請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63851
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李百祺 | |
dc.contributor.author | Yung-Chieh Hsu | en |
dc.contributor.author | 徐永杰 | zh_TW |
dc.date.accessioned | 2021-06-16T17:20:52Z | - |
dc.date.available | 2012-08-19 | |
dc.date.copyright | 2012-08-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-16 | |
dc.identifier.citation | [1] Hemoglobin Wiki, “Structure” section, http://en.wikipedia.org/wiki/Hemoglobin
[2] Wiki, http://en.wikipedia.org/wiki/Carbon_monoxide_poisoning [3] http://www.buzzle.com/articles/blood-oxygen-levels.html [4] Teicher, B. A., Lazo, J. S., & Sartorelli, A. C. (1981). Classification of Anti-Neoplastic Agents by Their Selective Toxicities toward Oxygenated and Hypoxic Tumor-Cells. Cancer Research, 41(1), 73-81. [5] Wiki, http://en.wikipedia.org/wiki/Oxygen_toxicity [6] Zhang, H. F., Maslov, K., Sivaramakrishnan, M., Stoica, G., & Wang, L. V. (2007). Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Applied Physics Letters, 90(5). [7] http://en.wikipedia.org/wiki/Pulse_oximetry [8] Tadros, T., Traber, D. L., & Herndon, D. N. (2000). Hepatic blood flow and oxygen consumption after burn and sepsis. Journal of Trauma-Injury Infection and Critical Care, 49(1), 101-108. [9] http://uw.physics.wisc.edu/~timbie/P325/Spike_photoacoustic_effect.pdf [10] Wang, L. V. (2009). Multiscale photoacoustic microscopy and computed tomography. Nature Photonics, 3(9), 503-509. [11] Zhang, E. Z., Laufer, J. G., Pedley, R. B., & Beard, P. C. (2009). In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Physics in Medicine and Biology, 54(4), 1035-1046. [12] Kim, J. W., Galanzha, E. I., Shashkov, E. V., Moon, H. M., & Zharov, V. P. (2009). Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nature Nanotechnology, 4(10), 688-694. [13] http://www.phy.ntnu.edu.tw/demolab/html.php?html=Notes/dataProcess [14] http://en.wikipedia.org/wiki/Propagation_of_uncertainty [15] Cox, B. T., Arridge, S. R., & Beard, P. C. (2009). Estimating chromophore distributions from multiwavelength photoacoustic images. Journal of the Optical Society of America a-Optics Image Science and Vision, 26(2), 443-455. [16] Liao, L. D., Li, M. L., Lai, H. Y., Shih, Y. Y. I., Lo, Y. C., Tsang, S. N., . . . Chen, Y. Y. (2010). Imaging brain hemodynamic changes during rat forepaw electrical stimulation using functional photoacoustic microscopy. Neuroimage, 52(2), 562-570. [17] Hu, S., Maslov, K., & Wang, L. V. (2011). Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Optics Letters, 36(7), 1134-1136. [18] Mclaren, C. E., Brittenham, G. M., & Hasselblad, V. (1987). Statistical and Graphical Evaluation of Erythrocyte Volume Distributions. American Journal of Physiology, 252(4), H857-H866. [19] De La Zerda, A., Zavaleta, C., Keren, S., Vaithilingam, S., Bodapati, S., Liu, Z., . . . Gambhir, S. S. (2008). Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nature Nanotechnology, 3(9), 557-562. [20] Kim, J. W., Galanzha, E. I., Shashkov, E. V., Moon, H. M., & Zharov, V. P. (2009). Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nature Nanotechnology, 4(10), 688-694. [21] Wang, L. V., & Hu, S. (2012). Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. Science, 335(6075), 1458-1462. [22] Mallidi, S., Larson, T., Tam, J., Joshi, P. P., Karpiouk, A., Sokolov, K., & Emelianov, S. (2009). Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer. Nano Letters, 9(8), 2825-2831. [23] Sivaramakrishnan, M., Maslov, K., Zhang, H. F., Stoica, G., & Wang, L. V. (2007). Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels. Physics in Medicine and Biology, 52(5), 1349-1361. doi: Doi 10.1088/0031-9155/52/5/010 [24] Kim, C., Erpelding, T. N., Jankovic, L., Pashley, M. D., & Wang, L. V. (2010). Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomedical Optics Express, 1(1), 278-284. [25] http://www.fi.edu/learn/heart/blood/blood.html [26] http://omlc.ogi.edu/spectra/hemoglobin/ [27] http://www.lsbu.ac.uk/water/vibrat.html [28] Scherrer-Crosbie, M., & Thibault, H. B. (2008). Echocardiography in translational research: Of mice and men. Journal of the American Society of Echocardiography, 21(10), 1083-1092. [29] Chen, W. Y. (2010). ECG Triggering and Gating for Ultrasonic Small Animal Cardiac Flow Imaging. Master Thesis, National Taiwan University. [30] Hsu, C. W. (2006). Glucose Concentration Measurements Utilizing a Photoacoustic Technique. Master Thesis, National Taiwan University. [31] http://en.wikipedia.org/wiki/Beer%E2%80%93Lambert_law [32] Wang, X. D., Xie, X. Y., Ku, G. N., & Wang, L. V. (2006). Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. Journal of Biomedical Optics, 11(2). [33] Neumann, J. J., & Gabriel, K. J. (2002). CMOS-MEMS membrane for audio-frequency acoustic actuation. Sensors and Actuators a-Physical, 95(2-3), 175-182. [34] Cox, B. T., Arridge, S. R., Kostli, K. P., & Beard, P. C. (2006). Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method. Applied Optics, 45(8), 1866-1875. [35] Yuan, Z., & Jiang, H. B. (2006). Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media. Applied Physics Letters, 88(23). [36] Lu, C. W., Lee, C. K., Tsai, M. T., Wang, Y. M., & Yang, C. C. (2008). Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography. Optics Letters, 33(5), 416-418. [37] Li, Y. H. (2012) Applications of Pre-Clinical Ultrasound in Cardiac Research. Master Thesis, National Taiwan University. [38] Beard, P. (2011). Biomedical photoacoustic imaging. Interface Focus, 1(4), 602-631. [39] Zhang, E., Laufer, J., & Beard, P. (2008). Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Applied Optics, 47(4),561-577. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63851 | - |
dc.description.abstract | 在本研究中我們探討利用雙波長雷射光的光聲效應,配合脈衝重複頻率(pulse repetition frequency, PRF)高達數千Hz的脈衝雷射,即時計算血液中血氧濃度之可行性。血氧濃度是重要生理參數,目前常用的檢測方法為侵入式的抽血檢驗或是非侵入式的脈衝血氧計(pulse oximeter),然而脈衝血氧計也有其侷限。利用光聲效應量測的優點是非侵入式,不僅得到局部血氧資訊,同時能夠搭配B-Mode影像作比較。本論文之研究目標即為發展一套訊號分析方法,利用不帶氧血紅蛋白(Hb)與帶氧血紅蛋白(HbO2)在不同雷射波長下吸收度不同的性質,把雙波長光聲訊號量化成血氧濃度,驗證此方法之可行性,並在高頻超音波系統上實現。在實驗架構方面,即時光聲影像利用染料雷射,可以以frame rate 5Hz成像。在雙波長計算濃度方面,以532nm Nd:YAG雷射驅動,搭配Ti-Sapphire可調波長雷射,選擇雙波長雷射光照射血液,同時以中心插入光纖的超音波探頭,以背向模式進行光聲訊號量測。目前即時光聲影像只能以單一波長722nm成像,可用來凸顯高光學吸收度的區域。在雙波長計算濃度的部分,測得的光聲訊號經過能量正規化修正後,擷取峰值或特定波段進行血氧濃度計算。由於血液取得不易,在血液實驗之前先進行紅藍墨水以及金奈米實驗,做雙波長計算濃度的驗證。結果顯示,當紅藍墨水以不同比例混合時,用光聲訊號計算出的濃度與已知濃度呈高度正相關,平均誤差為-24%,誤差標準差為32%。而金奈米實驗的結果也呈高度正相關,平均誤差為3.43%,誤差標準差為14.5%。血液實驗方面,先確認血液能維持血氧濃度>95%長達一小時以上,再利用光聲訊號比較打入空氣血液與未打入空氣血液的血氧濃度。結果顯示,對於打入空氣的血液與未打入空氣的血液來說,計算出的血氧濃度都在85%以上,但未打入空氣血液血氧濃度較高。而在波長的選擇方面,選用720nm左右搭配超過800nm的雙波長雷射光,能得到比較合理的結果。 | zh_TW |
dc.description.abstract | In this study we discuss the feasibility of using dual-wavelength photoacoustic imaging, along with a high pulse repetition frequency laser for real-time measurements of blood oxygen level. Blood oxygen level is an important physiological parameter. Conventionally, there are two ways to measure the blood oxygen level. One is direct blood analysis and the other is using a pulse oximeter. The direct method, which draws blood from patients invasively, is the current gold standard for blood oxygen level measurement. Pulse oximeter, on the other hand, is a non-invasive and thus more convenient method. But the accuracy is inferior. The hypothesis of this research is that by combining photoacoustic imaging with blood oxygen level measurements, 2D functional imaging can be achieved. To this end, the goal of this research is to develop and implement a signal processing method, utilizing absorption spectrum difference between oxyhemoglobin and deoxyhemoglobin, to measure the blood oxygen level distribution in real time. In our experimental setup, a high PRF pulsed dye laser is used to achieve a frame rate up to 5 frames/sec. On the other hand, a Ti-Sapphire tunable laser, pumped by a 532nm Nd:YAG laser, is used for dual wavelength measurements. Due to system limitations, currently real-time imaging only with a single wavelength (722nm) is achieved. Various samples, including blue/red ink and gold nano-particles, were used to test our methods. Results show that the measured concentration of blue ink had a mean error of -24%, and a standard deviation of 32%. For gold nanoparticles, the mean error was -3.43%, and the standard deviation was 14.5%. For human blood, the calculated blood oxygen level for both gas-filled blood and no gas-filled blood was above 85%, but the oxygen level was higher for no gas-filled blood. It is suggested that 720nm and 800nm should be the two wavelengths used for future investigation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:20:52Z (GMT). No. of bitstreams: 1 ntu-101-R99945003-1.pdf: 3448380 bytes, checksum: 45d02bdad55267a89f3cd694444005ca (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 致謝 I
摘要 III Abstract IV 目錄 VI 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 研究動機 1 1.1.1 血紅蛋白 1 1.1.2 血氧濃度 2 1.1.3 血氧濃度應用於疾病診斷 3 1.2 血氧濃度量測 5 1.2.1 侵入式血液氣體分析 5 1.2.2 非侵入式脈衝血氧計 6 1.3 光聲效應簡介 9 1.3.1 光聲效應原理 9 1.3.2 光聲效應目前之研究領域 11 1.3.3 光聲訊號接收方式 13 1.3.4 光聲效應計算血氧濃度 15 1.3.5 多波長光聲功能性影像 18 1.4 血液吸收特性與光聲訊號 21 1.4.1 血液吸收特性 21 1.4.2 血液光聲訊號 22 1.5 研究目標 24 1.6 論文架構 25 第二章 高頻超音波系統 26 2.1 高頻超音波簡介 26 2.2 高頻超音波系統架構 28 第三章 誤差傳遞分析 34 3.1 系統與隨機誤差 34 3.2 誤差傳遞 36 第四章 實驗架構與方法 41 4.1 即時光聲影像 42 4.2 雙波長光聲血氧濃度 44 第五章 結果與分析 51 5.1 即時光聲影像 51 5.1.1 格狀仿體光聲影像 51 5.1.2 石墨仿體光聲影像 52 5.2 雙波長光聲濃度 55 5.2.1 紅/藍墨水混合實驗 55 5.2.2 金奈米 58 5.2.3 血液 63 第六章 討論與結論 68 6.1 探頭比較 68 6.2 雷射系統比較 76 6.3 不同波長比較 78 6.4 濃度計算誤差分析 80 6.4.1 紅/藍墨水混合實驗 80 6.4.2 金奈米實驗 82 6.4.3 血氧濃度實驗 82 6.5 結論 86 6.6 未來工作 88 參考文獻 91 | |
dc.language.iso | zh-TW | |
dc.title | 即時光聲影像系統及雙波長光聲血氧濃度量測 | zh_TW |
dc.title | Real-Time Photoacoustic Imaging and Its Applications in Blood Oxygenation Measurements | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 宋孔彬,鄭耿璽,郭柏齡,沈哲州 | |
dc.subject.keyword | 光聲效應,血氧濃度,雙波長,即時影像, | zh_TW |
dc.subject.keyword | photoacoustic effect,blood oxygenation,dual-wavelength,real-time imaging, | en |
dc.relation.page | 93 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-17 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 3.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。