有生長上的缺陷,包含在鹼性蛋白腖含鹽培養基(APSB)中生長速率下降了28%、在胰化蛋白大豆含鹽培養基(TSB3)中的菌體生成量只有野生株的一半、以及在固態培養基上的菌落較小。膜磷脂質成分的改變也影響菌體對於外來物質通透性的改變,像是對疏水性的抗生素氯黴素的抗性由最小抑制濃度10 μg/ mL上升至40 μg/ mL,同樣的疏水性抗生素紅黴素最小抑制濃度由5 μg/ mL上升至40 μg/ mL。以及對兩性離子界面活性劑CHAPS (3-[3-(膽醯胺丙基)二甲氨基]丙磺酸内鹽) 的耐受性增加、對陰離子界面活性劑SDS(十二烷基硫酸鈉) 的耐受性下降。腸炎弧菌pss突變株,Δpss –VP93生物膜的合成量與野生株VP93不同,無論在25℃、30℃ 或35℃下,TSB3或是APSB培養基中,其生物膜的合成量都比VP93高且具有顯著差異,但在APSB培養基中若額外添加20 mM MgCl2,則可抑制Δpss –VP93高生物膜合成量的此一表型。由以上結果得知腸炎弧菌在剔除pss基因後,造成膜磷脂質成份改變,影響了細胞的生長、細胞膜特性與生物膜的生合成。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-16T17:21:41Z (GMT). No. of bitstreams: 1
ntu-101-R99623026-1.pdf: 1618258 bytes, checksum: 2ace8aa00daec4aa2fa7a7a9a20cd93b (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 ii
中文摘要 iv
英文摘要 v
目錄 vi
表次 ix
圖次 x
附錄圖次 xi
縮寫表 xii
壹、前言 1
第一節 腸炎弧菌 ( Vibrio parahaemolyticus ) 1
一、概論 1
二、性狀 1
三、毒力因子 2
第二節 膜脂質功能與成分 2
一、細胞膜脂質 2
二、細菌的膜磷脂質成分 3
三、二價金屬離子對細胞膜穩定性的幫助 4
四、細胞膜特性改變造成表型差異 4
第三節 磷脂醯絲胺酸合成酶與磷脂醯絲胺酸脫羧酶 5
一、路徑 5
二、磷脂醯絲胺酸合成酶的分類 6
三、原核生物中的磷脂醯乙醇胺及磷脂醯膽鹼的致病性功能 6
四、真核生物中的磷脂醯乙醇胺的致病性功能 7
五、磷脂醯乙醇胺及磷脂醯絲胺酸對真核細胞壁的結構的影響 7
第四節 生物膜 7
一、生物膜 7
二、生物膜形成 8
三、生物膜結構 9
第五節 細胞膜通透性 10
一、細胞膜組成份改變對抗性的影響 10
二、細胞膜組成份改變對膜特性的影響 10
三、細胞膜組成份改變菌體通透性 10
第六節、研究目的與源起 11
貳、實驗材料與方法 12
第一節 實驗材料 12
一、菌株、質體與引子 12
二、培養基 12
三、藥品試劑 12
四、商業套組 13
五、儀器 13
第二節 實驗方法 14
一、DNA技術 14
二、建構腸炎弧菌 psd突變株 18
三、建構腸炎弧菌 Δpss補償株 21
四、腸炎弧菌野生株與突變株生理特性分析 22
五、抗生素抗性測試 ( Minimum Inhibitory Concentration, MIC assay ) 23
六、膜特性分析 ( Cell Inhibition Assay ) 24
七、生物膜生合成 25
八、統計分析 ( Statistic Analysis ) 25
參、實驗結果 26
一、腸炎弧菌野生株與pss突變株生長曲線與速率 26
二、腸炎弧菌野生株與pss突變株菌落表型差異 26
三、腸炎弧菌野生株與pss突變株磷脂質成分分析 27
四、腸炎弧菌pss突變株對抗生素耐受性的改變 27
五、腸炎弧菌突變株對界面活性劑的耐受程度 28
六、腸炎弧菌野生株與pss突變株生物膜生合成能力 28
一、綜合比較 28
二、不同溫度下生物膜生合成 29
三、不同培養基下生物膜生合成 29
四、不同鎂離子濃度生物膜生合成 29
七、建構腸炎弧菌psd 缺陷株( Δpsd-VP93 ) 29
八、建構腸炎弧菌pss 補償株 ( Δpss-VP93/ Ppss ) 30
肆、討論 32
一、磷脂醯乙醇胺 ( PE ) 仍存在於腸炎弧菌pss突變株 32
二、腸炎弧菌pss突變株對氯黴素以及紅黴素抗性的提升 32
三、磷脂質組成的改變造成腸炎弧菌膜特性的改變 32
四、腸炎弧菌pss突變株具有較高的生物膜生合成能力 33
五、腸炎弧菌pss突變株不具有細胞分裂的缺陷 33
六、腸炎弧菌pss基因的角色 34
伍、結論 35
陸、參考文獻 36
dc.language.isozh-TW
dc.subject腸炎弧菌zh_TW
dc.subject磷脂醯絲胺酸合成&#37238zh_TW
dc.subject生物膜zh_TW
dc.subjectbiofilmen
dc.subjectVibrio parahaemolyticusen
dc.subjectphosphatidylserine synthaseen
dc.title腸炎弧菌磷脂醯絲胺酸合成酶對細胞膜特性
與生物膜生合成的影響
zh_TW
dc.titleThe phosphatidylserine synthase affects the membrane property and biofilm formation
of Vibrio parahaemolyticus
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建先,余美萱
dc.subject.keyword腸炎弧菌,磷脂醯絲胺酸合成&#37238,生物膜,zh_TW
dc.subject.keywordVibrio parahaemolyticus,phosphatidylserine synthase,biofilm,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2012-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved